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Abstract
Background: Distance-based phylogeny inference methods first estimate evolutionary distances
between every pair of taxa, then build a tree from the so-obtained distance matrix. These methods
are fast and fairly accurate. However, they hardly deal with incomplete distance matrices. Such
matrices are frequent with recent multi-gene studies, when two species do not share any gene in
analyzed data. The few existing algorithms to infer trees with satisfying accuracy from incomplete
distance matrices have time complexity in O(n4) or more, where n is the number of taxa, which
precludes large scale studies. Agglomerative distance algorithms (e.g. NJ [1,2]) are much faster, with
time complexity in O(n3) which allows huge datasets and heavy bootstrap analyses to be dealt with.
These algorithms proceed in three steps: (a) search for the taxon pair to be agglomerated, (b)
estimate the lengths of the two so-created branches, (c) reduce the distance matrix and return to
(a) until the tree is fully resolved. But available agglomerative algorithms cannot deal with
incomplete matrices.

Results: We propose an adaptation to incomplete matrices of three agglomerative algorithms,
namely NJ, BIONJ [3] and MVR [4]. Our adaptation generalizes to incomplete matrices the taxon
pair selection criterion of NJ (also used by BIONJ and MVR), and combines this generalized
criterion with that of ADDTREE [5]. Steps (b) and (c) are also modified, but O(n3) time complexity
is kept. The performance of these new algorithms is studied with large scale simulations, which
mimic multi-gene phylogenomic datasets. Our new algorithms – named NJ*, BIONJ* and MVR* –
infer phylogenetic trees that are as least as accurate as those inferred by other available methods,
but with much faster running times. MVR* presents the best overall performance. This algorithm
accounts for the variance of the pairwise evolutionary distance estimates, and is well suited for
multi-gene studies where some distances are accurately estimated using numerous genes, whereas
others are poorly estimated (or not estimated) due to the low number (absence) of sequenced
genes being shared by both species.

Conclusion: Our distance-based agglomerative algorithms NJ*, BIONJ* and MVR* are fast and
accurate, and should be quite useful for large scale phylogenomic studies. When combined with the
SDM method [6] to estimate a distance matrix from multiple genes, they offer a relevant alternative
to usual supertree techniques [7]. Binaries and all simulated data are downloadable from [8].
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Background
Phylogeny inference methods can be classified into two
main categories: character-based (e.g. maximum-parsi-
mony or maximum-likelihood) and distance-based
approaches. The latter have low running times which are
quite useful (mandatory in some cases) to perform large-
scale studies and bootstrap analyses. A number of compu-
ter simulations [9-17] have shown that distance methods
are fairly accurate, though not as accurate as likelihood-
based methods that are much more time consuming.
Using any distance-based method first requires to esti-
mate the pairwise evolutionary distances between every
taxon pair. These distances are usually estimated from
DNA, RNA or protein sequences, but can also be obtained
from DNA-DNA hybridization experiments or, e.g., com-
puted from morphological data (see [18] for a review on
distance estimation from various data types).

In the last few years, phylogenomic studies (i.e. phylogeny
reconstruction from large gene collections [7]) have insti-
gated to the development of fast tree-building techniques
being able to infer trees from datasets comprising hun-
dreds of genes and taxa. The low-level gene combination
involves concatenating the different genes into a unique
supermatrix of characters, and then analyzing this matrix
with a standard tree building method. This approach was
shown to perform poorly when combined with distance
methods, due to inaccurate distance estimations from
such large heterogeneous character matrix [6]. Better dis-
tance-based trees are obtained by extracting the phyloge-
netic information from each gene separately, and then
combining resulting information sources into a unique
distance supermatrix. The Average Consensus Supertree (ACS
[19]) and Super Distance Matrix (SDM [6]) techniques
input a collection of distance matrices being estimated
from each gene separately (the so-called medium-level com-
bination), or being equivalent to the gene trees (the high-
level combination). These distance matrices are deformed,
without modifying their topological message, and then
averaged to obtain the distance supermatrix, which is
finally analyzed using a distance-based tree building algo-
rithm.

Estimating the distance supermatrix is fast. However,
missing entries may occur in distance supermatrices
depending on the extent of taxon overlap within the
source matrices. For example, with the two large data sets
of Driskell et al. [20], which were collected from Swiss-
Prot and Gen-Bank thanks to a computer program, the
ratio of missing distances is ~19% and ~1.2%, respec-
tively. These distances are missing because only a few
genes are sequenced within each species, meaning that a
number of species pairs do not share any sequenced gene
in common and cannot be compared using available data.
However, Driskell et al. showed that, despite the sparse-

ness of data and the fact that only a small subset of these
data is potentially phylogenetically informative, a topo-
logical signal still emerges, which provides useful insights
into the tree of life (see [20] and below for details). Anal-
ogous findings were reported by a number of authors in
various contexts [21-23], and tree building from sparse
data has become topical, as can be seen from the flourish-
ing literature on supertrees.

