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Abstract  

Background 

Distance-based phylogeny inference methods first estimate evolutionary distances 

between every pair of taxa, then build a tree from the so-obtained distance matrix. 

These methods are fast and fairly accurate. However, they hardly deal with 

incomplete distance matrices. Such matrices are frequent with recent multi-gene 

studies, when two species do not share any gene in analyzed data. The few existing 

algorithms to infer trees with satisfying accuracy from incomplete distance matrices 

have time complexity in ( )4O n  or more, where n  is the number of taxa, which 

precludes large scale studies. Agglomerative distance algorithms (e.g. NJ [1,2]) are 

much faster, with time complexity in ( )3O n , which allows huge datasets and heavy 

bootstrap analyses to be dealt with. These algorithms proceed in three steps: (a) search 

for the taxon pair to be agglomerated, (b) estimate the lengths of the two so-created 

branches, (c) reduce the distance matrix and return to (a) until the tree is fully 

resolved. But available agglomerative algorithms cannot deal with incomplete 

matrices. 

Results 

We propose an adaptation to incomplete matrices of three agglomerative algorithms, 

namely NJ, BIONJ [3] and MVR [4]. Our adaptation generalizes to incomplete 

matrices the taxon pair selection criterion of NJ (also used by BIONJ and MVR), and 

combines this generalized criterion with that of ADDTREE [5]. Steps (b) and (c) are 

also modified, but ( )3O n  time complexity is kept. The performance of these new 

algorithms is studied with large scale simulations, which mimic multi-gene 

phylogenomic datasets. Our new algorithms — named NJ*, BIONJ* and MVR* — 

infer phylogenetic trees that are as least as accurate as those inferred by other 

available methods, but with much faster running times. MVR* presents the best 

overall performance. This algorithm accounts for the variance of the pairwise 

evolutionary distance estimates, and is well suited for multi-gene studies where some 

distances are accurately estimated using numerous genes, whereas others are poorly 
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estimated (or not estimated) due to the low number (absence) of sequenced genes 

being shared by both species. 

Conclusions 

Our distance-based agglomerative algorithms NJ*, BIONJ* and MVR* are fast and 

accurate, and should be quite useful for large scale phylogenomic studies. When 

combined with the SDM method [6] to estimate a distance matrix from multiple 

genes, they offer a relevant alternative to usual supertree techniques (e.g. [7]). 

Binaries and all simulated data are downloadable from [8]. 
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Background 

Phylogeny inference methods can be classified into two main categories: character-

based (e.g. maximum-parsimony or maximum-likelihood) and distance-based 

approaches. The latter have low running times which are quite useful (mandatory in 

some cases) to perform large-scale studies and bootstrap analyses. A number of 

computer simulations (e.g. [9-17]) have shown that distance methods are fairly 

accurate, though not as accurate as likelihood-based methods that are much more time 

consuming. Using any distance-based method first requires to estimate the pairwise 

evolutionary distances between every taxon pair. These distances are usually 

estimated from DNA, RNA or protein sequences, but can also be obtained from 

DNA-DNA hybridization experiments or, e.g., computed from morphological data 

(see [18] for a review on distance estimation from various data types). 

In the last few years, phylogenomic studies (i.e. phylogeny reconstruction 

from large gene collections [7]) have instigated to the development of fast tree-

building techniques being able to infer trees from datasets comprising hundreds of 

genes and taxa. The low-level gene combination involves concatenating the different 

genes into a unique supermatrix of characters, and then analyzing this matrix with a 

standard tree building method. This approach was shown to perform poorly when 

combined with distance methods, due to inaccurate distance estimations from such 

large heterogeneous character matrix [6]. Better distance-based trees are obtained by 

extracting the phylogenetic information from each gene separately, and then 

combining resulting information sources into a unique distance supermatrix. The 

Average Consensus Supertree (ACS [19]) and Super Distance Matrix (SDM [6]) 

techniques input a collection of distance matrices being estimated from each gene 

separately (the so-called medium-level combination), or being equivalent to the gene 

trees (the high-level combination). These distance matrices are deformed, without 

modifying their topological message, and then averaged to obtain the distance 

supermatrix, which is finally analyzed using a distance-based tree building algorithm. 

Estimating the distance supermatrix is fast. However, missing entries may 

occur in distance supermatrices depending on the extent of taxon overlap within the 
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source matrices. For example, with the two large data sets of Driskell et al. [20], 

which were collected from Swiss-Prot and Gen-Bank thanks to a computer program, 

the ratio of missing distances is ~19% and ~1.2%, respectively. These distances are 

missing because only a few genes are sequenced within each species, meaning that a 

number of species pairs do not share any sequenced gene in common and cannot be 

compared using available data. However, Driskell et al. showed that, despite the 

sparseness of data and the fact that only a small subset of these data is potentially 

phylogenetically informative, a topological signal still emerges, which provides useful 

insights into the tree of life (see [20] and below for details). Analogous findings were 

reported by a number of authors in various contexts (e.g. [21-23]), and tree building 

from sparse data has become topical, as can be seen from the flourishing literature on 

supertrees. 

However, tree building from incomplete distance matrices is NP-hard [24], 

and thus practical algorithms are heuristics. The indirect approach involves first 

estimating missing distances by applying an ultrametric [25], additive [26], 

decomposition-based [27], or quartet-based [28] completion algorithm. The TREX 

package [29] provides several implementations of such algorithms to be used before 

tree building using any standard method with the completed matrix. The direct 

approach involves using a weighted least-squares (WLS) algorithm and associating 

missing distances with null weight (i.e. infinite variance), which means that missing 

distances are simply discarded from WLS computations [18, pp. 449]. The FITCH 

algorithm [30] from the PHYLIP package [31] and the MWMODIF algorithm [32] 

from TREX implement this technique. A combination of both direct and indirect 

methods is provided by MW* [33] (also available in TREX); this algorithm first 

applies an ultrametric or additive completion algorithm (depending on the density of 

missing distances) and then infers a tree using MWMODIF, where weights are set to 

1.0 for known distances, 0.5 for estimated distances, and 0.0 for missing distances (if 

any remain). All these (direct or indirect) algorithms have ( )4O n  time complexity or 

more, where n  is the number of taxa.  This limits their application to medium-sized 

datasets (say 200 taxa without bootstrapping, see below). 
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Agglomerative algorithms are much faster and allow dealing with thousands 

of taxa, as soon as the distance matrix is complete. The most popular of them is the 

Neighbor-Joining (NJ) algorithm [1,2]. Starting from a star tree, agglomerative 

algorithms iteratively perform the three following steps, until the tree is completely 

resolved: 

(a) select a taxon pair xy  that is agglomerated into a new node u ; 

(b) estimate the length of the two so-created external branches ux  and uy  ; 

(c) replace x  and y  by u  in the distance matrix, and estimate the new 

distances between u  and the not-yet-agglomerated taxa. 

Step (a) is more time consuming than the two other steps, because of testing all the 

( )2O n  taxon pairs to select the optimal one. To this purpose, NJ optimizes a 

numerical criterion that is denoted as xyQ . This criterion admits several interpretations 

related to the Minimum Evolution principle [1,34], but also to the acentrality of the 

considered pair [35,36]. In this last interpretation (used here), xyQ  measures how 

much the path joining x  to y  is far from the other taxa ,i x y≠ . The xy  pair 

maximizing xyQ  corresponds to the two taxa which are most distant from the other 

ones and is the best candidate for agglomeration. Another criterion, denoted as xyN , is 

used by ADDTREE [5]; this second criterion is based on the four point condition 

[37,38] and counts the number of taxon quartets xyij  where x and y are neighbors. 

When the distance matrix exactly corresponds to a tree (it is then said to be additive), 

xyN  indicates all pairs of sibling taxa in the tree, whereas xyQ  indicates just one such 

taxon pair. We shall see that this property of xyN  is a great advantage when dealing 

with incomplete distance matrices. Indeed, xyQ  is sometimes unusable whereas xyN  is 

still informative. 

Steps (b) and (c) essentially correspond to distance averaging, which requires 

( )O n  run time. These three steps being repeated 2n −  times, agglomerative 

algorithms require ( )3O n  time when using the xyQ  pair selection criterion, and 

( )4O n  with xyN  [39]. 

Several refinements of the NJ algorithm have been proposed. BIONJ [3] 

minimizes the variances associated to the new distances being estimated during each 
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reduction step (c). This way, BIONJ makes use at each iteration of reliable distance 

estimates to select the new taxon pairs to be agglomerated. To this aim, BIONJ uses a 

simple Poisson model of the variances and covariances of the distances being 

contained in the initial distance matrix. BIONJ was generalized into the Minimum 

Variance Reduction algorithm (MVR [4]), a WLS variant of which can deal with any 

distance variance model, but which does not account for the distance covariances. It 

has been shown using computer simulations that this variant (named WLS-MVR in 

[4] but referred here as MVR for simplicity) has similar accuracy as NJ when applied 

to distance matrices estimated from one-gene alignments [4]. WEIGHBOR [40] 

further refines BIONJ approach and uses an agglomeration criterion which accounts 

for the variances of evolutionary distances. All these algorithms require ( )3O n  time. 

