F. Abascal, D. Posada, and R. Zardoya, MtArt: A New Model of Amino Acid Replacement for Arthropoda, Molecular Biology and Evolution, vol.24, issue.1, pp.1-5, 2007.
DOI : 10.1093/molbev/msl136

J. Adachi and M. Hasegawa, Model of amino acid substitution in proteins encoded by mitochondrial DNA, Journal of Molecular Evolution, vol.41, issue.4, pp.459-468, 1996.
DOI : 10.1007/BF02498640

J. Adachi, P. Waddell, W. Martin, and M. Hasegawa, Plastid Genome Phylogeny and a Model of Amino Acid Substitution for Proteins Encoded by Chloroplast DNA, Journal of Molecular Evolution, vol.50, issue.4, pp.348-358, 2000.
DOI : 10.1007/s002399910038

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-722, 1974.
DOI : 10.1109/TAC.1974.1100705

L. Arvestad, Efficient Methods for Estimating Amino Acid Replacement Rates, Journal of Molecular Evolution, vol.100, issue.6, pp.663-673, 2006.
DOI : 10.1007/s00239-004-0113-9

L. Arvestad and W. Bruno, Estimation of Reversible Substitution Matrices from Multiple Pairs of Sequences, Journal of Molecular Evolution, vol.45, issue.6, pp.696-703, 1997.
DOI : 10.1007/PL00006274

S. Benner, M. Cohen, and G. Gonnet, Amino acid substitution during functionally constrained divergent evolution of protein sequences, "Protein Engineering, Design and Selection", vol.7, issue.11, pp.1323-1332, 1994.
DOI : 10.1093/protein/7.11.1323

M. Betts and R. Russell, Amino acid properties and consequences of substitutions, Bioinformatics for geneticists, 2003.

B. Boeckmann, A. Bairoch, and R. Apweiler, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Research, vol.31, issue.1, pp.365-370, 2003.
DOI : 10.1093/nar/gkg095

D. Bryant, N. Galtier, and M. Poursat, Likelihood calculations in phylogenetics Mathematics of evolution and phylogeny, pp.33-62, 2005.

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-552, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

M. Dayhoff, R. Eyck, and C. Park, A model of evolutionary change in proteins Atlas of protein sequence and structure: National Biomedical Research Foundation, pp.89-99, 1972.

M. Dayhoff, R. Schwartz, and B. Orcutt, A model of evolutionary change in proteins Atlas of protein sequence and structure National Biomedical Research Foundation, pp.345-352, 1978.

C. Devauchelle, A. Grossmann, A. Hénaut, M. Holschneider, M. Monnerot et al., Rate Matrices for Analyzing Large Families of Protein Sequences, Journal of Computational Biology, vol.8, issue.4, pp.381-399, 2001.
DOI : 10.1089/106652701752236205

URL : https://hal.archives-ouvertes.fr/hal-01300316

M. Dimmic, J. Rest, D. Mindell, and R. Goldstein, rtREV: An Amino Acid Substitution Matrix for Inference of Retrovirus and Reverse Transcriptase Phylogeny, Journal of Molecular Evolution, vol.55, issue.1, pp.65-73, 2002.
DOI : 10.1007/s00239-001-2304-y

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, Journal of Molecular Evolution, vol.24, issue.6, pp.368-376, 1981.
DOI : 10.1007/BF01734359

J. Felsenstein, Inferring phylogenies, 2003.

N. Goldman, J. Thorne, and D. Jones, Assessing the impact of secondary structure and solvent accessibility on protein evolution, Genetics, vol.149, pp.445-458, 1998.

N. Goldman, J. Anderson, and A. Rodrigo, Likelihood-Based Tests of Topologies in Phylogenetics, Systematic Biology, vol.49, issue.4, pp.652-670, 2000.
DOI : 10.1080/106351500750049752

X. Gu, Y. Fu, and W. Li, Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites, Mol Biol Evol, vol.12, pp.546-557, 1995.