However, tree building from incomplete distance matrices
is NP-hard [24], and thus practical algorithms are heuris-
tics. The indirect approach involves first estimating miss-
ing distances by applying an ultrametric [25], additive
[26], decomposition-based [27], or quartet-based [28]
completion algorithm. The TREX package [29] provides
several implementations of such algorithms to be used
before tree building using any standard method with the
completed matrix. The direct approach involves using a
weighted least-squares (WLS) algorithm and associating
missing distances with null weight (i.e. infinite variance),
which means that missing distances are simply discarded
from WLS computations ([18], pp. 449). The FITCH algo-
rithm [30] from the PHYLIP package [31] and the
MWMODIF algorithm [32] from TREX implement this
technique. A combination of both direct and indirect
methods is provided by MW* [33] (also available in
TREX); this algorithm first applies an ultrametric or addi-
tive completion algorithm (depending on the density of
missing distances) and then infers a tree using
MWMODIF, where weights are set to 1.0 for known dis-
tances, 0.5 for estimated distances, and 0.0 for missing
distances (if any remain). All these (direct or indirect)
algorithms have O(n4) time complexity or more, where n
is the number of taxa. This limits their application to
medium-sized datasets (say 200 taxa without bootstrap-
ping, see below).

Agglomerative algorithms are much faster and allow deal-
ing with thousands of taxa, as soon as the distance matrix
is complete. The most popular of them is the Neighbor-
Joining (NJ) algorithm [1,2]. Starting from a star tree,
agglomerative algorithms iteratively perform the three fol-
lowing steps, until the tree is completely resolved:

(a) select a taxon pair xy that is agglomerated into a new
node u;

(b) estimate the length of the two so-created external
branches ux and uy;

(c) replace x and y by u in the distance matrix, and esti-
mate the new distances between u and the not-yet-
agglomerated taxa.
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Step (a) is more time consuming than the two other steps,
because of testing all the O(n2) taxon pairs to select the
optimal one. To this purpose, NJ optimizes a numerical
criterion that is denoted as Qxy. This criterion admits sev-
eral interpretations related to the Minimum Evolution
principle [1,34], but also to the acentrality of the consid-
ered pair [35,36]. In this last interpretation (used here),
Qxy measures how much the path joining x to y is far from
the other taxa i ≠ x, y. The xy pair maximizing Qxy corre-
sponds to the two taxa which are most distant from the
other ones and is the best candidate for agglomeration.
Another criterion, denoted as Nxy, is used by ADDTREE
[5]; this second criterion is based on the four point condi-
tion [37,38] and counts the number of taxon quartets xyij
where x and y are neighbors. When the distance matrix
exactly corresponds to a tree (it is then said to be additive),
Nxy indicates all pairs of sibling taxa in the tree, whereas
Qxy indicates just one such taxon pair. We shall see that
this property of Nxy is a great advantage when dealing with
incomplete distance matrices. Indeed, Qxy is sometimes
unusable whereas Nxy is still informative.

Steps (b) and (c) essentially correspond to distance aver-
aging, which requires O(n) run time. These three steps
being repeated n - 2 times, agglomerative algorithms
require O(n3) time when using the Qxy pair selection crite-
rion, and O(n4) with Nxy [39].

Several refinements of the NJ algorithm have been pro-
posed. BIONJ [3] minimizes the variances associated to
the new distances being estimated during each reduction
step (c). This way, BIONJ makes use at each iteration of
reliable distance estimates to select the new taxon pairs to
be agglomerated. To this aim, BIONJ uses a simple Pois-
son model of the variances and covariances of the dis-
tances being contained in the initial distance matrix.
BIONJ was generalized into the Minimum Variance Reduc-
tion algorithm (MVR [4]), a WLS variant of which can deal
with any distance variance model, but which does not
account for the distance covariances. It has been shown
using computer simulations that this variant (named
WLS-MVR in [4] but referred here as MVR for simplicity)
has similar accuracy as NJ when applied to distance matri-
ces estimated from one-gene alignments [4]. WEIGHBOR
[40] further refines BIONJ approach and uses an agglom-
eration criterion which accounts for the variances of evo-
lutionary distances. All these algorithms require O(n3)
time. Faster, sophisticated distance-based algorithms have
been proposed in the last few years [41-46], some of them
being clearly more accurate than NJ and BIONJ (e.g.
FASTME [42] and STC [44], in O(n2 log(n)) and O(n2),
respectively).

In this paper, we propose an adaptation of the agglomer-
ative scheme to quickly infer phylogenetic trees from

incomplete distance matrices. We show that the Qxy crite-

rion may be rewritten to express the mean acentrality of
the xy taxon pair. In the same way, the Nxy criterion may

be rewritten to express the mean number of taxon quartets
where x and y are neighbors. By estimating these two
means using all available (non-missing) distances, we

define the two criteria  and  which allow for the

selection of taxon pairs in step (a), even when the distance
matrix is incomplete. Using these two new criteria in the
agglomerative scheme requires O(n3) and O(n4) run time,

respectively. A limitation of  and  is that they can-

not be computed when the distance corresponding to the
xy pair is missing (see Methods for more). However, this
difficulty is inherent to the problem of building trees from
incomplete distance matrices and is encountered (in vari-
ous forms) by all methods to deal with this problem.