Faster, sophisticated distance-based algorithms have been proposed in the last few 

years (e.g. [41-46]), some of them being clearly more accurate than NJ and BIONJ 

(e.g. FASTME [42] and STC [44], in ( )( )2 logO n n  and ( )2O n , respectively). 

In this paper, we propose an adaptation of the agglomerative scheme to 

quickly infer phylogenetic trees from incomplete distance matrices. We show that the 

xyQ  criterion may be rewritten to express the mean acentrality of the xy  taxon pair. In 

the same way, the xyN  criterion may be rewritten to express the mean number of 

taxon quartets where x and y are neighbors. By estimating these two means using all 

available (non-missing) distances, we define the two criteria *
xyQ  and *

xyN  which 

allow for the selection of taxon pairs in step (a), even when the distance matrix is 

incomplete. Using these two new criteria in the agglomerative scheme requires 

( )3O n  and ( )4O n  run time, respectively. A limitation of *
xyQ  and *

xyN  is that they 

cannot be computed when the distance corresponding to the xy  pair is missing (see 

Methods for more). However, this difficulty is inherent to the problem of building 

trees from incomplete distance matrices and is encountered (in various forms) by all 

methods to deal with this problem. Moreover, *
xyN  partly circumvents this difficulty 

thanks to its ability to indicate several relevant pairs, rather than a single one with *
xyQ  

(see Methods for more). As running *
xyN  requires ( )4O n  time, we use a filtering 

technique: at each step (a) we use *
xyQ  to select the s most promising pairs for 

agglomeration, and then use *
xyN  to select the best of these s pairs. This computational 
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trick (and other refinements, see Methods) greatly improves the accuracy compared to 

using *
xyQ  only, while requiring ( )3O sn  time, where s is a small constant ( 15s =  in 

our experiments). Finally, the original NJ, BIONJ and MVR formulae corresponding 

to steps (b) and (c) essentially are distance averaging and are easily adapted to 

incomplete matrices. The three new algorithms are named NJ*, BIONJ* and MVR*, 

respectively. 

Results and Discussion 

Several computer simulations are presented in this section to assess the performance 

of NJ*, BIONJ* and MVR*. We first compare the agglomeration criteria *
xyQ , *

xyN  

and their combination with distance matrices that are additive, but contain missing 

entries. Then, using more realistic datasets, we compare NJ*, BIONJ*, MVR* to 

FITCH [30] and MW* [33], in terms of both topological accuracy and run times. 

Comparison of agglomeration criteria 

Our approach is similar to Makarenkov and Lapointe’s [33]. We analyze with various 

algorithms and criteria a distance matrix with randomly deleted entries. The distance 

matrix we use is additive, i.e. is obtained from a tree by computing the path length 

distance between every taxon pair. Let T denote this tree and ( )ijT  be the 

corresponding distance matrix, where ijT  is the path-length (or patristic) distance 

between taxa i and j in T. When no entry is missing, such an additive matrix uniquely 

defines T, which is recovered by any consistent algorithms (as are all algorithms being 

tested here). When entries are missing in ( )ijT , recovering T becomes a difficult task 

(see above), and we measure how well the algorithms perform when given an 

increasing number of missing distances. Such data thus are not realistic from a 

biological stand point, as evolutionary distances estimated from sequences are not 

additive, but this is a simple and standard approach to compare algorithms and 

agglomeration criteria. 

We use for the correct tree T the phylogeny of 75 placental mammals from [6]. 

The percentage of missing entries is miss 1%,5%,10%, 20%, 30%P = . For each missP  

value, 500 replicates are randomly generated. From each of these 5 500×  incomplete 
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additive distance matrices, a tree T̂  is inferred by FITCH, MW* and BIONJ*. 

Various values of the s parameter are tested for BIONJ*, in order to compare the 

topological accuracy of *
xyQ , *

xyN , and of the combination of these two agglomeration 

criteria. With 1s = , BIONJ* uses *
xyQ  only. With 1s > , the taxon pairs corresponding 

to the s  highest values of *
xyQ  are reanalyzed with *

xyN  (and with other criteria when 

ties occur; see Methods). When s becomes large (which is denoted as maxs = ) 

BIONJ* uses *
xyN  only, as all taxon pairs are retained in the first selection step.  

Each inferred tree T̂  is compared to the correct tree T  by using the quartet 

distance qd  [47]. This topological distance measures the number of resolved 4-taxon 

subtrees which are induced by one tree but not the other, and thus is more precise than 

the widely used bipartition distance [48] which counts the number of internal 

branches present in one tree but not in the other. Moreover, the quartet distance is less 

affected than the bipartition distance by small topological errors, e.g. wrong position 

of a single taxon [49]. This distance is normalized: 0qd =  indicates that T and T̂  are 

identical, whereas 1qd =  means that both trees do not share any resolved 4-taxon 

subtrees. Averages of the 500 qd  measures for each missP  value are displayed in 

Figure 1, for FITCH, MW*, and BIONJ* with various s  values. 

All curves in Figure 1 are decreasing; as expected, the correct tree T  is better 

recovered (i.e. the mean qd  value between T̂ and T  decreases) as the proportion of 

missing distance missP  becomes closer to 0. Using *
xyN  in BIONJ* greatly improves 

the agglomeration step; e.g. with miss 10%P = , mean qd  values of BIONJ* are ~0.0015 

and ~0.0008, with 1s =  and 15s = , respectively. However, there is no significant 

difference between 15s =  and maxs =  (as assessed by a sign-test [50] based on the 

500 replicates, all p-values are much larger than 0.05), meaning that a small value of s 

(e.g. 15s = ) seems to be enough to focus on the most relevant pairs, while avoiding 

the computational burden of using *
xyN  only. Further experiments (see below) confirm 

this finding. FITCH and BIONJ* (with 15 and maxs s= = ) have similar accuracy, 

while MW* tends to perform better than the other algorithms with these data. 

However, we shall see that algorithm ordering is different with more realistic 

simulations. These experiments thus confirm the advantage of combining *
xyQ  and 
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*
xyN  within BIONJ*, and similar results (not shown) are obtained with NJ* and 

MVR*. 

Comparison of reconstruction algorithms with distance supermatrices 

We re-use a simulation protocol that we have used previously to compare a number of 

tree-reconstruction methods in a phylogenomic context [6]. This protocol involves 

generating sequences and evolving them along trees, and is more realistic than the 

comparison described above. We first summarize this protocol, and then report the 

results that are obtained with the simulated datasets by FITCH, MW*, NJ*, BIONJ* 

and MVR*. To estimate the distance supermatrix that is the input of these algorithms, 

we use the SDM method ([6], see also Methods) which computes a supermatrix that 

summarizes the topological signal being contained in a collection 

( ) ( ) ( ){ }1 2, ,..., k
ij ij ijΔ Δ Δ  of k  distance matrices. Simulations [6] have shown the high-

quality of this distance supermatrix in both medium- and high-level gene 

combinations. 

Simulations are as follows (see [6] for more details). Starting from a randomly 

generated tree T  with 48n =  taxa, evolution of k  genes is simulated, with 

2, 4,..., 20k = . For each of the k  genes, some taxa are randomly deleted. Two 

deletion probabilities are used: 25% to preserve high overlap between the different 

taxon sets, and 75% to induce low overlap. From these k  partially deleted gene 

alignments, k distance matrices are estimated to compose the collection CΔ  of source 

matrices. The SDM method is then run with CΔ  to obtain a distance supermatrix 

corresponding to a medium-level combination of the k  partially deleted genes. To 

study the high-level combination, a phylogenetic tree is inferred by PhyML [17] from 

each of the k  partially deleted genes; then, the path length distance between each 

taxon pair for each of the k phylogenies is computed, to form the collection TC  of k 

additive distance matrices that are equivalent to the k PhyML trees. Finally, SDM is 

applied to TC  to obtain a distance supermatrix corresponding to a high-level gene 

combination.  

This simulation protocol is repeated 500 times for each value of k and each 

deletion proportion. We obtain this way (10 gene collection sizes × 500 collections × 
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2 overlap conditions × 2 gene combination levels) = 20,000 distance supermatrices, 

which are denoted as ( )SDM
ijΔ  and are frequently incomplete. Indeed, if taxon i is 

missing for gene p, then p
ijΔ  is missing —which is denoted as p

ijΔ = ∅ —, and if 
p
ijΔ = ∅  for all 1, 2,...,p k= , then SDM

ijΔ = ∅ . With 25% deletion rate, almost all 

distance supermatrices are complete when 14k ≥ . With 75% deletion rate, all 

distance supermatrices are incomplete, but the number of missing distances decreases 

as k  increases (missing distance proportions range from 42% to 11%). 

FITCH and MW* are run with default options. In accordance with Figure 1, s 

is set to 15 for NJ*, BIONJ* and MVR*. With BIONJ*, ijV  variances (associated 

with SDM
ijΔ  distance estimates) are naturally defined by SDM

ij ijV ∝ Δ  if SDM
ijΔ ≠ ∅ , else 

ijV = ∅ . Variances used by MVR* comply with the same rule, but account for other 

parameters such as the length and the number of sequences being used to estimate 

each SDM
ijΔ  distance (see Methods). Accuracy of the five algorithms is measured with 

the topological distance qd , as above, and averaged for the 500 replicates 

corresponding to each of the conditions. Results are reported in Table 1 for the 

medium-level gene combination, and in Table 2 for the high-level gene combination. 