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

I. Holmes and G. Rubin, An expectation maximization algorithm for training hidden substitution models11Edited by F. Cohen, Journal of Molecular Biology, vol.317, issue.5, pp.753-764, 2002.
DOI : 10.1006/jmbi.2002.5405

W. Hordijk and O. Gascuel, Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood, Bioinformatics, vol.21, issue.24, pp.4338-4347, 2005.
DOI : 10.1093/bioinformatics/bti713

URL : https://hal.archives-ouvertes.fr/lirmm-00137439

D. Jones, W. Taylor, and J. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-282, 1992.
DOI : 10.1093/bioinformatics/8.3.275

D. Jones, W. Taylor, and J. Thornton, A mutation data matrix for transmembrane proteins, FEBS Letters, vol.185, issue.3, pp.269-275, 1994.
DOI : 10.1016/0014-5793(94)80429-X

T. Keane, C. Creevey, M. Pentony, T. Naughton, and J. Mcinerney, Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified, BMC Evolutionary Biology, vol.6, issue.1, p.29, 2006.
DOI : 10.1186/1471-2148-6-29

H. Kishino and M. Hasegawa, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, Journal of Molecular Evolution, vol.46, issue.2, pp.170-179, 1989.
DOI : 10.1007/BF02100115

P. Klosterman, A. Uzilov, Y. Bendaña, R. Bradley, S. Chao et al., XRate: a fast prototyping, training and annotation tool for phylo-grammars, BMC Bioinformatics, vol.7, issue.1, p.428, 2006.
DOI : 10.1186/1471-2105-7-428

J. Koshi and R. Goldstein, Context-dependent optimal substitution matrices, Protein Engineering Design and Selection, vol.8, issue.7, pp.641-645, 1995.
DOI : 10.1093/protein/8.7.641

C. Kosiol and N. Goldman, Different Versions of the Dayhoff Rate Matrix, Molecular Biology and Evolution, vol.22, issue.2, pp.193-199, 2004.
DOI : 10.1093/molbev/msi005

C. Kosiol, I. Holmes, and N. Goldman, An Empirical Codon Model for Protein Sequence Evolution, Molecular Biology and Evolution, vol.24, issue.7, pp.1464-1479, 2007.
DOI : 10.1093/molbev/msm064

N. Lartillot and P. H. , A Bayesian Mixture Model for Across-Site Heterogeneities in the Amino-Acid Replacement Process, Molecular Biology and Evolution, vol.21, issue.6, pp.1095-1109, 2004.
DOI : 10.1093/molbev/msh112

URL : https://hal.archives-ouvertes.fr/lirmm-00108585

W. Macstewart, A note on the power of the sign test, Ann Math Stat, vol.12, pp.236-239, 1941.

T. Müller and M. Vingron, Modeling Amino Acid Replacement, Journal of Computational Biology, vol.7, issue.6, pp.761-776, 2000.
DOI : 10.1089/10665270050514918

M. Pagel and A. Meade, Mixture models in phylogenetic inference Mathematics of evolution and phylogeny, pp.121-142, 2005.

D. Posada and T. Buckley, Model Selection and Model Averaging in Phylogenetics: Advantages of Akaike Information Criterion and Bayesian Approaches Over Likelihood Ratio Tests, Systematic Biology, vol.53, issue.5, pp.793-808, 2004.
DOI : 10.1080/10635150490522304

A. Rambaut and N. Grassly, Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees, Bioinformatics, vol.13, issue.3, pp.235-238, 1997.
DOI : 10.1093/bioinformatics/13.3.235

N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-425, 1987.

M. Sanderson, M. Donoghue, W. Piel, and T. Eriksson, TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life, Am J Bot, vol.81, p.183, 1994.

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

J. Setubal and J. Meidanis, Introduction to computational molecular biology, 1997.

J. Thorne, Models of protein sequence evolution and their applications, Current Opinion in Genetics & Development, vol.10, issue.6, pp.602-605, 2000.
DOI : 10.1016/S0959-437X(00)00142-8

J. Thorne, N. Goldman, and D. Jones, Combining protein evolution and secondary structure, Molecular Biology and Evolution, vol.13, issue.5, pp.666-673, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025627

URL : http://mbe.oxfordjournals.org/cgi/content/short/13/5/666

S. Veerassamy, A. Smith, and E. Tillier, A Transition Probability Model for Amino Acid Substitutions from Blocks, Journal of Computational Biology, vol.10, issue.6, pp.997-1010, 2003.
DOI : 10.1089/106652703322756195

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003851

Z. Yang, Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites, Mol Biol Evol, vol.10, pp.1396-1401, 1993.

Z. Yang, Computational molecular evolution, 2006.
DOI : 10.1093/acprof:oso/9780198567028.001.0001

Z. Yang, R. Nielsen, and M. Hasegawa, Models of amino acid substitution and applications to mitochondrial protein evolution, Molecular Biology and Evolution, vol.15, issue.12, pp.1600-1611, 1998.
DOI : 10.1093/oxfordjournals.molbev.a025888