Moreover,  partly circumvents this difficulty thanks to

its ability to indicate several relevant pairs, rather than a

single one with  (see Methods for more). As running

 requires O(n4) time, we use a filtering technique: at

each step (a) we use  to select the s most promising

pairs for agglomeration, and then use  to select the

best of these s pairs. This computational trick (and other
refinements, see Methods) greatly improves the accuracy

compared to using  only, while requiring O(sn3) time,

where s is a small constant (s = 15 in our experiments).
Finally, the original NJ, BIONJ and MVR formulae corre-
sponding to steps (b) and (c) essentially are distance aver-
aging and are easily adapted to incomplete matrices. The
three new algorithms are named NJ*, BIONJ* and MVR*,
respectively.

Results and Discussion
Several computer simulations are presented in this section
to assess the performance of NJ*, BIONJ* and MVR*. We

first compare the agglomeration criteria ,  and

their combination with distance matrices that are addi-
tive, but contain missing entries. Then, using more realis-
tic datasets, we compare NJ*, BIONJ*, MVR* to FITCH
[30] and MW* [33], in terms of both topological accuracy
and run times.
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Comparison of agglomeration criteria
Our approach is similar to Makarenkov and Lapointe's
[33]. We analyze with various algorithms and criteria a
distance matrix with randomly deleted entries. The dis-
tance matrix we use is additive, i.e. is obtained from a tree
by computing the path length distance between every
taxon pair. Let T denote this tree and (Tij) be the corre-
sponding distance matrix, where Tij is the path-length (or
patristic) distance between taxa i and j in T. When no entry
is missing, such an additive matrix uniquely defines T,
which is recovered by any consistent algorithms (as are all
algorithms being tested here). When entries are missing in
(Tij), recovering T becomes a difficult task (see above),
and we measure how well the algorithms perform when
given an increasing number of missing distances. Such
data thus are not realistic from a biological stand point, as
evolutionary distances estimated from sequences are not
additive, but this is a simple and standard approach to
compare algorithms and agglomeration criteria.

We use for the correct tree T the phylogeny of 75 placental
mammals from [6]. The percentage of missing entries is
Pmiss = 1%, 5%, 10%, 20%, 30%. For each Pmiss value, 500

replicates are randomly generated. From each of these 5 ×

500 incomplete additive distance matrices, a tree  is
inferred by FITCH, MW* and BIONJ*. Various values of
the s parameter are tested for BIONJ*, in order to compare

the topological accuracy of , , and of the combi-

nation of these two agglomeration criteria. With s = 1,

BIONJ* uses  only. With, s > 1, the taxon pairs corre-

sponding to the s highest values of  are reanalyzed

with  (and with other criteria when ties occur; see

Methods). When s becomes large (which is denoted as s =

max) BIONJ* uses  only, as all taxon pairs are

retained in the first selection step.

Each inferred tree  is compared to the correct tree T by
using the quartet distance dq [47]. This topological dis-

tance measures the number of resolved 4-taxon subtrees
which are induced by one tree but not the other, and thus
is more precise than the widely used bipartition distance
[48] which counts the number of internal branches
present in one tree but not in the other. Moreover, the
quartet distance is less affected than the bipartition dis-
tance by small topological errors, e.g. wrong position of a
single taxon [49]. This distance is normalized: dq = 0 indi-

cates that T and  are identical, whereas dq = 1 means that

both trees do not share any resolved 4-taxon subtrees.
Averages of the 500 dq measures for each Pmiss value are

displayed in Figure 1, for FITCH, MW*, and BIONJ* with
various s values.

All curves in Figure 1 are decreasing; as expected, the cor-
rect tree T is better recovered (i.e. the mean dq value

between  and T decreases) as the proportion of missing

distance Pmiss becomes closer to 0. Using  in BIONJ*

greatly improves the agglomeration step; e.g. with Pmiss =

10%, mean dq values of BIONJ* are ~0.0015 and ~0.0008,

with s = 1 and s = 15, respectively. However, there is no
significant difference between s = 15 and s = max (as
assessed by a sign-test [50] based on the 500 replicates, all
p-values are much larger than 0.05), meaning that a small
value of s (e.g. s = 15) seems to be enough to focus on the
most relevant pairs, while avoiding the computational

burden of using  only. Further experiments (see

below) confirm this finding. FITCH and BIONJ* (with s =
15 and s = max) have similar accuracy, while MW* tends
to perform better than the other algorithms with these
data. However, we shall see that algorithm ordering is dif-
ferent with more realistic simulations. These experiments

thus confirm the advantage of combining  and 

within BIONJ*, and similar results (not shown) are
obtained with NJ* and MVR*.