For each value of k , the first- and second-best mean qd values are indicated in 

bold&underlined and bold, respectively, and a sign-test [50] based on the 500 

replicates is used to assess the significance of the difference between these two best 

values. 

In the medium-level gene combination, NJ* and MW* are outperformed by 

other algorithms. With a 25% deletion rate, BIONJ* has best topological accuracy, 

followed by FITCH. However, the sign-test indicates that the difference between 

these two algorithms is moderately significant as the p-value is lower than 0.05 for 

only five k  values (= 6, 8, 12, 16, and 18). With a 75% deletion rate, FITCH is best, 

but again the sign-test shows that FITCH, BIONJ* and MVR* are broadly equivalent. 

With high-level combination distance supermatrices, NJ* and MW* still tend 

to be outperformed by other algorithms. BIONJ* is in between, and the best mean 

qd values are observed with MVR* which is followed by FITCH. The sign-test 
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broadly confirms the significance of this observation, though the accuracy difference 

between MVR* and FITCH is relatively low. 

 Altogether, these experiments show that MVR* is at least as accurate as 

FITCH, that BIONJ* has similar performance, while NJ* and MW* are behind these 

three algorithms. Comparing these findings with the results from [6, Figure 2], we see 

that (in the high-level framework, Table 2) MVR* is more accurate than the standard 

Matrix Representation with Parsimony method (MRP, [51,52]), in most cases; e.g. 

with k=10, MVR* has mean qd  values of 0.0171 and 0.0663, for 25% and 75% 

deletion rate, respectively, while mean qd  values of MRP equal 0.0175 and 0.1152. 

MVR* (combined with SDM) outperforms MRP with sparse information (75% 

deletion rate and/or low number of genes), while both approaches are nearly 

equivalent when the information is abundant (25% deletion rate). An explanation [53] 

of this finding could be that the distance approach not only uses the topology of the 

source trees (as MRP) but also their branch lengths. Distance-based supertrees thus 

contain more information than MRP supertrees, which makes a noticeable difference 

when the information is sparse, but does not impact much the results with abundant 

information (see also following simulation results). 

Results with simulations based on Driskell et al. [20] dataset 

This section aims to measure the accuracy of the different tree building algorithms 

when applied to simulated datasets being more realistic than those commonly used in 

a phylogenomic perspective. Most notably, uniformly random gene deletion (used in 

previous section, following [54]) is not fully realistic because some genes (e.g. 

cytochrome b) are sequenced for most species, while some other genes are rarely 

sequenced (or rare among living species). It follows that the gene presence/absence 

pattern is different with real datasets to this being induced by uniformly random gene 

deletion (see [20,55-57] for illustrative examples). To this purpose, we use the 

character supermatrix from Driskell et al. [20], which comprises 69 green plant 

species and 254 genes, and was built via an automated exploration process of 

GenBank. This matrix contains a total number of 2777 sequences and has 87% 

missing characters, which are unequally distributed among taxa. Only 3 taxa have 
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more than 50% genes, whereas 42 have 10% genes or less. In the same way, a few 

genes are present in most taxa (e.g., the 2 most sequenced genes belong to 59 taxa), 

whereas other genes are rare (e.g. 121 genes are present in at most 5 taxa). However, 

these k = 254 genes are complementary and the SDM distance supermatrix only 

contains ~1.2% missing entries. This low proportion of missing entries is favorable to 

tree reconstruction, but still requires an algorithm able to deal with incomplete 

matrices.  

 We use a simulation protocol analogous to that described above (see also [6]). 

The only difference is the deletion procedure, with random deletion replaced by the 

gene presence/absence pattern of [20, Figure 2.B]. We generate 100 datasets this way 

with 69n =  taxa and 254k =  genes. From these 100 datasets, we infer 100 distance 

matrix collections CΔ  and 100 tree collections TC . Each of these 2 100×  collections is 

dealt with by SDM, to obtain a distance supermatrix ( )SDM
ijΔ  that contains the same 

missing entries as those induced by the original dataset [20]. We use these matrices to 

compare FITCH, MW*, NJ*, BIONJ* and MVR*, based on qd  quartet distance 

between the correct and inferred trees (see above). Our three algorithms are run with 

both 15s =  and maxs = . Results of MRP are also computed, using TNT [58] to infer 

the most parsimonious trees. TNT is run with 25 random addition sequences, TBR 

branch swapping and ratchet. The MRP supertree is defined in the standard way [59] 

as the strict consensus of the most parsimonious trees. Results are displayed in Table 

3, which is similar to Tables 1 and 2; the first- and second-best mean qd values are 

indicated in bold&underlined and bold, respectively, and sign-tests are used to assess 

the significance of the differences between MVR* (our best algorithm), FITCH and 

MRP. 

 NJ*, BIONJ* and MVR* do not show any significant difference when used 

with 15s =  and maxs =  (as assessed by the sign-test, all p-values are much larger 

than 0.05, results not shown). This confirms the results of the previous experiments to 

compare our various agglomeration criteria. NJ* has the worst accuracy, especially in 

the high-level combination framework. MW*, FITCH and BIONJ* show similar 

performance, while MVR* is best among distance approaches in the two gene 

combination levels. Moreover, the difference between MVR* and FITCH is highly 
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significant (sign-test p-value ≈ 0.0). In the high-level framework, MVR* tends to be  

better than MRP, although the information is quite abundant (254 genes, ~1.2% of 

missing distances); however, the difference is not significant with 100 replicates 

(sign-test p-value ≈ 0.2). The results among distance methods are explained by the 

fact that MVR* uses fairly accurate estimates ( )SDM
ijV  of the variances of the distances 

in ( )SDM
ijΔ . Indeed, dataset [20] induces a highly heterogeneous distribution of 

missing sequences, meaning that some distances are well estimated thanks to a large 

number of sequences, while some others are poorly estimated via a few sequences. 

This is accounted for by MVR* in ( )SDM
ijV  calculations (see Methods), while MW*, 

FITCH and BIONJ* lack this information and use inaccurate estimations of ( )SDM
ijV . 

The difference between these two approaches (i.e. MVR* on the one hand, and MW*, 

FITCH and BIONJ* on the other hand) is somewhat hidden when using uniformly 

random sequence deletion, because with the latter all distances are broadly estimated 

with the same number of genes. With biologically realistic pattern of gene 

presence/absence, the difference becomes important, especially for the high-level 

combination. Thus, this last set of simulations confirms the findings of the previous 

ones and supports the capacity of MVR* for dealing with phylogenomic data. 

Run time comparison 

Run times with various dataset sizes have been measured on a PC Pentium IV 1.8GHz 

(1Gb RAM) and are displayed in Table 4. We do not report the runtimes of  NJ* and 

BIONJ*, as they are nearly the same as those of MVR*. In fact, NJ* and BIONJ* are 

~2% faster than MVR*, because they are simpler, but these simplifications does not 

concern the heavy ( )3O n  parts of the algorithms (see Methods). We also report the 

run times of SDM [6], which are in the same range as the fastest tree building 

algorithms, except with Driskell et al. [20]-like datasets, where SDM has to 

summarize a large number (254) of source matrices, but where the number of taxa 

(69) is relatively low. In this case, the run time of SDM is analogous to that of FITCH 

and MW* and remains quite handy (~5 minutes per dataset). 

 As expected from their mere principle, the run times of the various tree 

building algorithms are not much affected by the proportion of missing distances, 
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which is induced by the taxon deletion rate (25% or 75%) and the number of source 

matrices (k). The only apparent exceptions correspond to 2k =  and 75% deletion rate, 

where all algorithms seem to be quite fast; but in this case the distance supermatrices 

are of low size ( ~20, ~42 and ~85 for n equal to 48, 96 and 192, respectively), which 

explains this finding. Indeed, in this case it occurs frequently that some taxa have no 

gene (among 2) in common with any of the other taxa, and such taxa cannot be 

analyzed as all their distances to the other taxa are missing. 

With 25% taxon deletion proportion, 48n =  and 10k = , run times of ~3 

hours and ~5 hours are required by FITCH and MW*, respectively, to build the 500 

trees corresponding to all gene collections in any given gene combination level. The 

same task, which induces calculations similar to bootstrapping, is achieved in ~30 

seconds by any of our agglomerative algorithms. The difference between the 

agglomerative algorithms and the others increases when the number of taxa increases, 

as expected given that their time complexity are ( )3O sn  (i.e. ( )3O n  as s is kept 

constant) and ( )4O n  or more, respectively. With 192 taxa, FITCH and MW* require 

more than 3 hours to build a single tree, while the agglomerative algorithms require 

less than 1 minute; this run time makes easy to perform a bootstrap study with our 

algorithms, but pretty much impossible with FITCH or MW*. With even larger 

datasets (say, above 500 taxa) neither FITCH nor MW* can be used to build a single 

tree, while our algorithms still run in a few minutes.  

Conclusion  

Thanks to the ever increasing flow of sequence data, phylogenomic analyses and 

supertree buildings are more and more frequently used to draw the evolutionary tree 

of living species. Larger and larger datasets are processed, requiring sophisticated 

approaches and algorithms. In this context, distance-based methods are quite useful, 

as they are both very fast and fairly accurate. New techniques, such as SDM [6], allow 

quickly estimating distance supermatrices that summarize the topological signal being 

contained in a collection of source distance matrices or gene trees. However, these 

supermatrices may be incomplete due to low taxon coverage in the selected genes. In 
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this (common) case, fast distance-based tree building algorithms such as NJ, BIONJ, 

FASTME or STC are no longer applicable. 

 This paper presents an adaptation to incomplete distance matrices of several 

agglomerative algorithms, namely NJ, BIONJ and MVR. We show that the formulae 

forming the basis of these algorithms can be rewritten to account for missing 

distances. Moreover, the same holds for the quartet-based pair selection criterion of 

ADDTREE. Combining both NJ and ADDTREE generalized pair selection criteria, 

we obtain fast and accurate algorithms that require ( )3O n  run times, where n is the 

number of taxa, i.e. run times that are similar to NJ’s. These three novel algorithms, 

named NJ*, BIONJ* and MVR*, show (in our simulations) topological accuracy 

similar or higher to that of FITCH and MW*, which are much more time consuming. 

MVR* appears to be best, followed by BIONJ*. In a phylogenomic context, MVR* 

accounts for (and benefits from, regarding other algorithms) the fact that gene 

distribution among species is very heterogeneous, which implies that some distances 

are accurately estimated (using numerous genes) while some others are poorly 

estimated (with few genes). Combined with the SDM method [6] to estimate distance 

supermatrices, MVR* and BIONJ* are relevant alternatives to standard supertree 

techniques [7], as MRP [51,52]. JAVA implementations of these algorithms are 

available in PhyD* software and downloadable from [8]. All our datasets are also 

available from this URL. 

 Several research directions would deserve to be explored. The variances and 

covariances of the distance estimates in the distance supermatrix could be accounted 

for in a more complete and accurate way, e.g. in the line of WEIGHBOR [40] for the 

pair selection criterion, or using the generalized least-squares version of MVR [4]. 

There is a clear need for a pair selection criterion being able to point out xy taxon 

pairs, even when the corresponding xyΔ  distance is missing. Theoretical results 

highlighting the cases where our algorithms will succeed (or fail) in recovering the 

correct tree, would likely help to improve these algorithms or design new ones. 

Adapting to missing distances very fast algorithms (e.g. [41-46]) could be promising. 

Finally, dealing with missing distances is likely required in other (non phylogenomic) 
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applications of phylogenetic trees, and in related problems, as phylogenetic network 

inference (e.g. [60]). 

Methods 

Existing agglomerative algorithms are defined by criteria and formulae which all can 

be rewritten as distance averages. These algorithms (e.g. NJ [1,2], BIONJ [3] and 

MVR [4]) are generalized to incomplete distance matrices by estimating these 

averages using available distances, when some of those are missing. In the following, 

we first define notation and present a generic agglomerative scheme that covers all the 

algorithms being discussed here. Then, we describe for each of the three 

agglomeration steps (pair selection, branch length estimation, and matrix reduction), 

how NJ is generalized into NJ* to deal with missing distances. NJ* is further refined 

by BIONJ* that incorporates a first simple estimation of the variance associated to 

each evolutionary distance. Finally, a second, more accurate estimation of this 

variance is used by MVR* that generalizes the weighted least-squares (WLS) version 

of the MVR [4] approach. 

Notation 

Let { }1, 2,...,nL n= be the set of all taxa numbered from 1 to n, and ( )ijΔ  a distance 

matrix, where ijΔ  corresponds to the evolutionary distance between taxa , ni j L∈ , and 

0,ii ni LΔ = ∀ ∈ . Distance-based algorithms build a tree T (also denoted as T̂ , 

depending on the context) from ( )ijΔ , and estimate all branch lengths uvT , where uv  

is any pair of sibling nodes in T. At each agglomeration stage, a taxon pair xy is 

selected, connected to a new internal node u, and replaced by u in ( )ijΔ . Thus, at each 

stage, the set { }1, 2,...,rL r=  of non-agglomerated taxa drops in cardinality by 1, and r 

is changed into 1r − . Tree reconstruction stops when 2r = . 

Agglomerative algorithms with complete distance matrices 

A number of existing agglomerative algorithms to deal with complete matrices can be 

summarized using the following scheme [4]: 
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• Input { }1, 2,...,nL n=  and ( )ijΔ ; 

• r n= ; 

• While 2r > , do: 

(a) Select the xy  pair to be merged into u  by optimizing an agglomeration 

criterion; 
(b) Estimate the branch lengths xuT  and yuT : 

 ( )
{ },

1
2

r

xu xy yu xy i xi yi
i L x y

T T w
∈ −

= Δ − = Δ + Δ − Δ∑   (1) 

     with 
{ },

1
2

r

i
i L x y

w
∈ −

=∑ ; 

(c) Reduce the distance matrix ( )ijΔ  for all ,i x y≠ : 

 ( ) ( )( )1ui i xi xu i yi yuT TΔ = Δ − + − Δ −λ λ  (2) 

with [ ]0,1i ∈λ ; 

(d) 1r r= − ; 

• Output T . 

Step (a) in this generic scheme searches for the taxon pair xy  to be merged by 

optimizing an agglomeration criterion. NJ, BIONJ and MVR select the pair which 

maximizes [1,2]: 

 ( )2  ,    where     
r

xy x y xy z zi
i L

Q R R r R
∈

= + − − Δ = Δ∑ . (3) 

Let ( )ijΔ  be additive [61], i.e. be defined as the path-length distance between taxa in a 

phylogenetic tree T with positive branch lengths; then, maximizing xyQ  over all taxon 

pairs selects a cherry of T, i.e. a pair of taxa being separated by a unique internal node 

in T. In other words, xyQ  is consistent (e.g. [36]). However, it is easily shown (using 

counter-examples) that the second best taxon pair (based on xyQ  values) is not 

necessarily a cherry of T.  

Conversely, the ADDTREE [5] pair selection criterion implies that all cherries 

of T have highest criterion value. The ADDTREE criterion counts the number of 

times where the xy pair is a cherry in all taxon quartets xyij : 
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 ( ) ( )
{ },r

xy xi yj xy ij xj yi xy ij
i j L x y

N H H
< ∈ −

= Δ + Δ − Δ − Δ Δ + Δ − Δ − Δ∑   (4) 

where ( ) 1H t =  if 0t ≥ , and ( ) 0H t =  if 0t < . This criterion has integer values 

ranging from 0 to ( )( )2 3 2n n− − , and this maximum value is reached for all 

cherries (but for the cherries only) with additive distance matrices. Careful 

implementation [39] of ADDTREE allows for ( )4O n  run time. NJ, BIONJ and MVR 

are much faster. They first compute all zR  sums in Equation (3), and then compute in 

( )1O  the xyQ  value of each xy pair. Each agglomeration stage thus requires ( )2O r  

time (branch-length estimation and matrix reduction are achieved in ( )O r ), and the 

whole algorithm is in ( )3O n . Moreover, xyQ  can be seen as a continuous version of 

xyN  [62]. 

 After xy pair selection, x and y are connected to the new node u, and the 

lengths of xu  and yu  branches are estimated using Equation (1). Assuming that 

( )ijΔ  is additive and corresponds to tree T, we have ( ) 2xu xy xi yiT = Δ + Δ − Δ , 

,i x y∀ ≠ . Equation (1) averages these elementary estimators using various ( )iw  

weightings. With NJ, the average is equally-weighted and we have 

( )( )1 2 2iw w r= = − . We shall see that MVR uses different iw  weights. 

 Finally (step (c)), ( )ijΔ  is reduced by replacing x  and y  with the new node 

u , and by computing all uiΔ  distances, ,i x y∀ ≠ . When ( )ijΔ  is additive and 

corresponds to tree T, we have ui xi xu yi yuT TΔ = Δ − = Δ − . Equation (2) averages these 

two elementary estimators. NJ uses equal weights ( 1 1 2i iλ = − λ = ) while BIONJ and 

MVR adjust iλ  in order to minimize the variance of uiΔ  and to have reliable distance 

estimates during all agglomeration stages. For this purpose, BIONJ and MVR use 

(approximate) models for the variances and covariances of the distance estimates in 

( )ijΔ .  

NJ*: generalizing NJ to incomplete distance matrices 

When ( )ijΔ  is incomplete (missing entries are denoted as ∅ ), the criteria and 

equations above do not apply. We shall see in this section how they are generalized to 

define the NJ* algorithm, which keeps NJ’s ( )3O n  time complexity and is nearly 

equivalent to NJ with complete matrices. 
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(a) Agglomeration criterion 

Let ( )2xy xyQ Q r′ = − . Maximizing xyQ′  is the same as maximizing xyQ  (Equation  

(3)), and we have: 

 ( ),    where     ,
2

r

xy
xy xy xy xi yi

i L

R
Q R

r ∈

′ = − Δ = Δ + Δ
− ∑   

which can be rewritten as: 

 ( )
{ },

2 1 .
2 2

r

xy xy xi yi xy
i L x y

Q
r r ∈ −

′ = Δ + Δ + Δ − Δ
− − ∑  (5) 

The sum in Equation (5) relates to terms representing how distant is the path joining 

x  to y  from other taxa ,i x y≠  ( xi yi xyΔ + Δ − Δ  equals twice the distance between u  
and i ), whereas the first term expresses the additional distance induced by xyΔ . It has 

been shown [63,64] that the relative weight of these two factors is unique, due to 

consistency requirement, and '
xyQ  can be interpreted as the mean acentrality of the xy 

pair [35,36]. To extend this criterion to incomplete distance matrices, we estimate it 

using the set of taxa with non-missing distances: { }* : ,xy r xi yiS i L= ∈ Δ Δ ≠ ∅ . 