Comparison of reconstruction algorithms with distance 
supermatrices

We re-use a simulation protocol that we have used previ-
ously to compare a number of tree-reconstruction meth-
ods in a phylogenomic context [6]. This protocol involves
generating sequences and evolving them along trees, and
is more realistic than the comparison described above. We
first summarize this protocol, and then report the results
that are obtained with the simulated datasets by FITCH,
MW*, NJ*, BIONJ* and MVR*. To estimate the distance
supermatrix that is the input of these algorithms, we use
the SDM method ([6], see also Methods) which computes
a supermatrix that summarizes the topological signal

being contained in a collection 

of k distance matrices. Simulations [6] have shown the
high-quality of this distance supermatrix in both
medium- and high-level gene combinations.

Simulations are as follows (see [6] for more details). Start-
ing from a randomly generated tree T with n = 48 taxa,
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evolution of k genes is simulated, with k = 2, 4, ..., 20. For
each of the k genes, some taxa are randomly deleted. Two
deletion probabilities are used: 25% to preserve high over-
lap between the different taxon sets, and 75% to induce
low overlap. From these k partially deleted gene align-
ments, k distance matrices are estimated to compose the
collection CΔ of source matrices. The SDM method is then
run with CΔ to obtain a distance supermatrix correspond-
ing to a medium-level combination of the k partially
deleted genes. To study the high-level combination, a
phylogenetic tree is inferred by PhyML [17] from each of
the k partially deleted genes; then, the path length dis-
tance between each taxon pair for each of the k phyloge-
nies is computed, to form the collection CT of k additive

distance matrices that are equivalent to the k PhyML trees.
Finally, SDM is applied to CT to obtain a distance super-
matrix corresponding to a high-level gene combination.

This simulation protocol is repeated 500 times for each
value of k and each deletion proportion. We obtain this
way (10 gene collection sizes × 500 collections × 2 overlap
conditions × 2 gene combination levels) = 20,000 dis-

tance supermatrices, which are denoted as ( ) and

are frequently incomplete. Indeed, if taxon i is missing for

gene p, then  is missing – which is denoted as  =

Δ ij
SDM

Δ ij
p Δ ij

p

Topological accuracy depending on the rate of missing entriesFigure 1
Topological accuracy depending on the rate of missing entries. Horizontal axis: percentage of missing distances (Pmiss. 
Vertical axis: topological accuracy measured by the mean (over 500 trials) quartet distance (dq) between the correct and 

inferred trees. s: number of taxon pairs that BIONJ* first selects using NJ-like  criterion (6), and then analyzes using score-

based  criterion (9) (and criteria (8), (10), (11) in case of ties). The distance matrix is additive, and thus all methods 

recover the correct tree when Pmiss = 0.
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∅—, and if  = ∅ for all p = 1,2, ..., k, then  = ∅.

With 25% deletion rate, almost all distance supermatrices

are complete when k ≥ 14. With 75% deletion rate, all dis-
tance supermatrices are incomplete, but the number of
missing distances decreases as k increases (missing dis-
tance proportions range from 42% to 11%).

FITCH and MW* are run with default options. In accord-
ance with Figure 1, s is set to 15 for NJ*, BIONJ* and

MVR*. With BIONJ*, Vij variances (associated with 

distance estimates) are naturally defined by Vij ∝  if

 ≠ ∅, else Vij = ∅. Variances used by MVR* comply

with the same rule, but account for other parameters such
as the length and the number of sequences being used to

estimate each  distance (see Methods). Accuracy of

the five algorithms is measured with the topological dis-
tance dq, as above, and averaged for the 500 replicates cor-

responding to each of the conditions. Results are reported
in Table 1 for the medium-level gene combination, and in
Table 2 for the high-level gene combination. For each
value of k, the first- and second-best mean dq values are

indicated in bold&underlined and bold, respectively, and
a sign-test [50] based on the 500 replicates is used to
assess the significance of the difference between these two
best values.

In the medium-level gene combination, NJ* and MW* are
outperformed by other algorithms. With a 25% deletion
rate, BIONJ* has best topological accuracy, followed by
FITCH. However, the sign-test indicates that the difference
between these two algorithms is moderately significant as
the p-value is lower than 0.05 for only five k values (= 6,
8, 12, 16, and 18). With a 75% deletion rate, FITCH is
best, but again the sign-test shows that FITCH, BIONJ*
and MVR* are broadly equivalent.

With high-level combination distance supermatrices, NJ*
and MW* still tend to be outperformed by other algo-
rithms. BIONJ* is in between, and the best mean dq values
are observed with MVR* which is followed by FITCH. The
sign-test broadly confirms the significance of this observa-
tion, though the accuracy difference between MVR* and
FITCH is relatively low.