Moreover, we assume xyΔ ≠ ∅ , and thus *, xyx y S∈ . The normalization factor is then  

equal to * 2xyS −  (instead of 2r − ) and we obtain the following generalization of 

Equation (5): 

( )
{ }*

*
* *

,

2 1
2 2

xy

xy xy xi yi xy
i S x yxy xy

Q
S S ∈ −

= Δ + Δ + Δ − Δ
− −

∑ , 

which applies to incomplete distance matrices, and is identical to xyQ′  with complete 

ones. This equation further simplifies into:  

 
*

*
* 2

xy
xy xy

xy

R
Q

S
= − Δ

−
,  where ( )

*

* .
xy

xy xi yi
i S

R
∈

= Δ + Δ∑  (6) 
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Other solutions are possible to extend Equation (5), e.g. preserving ( )2xy rΔ −  term 

rather than transforming it into ( )* 2xy xySΔ − . Simulation results (not shown) 

indicate that criterion (6) has better topological accuracy than these alternatives. 

Theoretical results would be desirable to explain these observations and establish the 

properties of criterion (6), but a first simple explanation is that Equation (6) precisely 

corresponds to the xyQ′  value being computed on *
xyS  taxon subset. To be consistent 

on the whole set of taxa ( rL ), it is mandatory that the criterion is consistent on taxon 

subsets ( *
xyS , here), and Equation (6) satisfies this requirement. 

Maximizing *
xyQ seems to require ( )3O r  time for each iteration, and thus a total 

time complexity of ( )4O n . However, efficient implementation allows for ( )3O n  total 

run time. At the first stage ( r n= ), *
xyR  and *

xyS  values are computed and stored for 

all , nx y L∈ , which requires ( )3O n  time. In the subsequent agglomeration stages, 

these values are updated as follows: 

• After step (a), for all { }, ,ri j L x y∈ −  we remove from *
ijR  and *

ijS : xiΔ  and xjΔ  

(if xiΔ ≠ ∅  and xjΔ ≠ ∅ ), and yiΔ  and yjΔ  (if yiΔ ≠ ∅  and yjΔ ≠ ∅ ). 

• After step (c), we compute *
uiR  and *

uiS  for all { }ri L u∈ − , and 

• for all { }, ri j L u∈ − , we add uiΔ  and ujΔ  to *
ijR  and *

ijS  (if uiΔ ≠ ∅  and 

ujΔ ≠ ∅ ). 

Each of these three updating routines requires ( )2O r  time, just as pair selection using 

criterion (6), meaning that using *
xyQ  instead of xyQ does not change the total ( )3O n  

time complexity of the original NJ algorithm. 

 However, as discussed earlier, a limitation of criterion *
xyQ  is that: (1) it cannot 

be computed when xyΔ = ∅ , and (2) only the best pair is guaranteed (with additive 

distance) to be a cherry in the correct tree. When xy is the best pair in the complete 

additive distance matrix, but xyΔ  is missing in the available distance matrix, then 

using *
xyQ  does not provide any guaranty of correctness. This difficulty is partly 

alleviated when using a generalization of xyN , as this criterion selects all cherries in 

the correct tree with complete additive distances. When some of the cherries 

correspond to missing distances, we are still able to select the others that correspond 
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to non-missing entries. Our generalization of xyN  (Equation (4)) to incomplete 

distances is defined as follows. Let: 

 ( )
*

*

, xy

xy xi yj xy ij
i j C

N H
∈

= Δ + Δ − Δ − Δ∑ , (7) 

 where ( ) ( ) ( ){ }* , , , , : , , ,xy xi yj ijC i j x y y x i j= ≠ ≠ Δ Δ Δ ≠ ∅ . (8) 

*
xyN  differs from xyN  in that we sum both H terms, instead of multiplying them. This 

way we exploit all available information. Indeed, when xjΔ = ∅  and/or yiΔ = ∅ , but 

the other entries are available, we still use ( )xi yj xy ijH Δ + Δ − Δ − Δ  in *
xyN  while a 

multiplicative solution in the line of xyN  would discard this term. Moreover, it is 

easily seen that * 2xy xyN N=  with complete additive distances. To select among taxon 

pairs, we use the averaged form of *
xyN , that is: 

 
*

*
*
xy

xy
xy

N
N

C
= , (9) 

which expresses the mean number of quartets where the xy  pair corresponds to a 

cherry. 

 However, selecting pairs using *
xyN  sometimes produces ties. In this case, we 

select the pair with higher *
xyC  value, that is the pair which is supported by the larger 

number of quartets. But ties may still occur, in which case we use: 

 ( ) ( ) ( ) ( )*
xyM Miss x Miss y Miss y Miss x= − + − , (10) 

where ( ) { }, :r izMiss z i L z= ∈ ≠ Δ = ∅  corresponds to missing entries for taxon z . 
*
xyM  counts the number of missing entries in the current matrix that will be removed 

in the next step (see reduction procedure (13)). Maximizing *
xyM  tends to quickly fill 

missing entries in the running distance matrix, which both frees from xyΔ ≠ ∅  

limitation and allows using xyQ  pair selection criterion only. Finally, in some (very 

rare) cases, we still have ties and then maximize the continuous version [62] of *
xyN : 
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 ( )
*

*

( , )

' .
xy

xy xi yj xy ij
i j C

N
∈

= Δ + Δ − Δ − Δ∑  (11) 

 Pair selection criteria *
xyN  (9), *

xyC  (8), *
xyM  (10) and *'xyN  (11) are used in a 

lexicographic way: taxon pairs are ranked based on the first criterion ( *
xyN ), the 

second one ( *
xyC ) is used in case of ties, etc. However, using these four criteria only 

would result in ( )4O n  time complexity. In order to preserve ( )3O n  run times, we 

first select the s top pairs based on *
xyQ  criterion (6), and then use the other criteria in 

lexicographic order to select the pair to be agglomerated among these s pairs. As 

computing Equations (7) to (11) requires ( )2O r  or less per taxon pair, the total time 

complexity of pair selection is ( )3O n  (1)(first selection using (6)) plus ( )2O s r∑  

(final selection using (8) to (11)), i.e. ( )3O sn . As explained above, *
xyQ  does not 

provide any guaranty of correctness with missing distances, while *
xyN  and *'xyN  

partly circumvent the difficulty. However, *
xyQ  enables to extract the most promising 

pairs for agglomeration and we have seen (Figure 1) that using for s a small constant 

(typically 15) is sufficient to obtain high accuracy, meaning that, in practice, run times 

are in ( )3O n . 

(b) Branch length estimation 

Equation (1) is easily rewritten using non-missing entries only: 

 ( )
{ } { }* *, ,

1 , where 1 2
2

xy xy

xu xy yu xy i xi yi i
i S x y i S x y

T T w w
∈ − ∈ −

= Δ − = Δ + Δ − Δ =∑ ∑ . (12) 

NJ uses the same weight iw  for every taxon i. The same holds for NJ*, that is, 

( )( )*1 2 2i xyw w S= = − . Note that for the selected pair we have *,xy xySΔ ≠ ∅ , 

meaning that Equation (12) is always applicable. Just as with NJ, branch length 

estimation (12) requires ( )O r  time at each agglomeration stage. 

 (c) Matrix reduction 

Equation (2) averages two elementary estimators, and with NJ this average is equally 

weighted. With missing distances it may occur that one of these two estimators is not 

applicable (e.g. when xiΔ = ∅ ), that both are applicable, or that none is applicable. 

Thus, in NJ* Equation (2) becomes: 
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( ) ( )( )1  when  and ,

when  and ,
when  and ,
when ,

i xi xu i yi yu xi yi

xi xu xi yi
ui

yi yu xi yi

xi yi

T T

T
T

λ λ⎧ Δ − + − Δ − Δ ≠ ∅ Δ ≠ ∅
⎪

Δ − Δ ≠ ∅ Δ = ∅⎪Δ = ⎨
Δ − Δ = ∅ Δ ≠ ∅⎪

⎪∅ Δ = Δ = ∅⎩

 (13) 

where 1 2iλ λ= = . In the second and third cases, entries missing in the previous 

matrix are now present in the new, reduced matrix. We have seen that criterion (10) 

tends to maximize the number of such entries, in order to fill as fast as possible the 

missing distances in the running matrix. Just as branch length estimation  (12), matrix 

reduction (13) requires ( )O r  time at each stage and does not impact total time 

complexity. Thus, NJ* requires ( )3O n  run times, when s is kept constant. 

BIONJ*: improving the reduction step, a first simple solution  

BIONJ* uses the same pair selection criteria as NJ*, and adapts to missing distances 

BIONJ reduction procedure. BIONJ uses the degree of freedom corresponding to the 

iλ  parameter in Equation (2), in order to minimize the variance of the new uiΔ  

estimates in step (c). For this purpose, BIONJ assumes a simple Poisson model of the 

variances in the original ( )ijΔ  matrix, stating that the variance ijV  of ijΔ  is 

proportional to ijΔ . BIONJ also accounts for the covariances in ( )ijΔ  (see [3] for 

more details). It uses a single λ  parameter for every xy pair, which does not depend 

on i and is given by 

 
( ) ( )

{ },

1 1 .
2 2 2

r

i yj xj
xy j L x y

V V
r V ∈ −

= = + −
− ∑λ λ  (14) 

Again, this equation may be seen as an average and can be rewritten using available 

entries only as: 

 
( ) ( )

{ }*

* *
*

,

1 1
2 2 2 xy

i yj xj
j S x yxy xy

V V
S V ∈ −

= = + −
−

∑λ λ . (15) 

The reduction step (c) is achieved by BIONJ* as defined by Equation (13), but using 

so-defined *λ  (instead of 1 2 ) when xiΔ ≠ ∅  and yiΔ ≠ ∅ .  
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Moreover, BIONJ starts with variance matrix ( ) ( )ij ijV = Δ  and reduces this 

matrix at each stage using λ  value from Equation (14) and equation: 

 ( ) ( )1 1ui xi yi xyV V V Vλ λ λ λ= + − − − .  

BIONJ* combines this formula with Equation (13) and (15) to reduce the variance 

matrix, that is: 

 

( ) ( )* * * *1 1  when  and ,

when  and ,
when  and ,
when .

xi yi xy xi yi

xi xi yi
ui

yi xi yi

xi yi

V V V

VV
V

λ λ λ λ⎧ + − − − Δ ≠ ∅ Δ ≠ ∅
⎪

Δ ≠ ∅ Δ = ∅⎪= ⎨
Δ = ∅ Δ ≠ ∅⎪

⎪∅ Δ = Δ = ∅⎩

 (16) 

Computing *λ  using Equation (15) and achieving matrix reductions (13) and (16) 

requires ( )O r  run times. Thus, BIONJ* has ( )3O n  time complexity (when s is kept 

constant, else 3( )O sn ). 

MVR*: improving BIONJ* using variances dedicated to distance supermatrices 

The BIONJ variance model is well suited for one-gene studies where distance 

estimations all use the same number of sites (at least when gaps are removed). With 

phylogenomic studies, some distances are computed using a large number of genes, 

and thus are reliable, while other distances are based on a few genes and are poorly 

estimated. Moreover, some distances may be missing due to the absence of common 

genes between the two species being compared. Altogether, this implies that the 

BIONJ and BIONJ* variance model can be improved to better fit phylogenomic 

requirements. This section describes the MVR* algorithm that is intended to this 

purpose. 

Steps (b) and (c) in the generic scheme are based on iw  and iλ  parameters, 

respectively. The MVR algorithm [4] generalizes the BIONJ approach and uses these 

degrees of freedom in order to minimize the variance of the new estimates uxT , uyT  

and uiΔ . The main difference from BIONJ is that MVR is able to deal with any 

variance-covariance model of the ijΔ  distance estimates, while BIONJ is restricted to 

the Poisson model. The MVR variant that we use here only considers the variances 
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and neglects the covariances, thus assuming a weighted least-squares model (it was 

called MVR-WLS in [4], but is named MVR here for simplicity). Thus, MVR inputs a 

distance matrix ( )ijΔ  and the corresponding ( )ijV  variance matrix. We shall see in 

the next section how ( )ijV  is calculated to deal with phylogenomic data, and describe 

now the way MVR and MVR* use and update these matrices all along the 

agglomeration procedure. 

MVR uses xyQ  pair selection criterion (3), just as NJ and BIONJ, while 

MVR* uses the same criteria and selection procedure as NJ* and BIONJ*.  

In MVR step (b), i.e. branch length estimation, iw  weights in Equation (1) 

depend on i and are given by: 

 

{ }

1

,

,     

1 1with normalization term .
2

r

i
xi yi

xi yii L x y

w
V V

V V

−

∈ −

=
+

⎛ ⎞
⎜ ⎟=
⎜ ⎟+⎝ ⎠

∑

μ

μ

 (17)  

MVR* uses Equation (12) (instead of Equation (1)) to deal with missing entries, and 

adapts above Equation (17) by replacing rL  by *
xyS . 

 In MVR step (c), i.e. matrix reduction, a different iλ  parameter is associated 

in Equation (2) to each taxon ,i x y≠  using: 

 yi
i

xi yi

V
V V

=
+

λ . (18) 

This value puts more weight and confidence on ( )xi xuTΔ −  when the associated 

variance xiV  is low, compared to yiV . Equation (18) is also used by MVR*, but 

combined with Equation (13) to deal with missing distances. 

 Finally, MVR (just like BIONJ) reduces the variance matrix at each 

agglomeration stage. To this purpose, MVR uses the following equation: 

xi yi
ui

xi yi

V V
V

V V
=

+
. 
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This equation is also used by MVR* in combination with Equation (16). 

 All the computations described above (except pair selection) require ( )O r  run 

times at each agglomeration stage, and thus MVR* has ( )3O n  time complexity, just 

as do NJ* and BIONJ*. 

Estimating the variances associated to distance supermatrices 

Distance supermatrices are computed [6,19] from source matrices which are first 

rescaled, and then averaged. SDM [6] inputs a collection ( ) ( ) ( ){ }1 2, ,..., k
ij ij ijC = Δ Δ Δ  of 

k  distance matrices —each defined on taxon set pL  and estimated from sequences 

with size ps —, and deforms them, without changing their topological signal, so as to 

bring them as close as possible to each other before averaging. The first deformation 

is scaling, which multiplies each ( )p
ijΔ  distance matrix by a factor pα . The second 

(optional in SDM) deformation adds a constant ipa  to every non-diagonal p
ijΔ  entries. 

Then, SDM averages the resulting modified matrices to obtain the ( )SDM
ijΔ  super-

matrix that is defined by: 

 ( )
{ } { }

SDM

1 , , 1 , ,

1 ,  where
p p

p
ij p p ij ip jp ij p

ij p k L i j p k L i j
s a a W s

W ≤ ≤ ⊃ ≤ ≤ ⊃
Δ = Δ + + =∑ ∑α . (19) 

Neglecting the variance of the deformation factors, we obtain a simple expression of 

the variance of SDM
ijΔ : 

 
{ }

SDM 2 2
2

1 , ,

1

p

p
ij p p ij

p k L i jij
V s V

W ≤ ≤ ⊃
= ∑ α , (20) 

where p
ijV  is the variance of p

ijΔ . Note that no covariance terms between any p
ijΔ  and 

q
ijΔ  estimates appear in Equation (20), as these source distances are estimated from 

different genes and are independent. Moreover, the covariances between the entries in 

the SDM supermatrix are neglected, as is the case in a number of (WLS) approaches, 

e.g. [30,32,40].  

Several studies have shown that the variance ijV  associated with the 

evolutionary distance ijΔ  (estimated from a single gene) is approximately equal to 

ij sρΔ  with 2ρ ≈  [11,65]. Based on various experiments (not shown), we have 
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chosen the usual formula 2
ij ijV s= Δ , which corresponds to default option in FITCH 

program. Equation (20) then becomes: 

( )
{ }

SDM
2

1 , ,

21

p

p
ij p p ij

p k L i jij
V s

W ≤ ≤ ⊃
= Δ∑ α .  

Authors' contributions 

AC designed and implemented the algorithms and experiments, performed the 

computations that are shown here, and wrote the manuscript. OG supervised these 

works, participated in the design of algorithms and experiments, and wrote the 

manuscript. 

Acknowledgements  

Sincere thanks to Vincent Berry, Richard Desper, Emmanuel J.P. Douzery and two 

anonymous referees for their suggestions and comments. This research was supported 

by SUPERTREE project of ACI-IMPBIO. Part of the work was carried out when OG 

participated to the Phylogenetics programme at Isaac Newton Institute for 

Mathematical Sciences, Cambridge, UK. 

References 
1. Saitou N, Nei M: The neighbor-joining method: a new method for 

reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4: 406-425 

2. Studier JA, Kepler KJ: A note on the neighbor-joining method of Saitou and 

Nei. Mol. Biol. Evol. 1988, 5: 729-731 

3. Gascuel O: BIONJ: an improved version of the NJ algorithm based on a 

simple model of sequence data. Mol. Biol. Evol. 1997, 14: 685-695 

4. Gascuel O: Data model and classification by trees: the minimum variance 

reduction (MVR) method. J. Classif. 2000, 17(1): 67-99 



 - 29 - 

5. Sattath S, Tversky A: Additive similarity trees. Psychometrika 1977, 42: 319-

345 

6. Criscuolo A, Berry V, Douzery EJP, Gascuel O: SDM: a fast distance-based 

approach for (super)tree building in phylogenomics. Syst. Biol. 2006, 

55(5): 740-755 

7. Bininda-Emonds ORP: Phylogenetic supertree: combining information to 

reveal the tree of life. Kluwer Academic, New York, 2004 

8. Downloadable PhyD* software from ATGC Montpellier bioinformatics 

platform [ http://www.atgc-montpellier.fr/phyd/ ] 

9. Sourdis J, Nei M: Relative efficiencies of the maximum parsimony and 

distance-matrix methods in obtaining the correct phylogenetic tree. Mol. 