Altogether, these experiments show that MVR* is at least
as accurate as FITCH, that BIONJ* has similar perform-
ance, while NJ* and MW* are behind these three algo-
rithms. Comparing these findings with the results from
(see Figure 2 in [6]), we see that (in the high-level frame-

work, Table 2) MVR* is more accurate than the standard
Matrix Representation with Parsimony method (MRP,
[51,52]), in most cases; e.g. with k = 10, MVR* has mean
dq values of 0.0171 and 0.0663, for 25% and 75% dele-
tion rate, respectively, while mean dq values of MRP equal
0.0175 and 0.1152. MVR* (combined with SDM) outper-
forms MRP with sparse information (75% deletion rate
and/or low number of genes), while both approaches are
nearly equivalent when the information is abundant
(25% deletion rate). An explanation [53] of this finding
could be that the distance approach not only uses the
topology of the source trees (as MRP) but also their
branch lengths. Distance-based supertrees thus contain
more information than MRP supertrees, which makes a
noticeable difference when the information is sparse, but
does not impact much the results with abundant informa-
tion (see also following simulation results).

Δ ij
p Δ ij

SDM

Δ ij
SDM

Δ ij
SDM

Δ ij
SDM

Δ ij
SDM

Table 1: Topological accuracy with medium-level distance 
supermatrices

(a): 25% taxon deletion rate

k = FITCH MW* NJ* BIONJ* MVR* p-value

2 0.0841 0.0906 0.0926 0.0841 0.0857 0.286
4 0.0504 0.0546 0.0595 0.0494 0.0524 0.466
6 0.0400 0.0445 0.0454 0.0370 0.0410 0.015
8 0.0330 0.0356 0.0386 0.0318 0.0320 0.958
10 0.0271 0.0300 0.0317 0.0265 0.0286 0.364
12 0.0294 0.0317 0.0354 0.0284 0.0314 0.030
14 0.0245 0.0266 0.0286 0.0235 0.0251 0.816
16 0.0290 0.0318 0.0327 0.0282 0.0303 0.028
18 0.0252 0.0278 0.0280 0.0234 0.0265 0.020
20 0.0242 0.0259 0.0281 0.0230 0.0247 0.955

(b): 75% taxon deletion rate

k = FITCH MW* NJ* BIONJ* MVR* p-value

2 0.2154 0.2174 0.2187 0.2131 0.2163 0.920
4 0.1683 0.1778 0.1818 0.1713 0.1713 0.060
6 0.1347 0.1443 0.1534 0.1418 0.1400 ≈ 0.0
8 0.1089 0.1253 0.1302 0.1137 0.1114 0.176
10 0.0878 0.1039 0.1117 0.0959 0.0901 0.033
12 0.0825 0.0968 0.1021 0.0875 0.0842 0.470
14 0.0652 0.0749 0.0850 0.0710 0.0676 0.464
16 0.0583 0.0731 0.0802 0.0658 0.0625 0.335
18 0.0516 0.0617 0.0687 0.0552 0.0555 0.074
20 0.0503 0.0600 0.0682 0.0560 0.0509 0.189

In the medium-level combination, distance matrices are directly 
estimated from each of the genes and then combined (using SDM) 
into the distance supermatrix. Topolological accuracy is mesured by 
the mean (over 500 trials) quartet distance (dq) between the correct 
and inferred trees. k: number of genes. p-value: sign-test significance 
when comparing the 500 dq values of the two best methods that are 
indicated in bold and underlined (1st method) and bold (2nd one)
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Results with simulations based on Driskell et al. [20] 
dataset
This section aims to measure the accuracy of the different
tree building algorithms when applied to simulated data-
sets being more realistic than those commonly used in a
phylogenomic perspective. Most notably, uniformly ran-
dom gene deletion (used in previous section, following
[54]) is not fully realistic because some genes (e.g. cyto-
chrome b) are sequenced for most species, while some
other genes are rarely sequenced (or rare among living
species). It follows that the gene presence/absence pattern
is different with real datasets to this being induced by uni-
formly random gene deletion (see [20,55-57] for illustra-
tive examples). To this purpose, we use the character
supermatrix from Driskell et al. [20], which comprises 69
green plant species and 254 genes, and was built via an
automated exploration process of GenBank. This matrix
contains a total number of 2777 sequences and has 87%
missing characters, which are unequally distributed

among taxa. Only 3 taxa have more than 50% genes,
whereas 42 have 10% genes or less. In the same way, a few
genes are present in most taxa (e.g., the 2 most sequenced
genes belong to 59 taxa), whereas other genes are rare (e.g.
121 genes are present in at most 5 taxa). However, these k
= 254 genes are complementary and the SDM distance
supermatrix only contains ~1.2% missing entries. This
low proportion of missing entries is favorable to tree
reconstruction, but still requires an algorithm able to deal
with incomplete matrices.

We use a simulation protocol analogous to that described
above [6]. The only difference is the deletion procedure,
with random deletion replaced by the gene presence/
absence pattern of (see Figure 2B in [20]). We generate
100 datasets this way with n = 69 taxa and k = 254 genes.
From these 100 datasets, we infer 100 distance matrix col-
lections CΔ and 100 tree collections CT. Each of these 2 ×

100 collections is dealt with by SDM, to obtain a distance

supermatrix ( ) that contains the same missing

entries as those induced by the original dataset [20]. We
use these matrices to compare FITCH, MW*, NJ*, BIONJ*
and MVR*, based on dq quartet distance between the cor-

rect and inferred trees (see above). Our three algorithms
are run with both s = 15 and s = max. Results of MRP are
also computed, using TNT [58] to infer the most parsimo-
nious trees. TNT is run with 25 random addition
sequences, TBR branch swapping and ratchet. The MRP
supertree is defined in the standard way [59] as the strict
consensus of the most parsimonious trees. Results are dis-
played in Table 3, which is similar to Tables 1 and 2; the
first- and second-best mean dq values are indicated in

bold&underlined and bold, respectively, and sign-tests are
used to assess the significance of the differences between
MVR* (our best algorithm), FITCH and MRP.

NJ*, BIONJ* and MVR* do not show any significant dif-
ference when used with s = 15 and s = max (as assessed by
the sign-test, all p-values are much larger than 0.05, results
not shown). This confirms the results of the previous
experiments to compare our various agglomeration crite-
ria. NJ* has the worst accuracy, especially in the high-level
combination framework. MW*, FITCH and BIONJ* show
similar performance, while MVR* is best among distance
approaches in the two gene combination levels. Moreo-
ver, the difference between MVR* and FITCH is highly sig-

nificant (sign-test p-value ≈ 0.0). In the high-level
framework, MVR* tends to be better than MRP, although
the information is quite abundant (254 genes, ~1.2% of
missing distances); however, the difference is not signifi-

Δ ij
SDM

Table 2: Topological accuracy with high-level distance 
supermatrices

(a): 25% taxon deletion rate

k = FITCH MW* NJ* BIONJ* MVR* p-value

2 0.0558 0.0561 0.0586 0.0566 0.0522 ≈ 0.0
4 0.0337 0.0345 0.0361 0.0351 0.0319 ≈ 0.0
6 0.0253 0.0265 0.0272 0.0261 0.0235 ≈ 0.0
8 0.0227 0.0228 0.0213 0.0217 0.0212 0.094
10 0.0187 0.0188 0.0194 0.0192 0.0171 0.047
12 0.0197 0.0207 0.0215 0.0199 0.0191 0.949
14 0.0160 0.0164 0.0164 0.0165 0.0162 0.882
16 0.0208 0.0204 0.0210 0.0213 0.0206 ≈ 0.0
18 0.0170 0.0177 0.0177 0.0173 0.0174 0.271
20 0.0162 0.0168 0.0171 0.0160 0.0158 0.648

(b): 75% taxon deletion rate

k = FITCH MW* NJ* BIONJ* MVR* p-value

2 0.1876 0.1877 0.1824 0.1822 0.1817 0.282
4 0.1396 0.1397 0.1390 0.1381 0.1345 0.018
6 0.1095 0.1125 0.1134 0.1119 0.1065 0.166
8 0.0865 0.0892 0.0926 0.0870 0.0823 0.005
10 0.0690 0.0739 0.0766 0.0723 0.0671 0.023
12 0.0641 0.0670 0.0705 0.0677 0.0616 0.015
14 0.0508 0.0538 0.0567 0.0534 0.0493 ≈ 0.0
16 0.0504 0.0518 0.0554 0.0512 0.0457 ≈ 0.0
18 0.0409 0.0416 0.0485 0.0424 0.0402 0.922
20 0.0403 0.0435 0.0453 0.0431 0.0371 ≈ 0.0

In the high-level combination, ML trees are first inferred separately 
for every genes, and then these trees are turned into path-length 
distance matrices which are combined (using SDM) into the distance 
supermatrix. For symbols and notation, see note to Table 1.
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cant with 100 replicates (sign-test p-value ≈ 0.2). The
results among distance methods are explained by the fact

that MVR* uses fairly accurate estimates ( ) of the

variances of the distances in ( ). Indeed, dataset [20]

induces a highly heterogeneous distribution of missing
sequences, meaning that some distances are well esti-
mated thanks to a large number of sequences, while some
others are poorly estimated via a few sequences. This is

accounted for by MVR* in ( ) calculations (see

Methods), while MW*, FITCH and BIONJ* lack this infor-

mation and use inaccurate estimations of ( ). The

difference between these two approaches (i.e. MVR* on
the one hand, and MW*, FITCH and BIONJ* on the other
hand) is somewhat hidden when using uniformly ran-
dom sequence deletion, because with the latter all dis-
tances are broadly estimated with the same number of
genes. With biologically realistic pattern of gene presence/
absence, the difference becomes important, especially for
the high-level combination. Thus, this last set of simula-
tions confirms the findings of the previous ones and sup-
ports the capacity of MVR* for dealing with
phylogenomic data.

Run time comparison
Run times with various dataset sizes have been measured
on a PC Pentium IV 1.8 GHz (1 Gb RAM) and are dis-
played in Table 4. We do not report the run times of NJ*
and BIONJ*, as they are nearly the same as those of MVR*.