Biol. Evol. 1988, 5(3): 298-311 

10. Saitou N, Imanishi T: Relative efficiencies of the Fitch-Margoliash, 

maximum-parsimony, maximum-likelihood, minimum-evolution and 

neighbor-joining methods of phylogenetic tree construction in obtaining 

the correct tree. Mol. Biol. Evol. 1989, 6(5): 514-525 

11. Kuhner MK, Felsenstein J: A simulation comparison of phylogeny 

algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 

1994, 11: 459-468 

12. Strimmer K, von Haeseler A: Accuracy of neighbor-joining for n-taxon 

trees. Syst. Biol. 1996, 45(4): 516-523 

13. Nei M, Kumar S, Takahashi K: The optimization principle in phylogenetic 

analysis tends to give incorrect topologies when the number of nucleotides 

or amino acids used is small. Proc. Nat. Ac. Sc. 1998, 95: 12390-12397 



 - 30 - 

14. Kumar S, Gadagkar SR: Efficiency of the neighbor-joining method in 

reconstructing deep and shallow evolutionary relationship in large 

phylogenies. J. Mol. Evol. 2000, 51(6): 544-553 

15. Takahashi K, Nei M: Efficiencies of fast algorithms of phylogenetic 

inference under the criteria of maximum parsimony, minimum evolution, 

and maximum likelihood when a large number of sequences are used. 

Mol. Biol. Evol. 2000, 17: 1251-1258 

16. Rosenberg MS, Kumar S: Traditional phylogenetic reconstruction methods 

reconstruct shallow and deep evolutionary relationship equally well. Mol. 

Biol. Evol. 2001, 18(9): 1823-1827 

17. Guindon S, Gascuel O: A simple, fast and accurate algorithm to estimate 

large phylogenies by maximum likelihood. Syst. Biol. 2003, 52(5): 696-704 

18. Swofford DL, Olsen GJ, Waddell PJ, Hillis DM: Phylogenetic inference. In: 

Molecular Systematics. Edited by Hillis DM, Moritz C, Mable BK. Sinauer 

Associates, Massachussets, 1996, 407-509 

19. Lapointe F-J, Cucumel G: The average consensus procedure : combination 

of weighted trees containing identical or overlapping sets of taxa. Syst. 

Biol. 1997, 46(2): 306-312 

20. Driskell AC, Ané C, Burleigh JG, McMahon MM, O’Meara BC, Sanderson 

MJ: Prospects for building the tree of life from large sequence databases. 

Science 2004, 306: 1172-1174 

21. Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D: 

Phylogenomics of eukaryotes: Impact of missing data on large alignments. 

Mol. Biol. Evol. 2004, 21(9):1740-1752 



 - 31 - 

22. Galtier N: A model of horizontal gene transfer and the bacterial phylogeny 

problem. Syst. Biol. 2007, 56(4):633-642 

23. Steel M, Rodrigo A: Maximum-likelihood Supertrees. Syst. Biol. 2008, in 

press 

24. Farach M, Kannan S, Warnow T: A robust model for finding optimal 

evolutionary trees. Algorithmica 1995, 13: 155-179 

25. De Soete G: Ultrametric tree representations of incomplete dissimilarity 

data. J. Clasif. 1984, 1: 235-242 

26. Landry P-A, Lapointe F-J, Kirsch JAW: Estimating phylogenies from 

lacunose distance matrices: additive is superior to ultrametric estimation. 

Mol. Biol. Evol. 1996, 13: 818-823 

27. Lapointe F-J, Landry P-A: A fast procedure for estimating missing 

distances in incomplete matrices prior to phylogenetic analysis. In 

Currents computational molecular biology, edited by El-Mabrouk N, 

Lengauer T, Sankoff D. Publications CRM Montréal, 2001, 189-190. 

28. Guénoche A, Grandcolas S: Approximations par arbre d’une distance 

partielle. Math. Inf. Sc. Hum. 1999, 146:51-64 

29. Makarenkov V. TREX: Reconstructing and visualizing phylogenetic trees 

and reticulation networks. Bioinformatics 2001, 17:664–668 

30. Felsenstein F: An alternating least-squares approach to inferring 

phylogenies. Syst. Biol. 1997, 46: 101-111 

31. Felsenstein J. PHYLIP: Phylogeny inference package, version 3.6b. 

Distributed by the author. University of Washington, Seattle, 1993 



 - 32 - 

32. Makarenkov V, Leclerc B. An algorithm for the fitting of a phylogenetic 

tree according to a weighted least-squares criterion. J. Classif. 1999, 16:3–

26 

33. Makarenkov V, Lapointe F-J: A weighted least-squares approach for 

inferring phylogenies from incomplete distance matrices. Bioinformatics 

2004, 20: 2113-2121 

34. Gascuel O, Steel M: Neighbor Joining Revealed. Mol. Biol. Evol. 2006, 

23(11): 1997-2000 

35. Mirkin B. Mathematical classification and clustering. Kluwer Academic, 

London, 1996 

36. Gascuel O: Concerning the NJ algorithm and its unweighted version, UNJ. 

In: Mathematical Hierarchies and Biology. Edited by Mirkin B, McMorris 

FR, Roberts FS, Rzhetsky A. DIMACS series in Discrete Mathematics and 

Theoretical Computer Science, American Mathematical Society, Providence, 

1997, 140-170 

37. Zaretskii K: Postroenie dereva po naboru rasstoianii mezhdu visiacimi 

vershinami (Constructing a tree on the basis of a set of distances between the 

hanging vertices; in Russian). Uspehi Matematiceskih Nauk 1965, 20: 90-92 

38. Buneman P: The recovery of trees from measures of dissimilarity. In: 

Mathematics in archaeological and historical sciences. Edited by Hudson F, 

Kendall D, Tautu P. Edinburgh University Press 1971, 387-395 

39. Elemento O, Gascuel O: A fast and accurate distance algorithm to 

reconstruct tandem duplication trees. Bioinformatics 2002, 18: 92-99 



 - 33 - 

40. Bruno WJ, Socci ND, Halpern AL: Weighted neighbor joining: a 

likelihood-based approach to distance-based phylogeny reconstruction. 

Mol. Biol. Evol. 2000, 17(1): 189-197 

41. Howe K, Bateman A, Durbin R: QuickTree: building huge Neighbor-

Joining trees of protein sequences. Bioinformatics. 2002, 18: 1546-1547 

42. Desper R, Gascuel O: Fast and accurate phylogeny reconstruction 

algorithms based on the minimum-evolution principle. J. Comp. Biol. 

2002, 19(5): 687-705 

43. Mailund T, Pedersen CN: QuickJoin—fast neighbour-joining tree 

reconstruction. Bioinformatics. 2004, 20: 3261-3262 

44. Vinh le S, von Haeseler A: Shortest triplet clustering: reconstructing large 

phylogenies using representative sets. BMC Bioinf. 2005, 8: 92 

45. Elias I, Lagergren J: Fast neighbor joining. In: Proceedings of ICALP 2005. 

Edited by Caires L, Italiano GF, Monteiro L, Palamidessi C, Yung M. LNCS 

3580,  Springer, Lisbon, 2005, 1263-1274 

46. Evans J, Sheneman L, Foster JA: Relaxed neighbor joining: a fast distance-

based phylogenetic tree construction method. J. Mol. Evol. 2006, 62: 785-

792 

47. Estabrook GF, McMorris FR, Meacham CA: Comparison of undirected 

phylogenetic trees based on subtrees of four evolutionary units. Syst. Zool. 

1985, 34: 193-200 

48. Robinson D, Foulds L: Comparison of weighted labeled trees. Lect. Notes 

Math. 1979, 748: 119–126 

49. Steel MA, Penny D: Distribution of tree comparison metrics—Some new 

results. Syst. Biol. 1993, 42: 126–141 



 - 34 - 

50. Dixon WJ, Mood AM: The statistical sign test. J. Am. Statist. Assoc. 1946, 

41: 557-566 

51. Baum BR: Combining trees as a way of combining data sets for 

phylogenetic inference, and the desirability of combining gene trees. 

Taxon 1992, 41:3–10 

52. Ragan MA: Phylogenetic inference based on matrix representation of 

trees. Mol. Phylogenet. Evol. 1992, 1:53–58 

53.  Lapointe FJ, Cucumel G: The average consensus procedure: combination 

of weighted trees containing identical or overlapping sets of taxa. Syst. 

Biol. 1997, 46:306-312 

54. Eulenstein O, Chen D, Burleigh JD, Fernandez-Baca D, Sanderson HJ: 

Performance of flip supertree construction with a heuristic algorithm. 

Syst. Biol. 2004, 53:299–308 

55. Gatesy J, Matthee C, DeSalle R, Hayashi C: Resolution of a supertree/ 

supermatrix paradox. Syst. Biol. 2002, 51:652–664 

56. Beck RMD, Bininda-Emonds ORP, Cardillo M, Liu FR, Purvis A: A higher 

level supertree of placental mammals. BMC Evol. Biol. 2006, 6: 93 

57. MacMahon MM, Sanderson MJ: Phylogenetic supermatrix analysis of 

GenBank sequences from 2228 Papilionid legumes. Syst. Biol. 2006, 55(5): 

818-836 

58. Goloboff P, Farris J, Nixon K: TNT: Tree analysis using new technology, 

distributed by the authors, 2003. 