In fact, NJ* and BIONJ* are ~2% faster than MVR*,
because they are simpler, but these simplifications does
not concern the heavy O(n3) parts of the algorithms (see
Methods). We also report the run times of SDM [6], which
are in the same range as the fastest tree building algo-
rithms, except with Driskell et al. [20]-like datasets, where
SDM has to summarize a large number (254) of source
matrices, but where the number of taxa (69) is relatively
low. In this case, the run time of SDM is analogous to that
of FITCH and MW* and remains quite handy (~5 minutes
per dataset).

As expected from their mere principle, the run times of the
various tree building algorithms are not much affected by
the proportion of missing distances, which is induced by
the taxon deletion rate (25% or 75%) and the number of
source matrices (k). The only apparent exceptions corre-
spond to k = 2 and 75% deletion rate, where all algo-
rithms seem to be quite fast; but in this case the distance
supermatrices are of low size (~20, ~42 and ~85 for n
equal to 48, 96 and 192, respectively), which explains this
finding. Indeed, in this case it occurs frequently that some
taxa have no gene (among 2) in common with any of the
other taxa, and such taxa cannot be analyzed as all their
distances to the other taxa are missing.

With 25% taxon deletion proportion, n = 48 and k = 10,
run times of ~3 hours and ~5 hours are required by FITCH
and MW*, respectively, to build the 500 trees correspond-
ing to all gene collections in any given gene combination
level. The same task, which induces calculations similar to
bootstrapping, is achieved in ~30 seconds by any of our
agglomerative algorithms. The difference between the

Vij
SDM

Δ ij
SDM

Vij
SDM

Vij
SDM

Table 3: Topological accuracy with datasets generated from Driskell et al. [20]

(a): medium level

FITCH MW* NJ* BIONJ* MVR* p-value
MVR* – FITCH MVR* – BIONJ*

0.0234 0.0268 0.0289 0.0227 0.0171 ≈ 0.0 ≈ 0.0

(b): high level

FITCH MW* NJ* BIONJ* MVR* MRP p-value
MVR* – FITCH MVR* – MRP

0.0161 0.0165 0.0182 0.0172 0.0101 0.0119 0.001 0.193

(a): Medium-level combination of the distance matrices being directly estimated from the gene sequences. (b): High-level combination; ML trees are 
first inferred separately for every genes; MRP turns the gene trees into a matrix of partial binary characters, which is analyzed with parsimony; with 
the other (distance) methods, the gene trees are turned into path-length distance matrices which are combined into the distance supermatrix. All 
combinations of source distance matrices are achieved using SDM. p-value: sign-test significance when comparing the 100 dq values of MVR* (our 
best algorithm) to those of FITCH and MRP. For other symbols and notation, see note to Table 1.
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agglomerative algorithms and the others increases when
the number of taxa increases, as expected given that their
time complexity are O(sn3) (i.e. O(n3) as s is kept con-
stant) and O(n4) or more, respectively. With 192 taxa,
FITCH and MW* require more than 3 hours to build a sin-
gle tree, while the agglomerative algorithms require less
than 1 minute; this run time makes easy to perform a
bootstrap study with our algorithms, but pretty much
impossible with FITCH or MW*. With even larger datasets
(say, above 500 taxa) neither FITCH nor MW* can be used
to build a single tree, while our algorithms still run in a
few minutes.

Conclusion
Thanks to the ever increasing flow of sequence data, phy-
logenomic analyses and supertree buildings are more and
more frequently used to draw the evolutionary tree of liv-
ing species. Larger and larger datasets are processed,

requiring sophisticated approaches and algorithms. In
this context, distance-based methods are quite useful, as
they are both very fast and fairly accurate. New tech-
niques, such as SDM [6], allow quickly estimating dis-
tance supermatrices that summarize the topological signal
being contained in a collection of source distance matrices
or gene trees. However, these supermatrices may be
incomplete due to low taxon coverage in the selected
genes. In this (common) case, fast distance-based tree
building algorithms such as NJ, BIONJ, FASTME or STC
are no longer applicable.

This paper presents an adaptation to incomplete distance
matrices of several agglomerative algorithms, namely NJ,
BIONJ and MVR. We show that the formulae forming the
basis of these algorithms can be rewritten to account for
missing distances. Moreover, the same holds for the quar-
tet-based pair selection criterion of ADDTREE. Combin-

Table 4: Run times

(a): 25% taxon deletion rate

SDM FITCH MW* MVR*

K = k = k = k =
10 2 10 20 2 10 20 2 10 20

n = 48 < 1 11 23 23 21 39 41 < 1 < 1 < 1
n = 96 5 437 482 479 623 932 926 7 6 5
n = 192 32 11,065 13,864 13,945 23,541 34,368 35,017 57 60 42

(b): 75% taxon deletion rate

SDM FITCH MW* MVR*

k = k = k = k =
10 2 10 20 2 10 20 2 10 20

n = 48 < 1 6 17 23 10 28 36 < 1 < 1 < 1
n = 96 < 1 22 455 492 29 656 667 < 1 4 7
n = 192 2 448 11,532 14,025 916 32,371 34,152 3 31 52

(c): 1.2% missing distances (Driskell et al.)