59. Bininda-Emonds ORP, Bryant NH: Properties of matrix representation 

with parsimony analyses. Syst. Biol. 1998, 47:497-508 



 - 35 - 

60. Chan H-L, Jansson J, Lam T-W, Yiu S-M. Reconstructing an ultrametric 

galled phylogenetic network from a distance matrix. In: Mathematical 

Foundation of Computer Science. 2005, LNCS (Springer). 3618:224-235 

61. Barthélemy JP, Guénoche A: Trees and proximity relations. Wiley-

Interscience Series in Discrete Mathematics and Optimization. John Wiley & 

Sons, Chichester, 1991 

62. Gascuel O: A note on Sattath and Tversky’s, Saitou and Nei’s and Studier 

and Keppler’s algorithms for inferring phylogenies from evolutionary 

distances. Mol. Biol. Evol. 1994, 11(6): 961-963 

63. Charleston M, Hendy M, Penny D: Neighbor-joining uses the optimal 

weight for net divergence. Mol. Phyl. Evol. 1993, 222:6-12 

64. Bryant D: On the uniqueness of the selection criterion in neighbor-joining. 

J. Classif. 2005, 22:3-15 

65. Sanjuán R, Wróbel B: Weighted least-squares likelihood ratio test for 

branch testing in phylogenies reconstructed from distance measures. Syst. 

Biol. 2005, 54(2): 218-229 

Figure legends 

Figure 1 - Topological accuracy depending on the rate of missing entries 

Horizontal axis: percentage of missing distances ( missP ). Vertical axis: topological 

accuracy measured by the mean (over 500 trials) quartet distance ( qd ) between the 

correct and inferred trees. s: number of taxon pairs that BIONJ* first selects using NJ-

like *
xyQ  criterion (6), and then analyzes using score-based *

xyN  criterion (9) (and 

criteria (8), (10), (11) in case of ties). The distance matrix is additive, and thus all 

methods recover the correct tree when 0missP = . 
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Tables and Captions 

Table 1 - Topological accuracy with medium-level distance supermatrices 

 
(a): 25% taxon deletion rate 

k =   FITCH   MW*  NJ*  BIONJ*  MVR*   p-value 

2  0.0841  0.0906 0.0926 0.0841 0.0857  0.286 

4  0.0504  0.0546 0.0595 0.0494 0.0524  0.466 

6  0.0400  0.0445 0.0454 0.0370 0.0410  0.015 

8  0.0330  0.0356 0.0386 0.0318 0.0320  0.958 

10  0.0271  0.0300 0.0317 0.0265 0.0286  0.364 

12  0.0294  0.0317 0.0354 0.0284 0.0314  0.030 

14  0.0245  0.0266 0.0286 0.0235 0.0251  0.816 

16  0.0290  0.0318 0.0327 0.0282 0.0303  0.028 

18  0.0252  0.0278 0.0280 0.0234 0.0265  0.020 

20  0.0242  0.0259 0.0281 0.0230 0.0247  0.955 

                       

                       

(b): 75% taxon deletion rate 

k =   FITCH   MW*  NJ*  BIONJ*  MVR*   p-value 

2  0.2154  0.2174 0.2187 0.2131 0.2163  0.920 

4  0.1683  0.1778 0.1818 0.1713 0.1713  0.060 

6  0.1347  0.1443 0.1534 0.1418 0.1400  ≈ 0.0 

8  0.1089  0.1253 0.1302 0.1137 0.1114  0.176 

10  0.0878  0.1039 0.1117 0.0959 0.0901  0.033 

12  0.0825  0.0968 0.1021 0.0875 0.0842  0.470 

14  0.0652  0.0749 0.0850 0.0710 0.0676  0.464 

16  0.0583  0.0731 0.0802 0.0658 0.0625  0.335 

18  0.0516  0.0617 0.0687 0.0552 0.0555  0.074 

20   0.0503   0.0600  0.0682  0.0560  0.0509   0.189 

 

In the medium-level combination, distance matrices are directly estimated from each 

of the genes and then combined (using SDM) into the distance supermatrix. 

Topological accuracy is measured by the mean (over 500 trials) quartet distance ( qd ) 

between the correct and inferred trees. k: number of genes. p-value: sign-test 

significance when comparing the 500 qd  values of the two best methods that are 

indicated in bold and underlined (1st method) and bold (2nd one). 
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Table 2 - Topological accuracy with high-level distance supermatrices 

 
(a): 25% taxon deletion rate 

k =   FITCH   MW*  NJ*  BIONJ*  MVR*   p-value 

2  0.0558  0.0561 0.0586 0.0566 0.0522  ≈ 0.0 

4  0.0337  0.0345 0.0361 0.0351 0.0319  ≈ 0.0 

6  0.0253  0.0265 0.0272 0.0261 0.0235  ≈ 0.0 

8  0.0227  0.0228 0.0213 0.0217 0.0212  0.094 

10  0.0187  0.0188 0.0194 0.0192 0.0171  0.047 

12  0.0197  0.0207 0.0215 0.0199 0.0191  0.949 

14  0.0160  0.0164 0.0164 0.0165 0.0162  0.882 

16  0.0208  0.0204 0.0210 0.0213 0.0206  ≈ 0.0 

18  0.0170  0.0177 0.0177 0.0173 0.0174  0.271 

20  0.0162  0.0168 0.0171 0.0160 0.0158  0.648 

                       

          

(b): 75% taxon deletion rate 

k =   FITCH   MW*  NJ*  BIONJ*  MVR*   p-value 

2  0.1876  0.1877 0.1824 0.1822 0.1817  0.282 

4  0.1396  0.1397 0.1390 0.1381 0.1345  0.018 

6  0.1095  0.1125 0.1134 0.1119 0.1065  0.166 

8  0.0865  0.0892 0.0926 0.0870 0.0823  0.005 

10  0.0690  0.0739 0.0766 0.0723 0.0671  0.023 

12  0.0641  0.0670 0.0705 0.0677 0.0616  0.015 

14  0.0508  0.0538 0.0567 0.0534 0.0493  ≈ 0.0 

16  0.0504  0.0518 0.0554 0.0512 0.0457  ≈ 0.0 

18  0.0409  0.0416 0.0485 0.0424 0.0402  0.922 

20   0.0403   0.0435  0.0453  0.0431  0.0371   ≈ 0.0 

 

In the high-level combination, ML trees are first inferred separately for every genes, 

and then these trees are turned into path-length distance matrices which are combined 

(using SDM) into the distance supermatrix. For symbols and notation, see note to 

Table 1. 
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Table 3 - Topological accuracy with datasets generated from Driskell et al. [20] 

 
(a): medium level 

           p-value  
FITCH 

  
MW* 

  
NJ* 

  
BIONJ*

 
MVR*

    MVR* - FITCH  MVR* - BIONJ* 

0.0234   0.0268   0.0289   0.0227  0.0171     ≈ 0.0  ≈ 0.0 

           
           
           

(b): high level 

         p-value  
FITCH 

  
MW* 

  
NJ* 

  
BIONJ*

 
MVR*

 
MRP 

 MVR* - FITCH  MVR* - MRP 

0.0161   0.0165   0.0182   0.0172  0.0101  0.0119  0.001  0.193 

 

(a): Medium-level combination of the distance matrices being directly estimated from 

the gene sequences. (b): High-level combination; ML trees are first inferred separately 

for every genes; MRP turns the gene trees into a matrix of partial binary characters, 

which is analyzed with parsimony; with the other (distance) methods, the gene trees 

are turned into path-length distance matrices which are combined into the distance 

supermatrix. All combinations of source distance matrices are achieved using SDM. 

p-value: sign-test significance when comparing the 100 qd  values of MVR* (our best 

algorithm) to those of FITCH and MRP. For other symbols and notation, see note to 

Table 1. 
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Table 4 - Run times 

 
(a): 25% taxon deletion rate 

    SDM    FITCH      MW*       MVR*   

  k =   k =    k =     k =   

  10 2 10 20 2 10 20  2 10 20

n = 48   < 1  11 23 23  21 39 41   < 1 < 1 < 1

n = 96  5 437 482 479 623 932 926  7 6 5 

n = 192   32  11,065 13,864 13,945  23,541 34,368 35,017   57 60 42

             

             

             

(b): 75% taxon deletion rate 

    SDM    FITCH      MW*       MVR*   

  k =   k =    k =     k =   

  10 2 10 20 2 10 20  2 10 20

n = 48   < 1  6 17 23  10 28 36   < 1 < 1 < 1

n = 96  < 1 22 455 492 29 656 667  < 1 4 7 

n = 192   2  448 11,532 14,025  916 32,371 34,152   3 31 52

             

             

             

(c): 1.2% missing distances (Driskell et al.) 

    SDM    FITCH      MW*       MVR*   

    k = 254    k = 254      k = 254       k = 254   

n = 48   334    132      268       < 1   

 

Mean run times are provided for various taxon numbers (n), gene numbers (k) and 

proportions of missing entries: (a) 25%,  (b) 75%, and (c) 1.2% using Driskell et al. 

[20]-like datasets. Run times are measured in seconds using a standard PC (Pentium 

IV 1.8GHz, 1Gb RAM). The low run times with 2k =  and 75% deletion rate are 

explained by the low size of the distance super-matrices (see text for explanations). 

 