SDM FITCH MW* MVR*

k = 254 k = 254 k = 254 k = 254

n = 48 334 132 268 < 1

Mean run times are provided for various taxon numbers (n), gene numbers (k) and proportions of missing entries: (a) 25%, (b) 75%, and (c) 1.2% 
using Driskell et al. [20]-like datasets. Run times are measured in seconds using a standard PC (Pentium IV 1.8 GHz, 1Gb RAM). The low run times 
with k = 2 and 75% deletion rate are explained by the low size of the distance super-matrices (see text for explanations).
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ing both NJ and ADDTREE generalized pair selection
criteria, we obtain fast and accurate algorithms that
require O(n3) run times, where n is the number of taxa, i.e.
run times that are similar to NJ's. These three novel algo-
rithms, named NJ*, BIONJ* and MVR*, show (in our sim-
ulations) topological accuracy similar or higher to that of
FITCH and MW*, which are much more time consuming.
MVR* appears to be best, followed by BIONJ*. In a phyl-
ogenomic context, MVR* accounts for (and benefits from,
regarding other algorithms) the fact that gene distribution
among species is very heterogeneous, which implies that
some distances are accurately estimated (using numerous
genes) while some others are poorly estimated (with few
genes). Combined with the SDM method [6] to estimate
distance supermatrices, MVR* and BIONJ* are relevant
alternatives to standard supertree techniques [7], as MRP
[51,52]. JAVA implementations of these algorithms are
available in PhyD* software and downloadable from [8].
All our datasets are also available from this URL.

Several research directions would deserve to be explored.
The variances and covariances of the distance estimates in
the distance supermatrix could be accounted for in a more
complete and accurate way, e.g. in the line of WEIGHBOR
[40] for the pair selection criterion, or using the general-
ized least-squares version of MVR [4]. There is a clear need
for a pair selection criterion being able to point out xy
taxon pairs, even when the corresponding Δxy distance is
missing. Theoretical results highlighting the cases where
our algorithms will succeed (or fail) in recovering the cor-
rect tree, would likely help to improve these algorithms or
design new ones. Adapting to missing distances very fast
algorithms [41-46] could be promising. Finally, dealing
with missing distances is likely required in other (non
phylogenomic) applications of phylogenetic trees, and in
related problems, as phylogenetic network inference [60].

Methods
Existing agglomerative algorithms are defined by criteria
and formulae which all can be rewritten as distance aver-
ages. These algorithms (e.g. NJ [1,2], BIONJ [3] and MVR
[4]) are generalized to incomplete distance matrices by
estimating these averages using available distances, when
some of those are missing. In the following, we first define
notation and present a generic agglomerative scheme that
covers all the algorithms being discussed here. Then, we
describe for each of the three agglomeration steps (pair
selection, branch length estimation, and matrix reduc-
tion), how NJ is generalized into NJ* to deal with missing
distances. NJ* is further refined by BIONJ* that incorpo-
rates a first simple estimation of the variance associated to
each evolutionary distance. Finally, a second, more accu-
rate estimation of this variance is used by MVR* that gen-
eralizes the weighted least-squares (WLS) version of the
MVR [4] approach.

Notation

Let Ln = {1,2, ..., n} be the set of all taxa numbered from 1

to n, and (Δij) a distance matrix, where Δij corresponds to

the evolutionary distance between taxa i, j ∈ Ln, and Δii =

0, ∀i ∈ Ln. Distance-based algorithms build a tree T (also

denoted as , depending on the context) from (Δij), and

estimate all branch lengths Tuv, where uv is any pair of sib-

ling nodes in T. At each agglomeration stage, a taxon pair
xy is selected, connected to a new internal node u, and

replaced by u in (Δij). Thus, at each stage, the set Lr = {1,2,

..., r} of non-agglomerated taxa drops in cardinality by 1,
and r is changed into r - 1. Tree reconstruction stops when
r = 2.

Agglomerative algorithms with complete distance matrices
A number of existing agglomerative algorithms to deal
with complete matrices can be summarized using the fol-
lowing scheme [4]:

• Input Ln = {1,2, ..., n} and (Δij);

• r = n;

• While r > 2, do:

(a) Select the xy pair to be merged into u by optimizing an
agglomeration criterion;

(b) Estimate the branch lengths Txu and Tyu:

 

with  ; (1)

(c) Reduce the distance matrix (Δij) for all i ≠ x, y:

Δui = λi (Δxi - Txu) + (1 - λi)(Δyi - Tyu) with λi ∈ [0,1]
(2)

(d) r = r - 1;

• Output T.

Step (a) in this generic scheme searches for the taxon pair
xy to be merged by optimizing an agglomeration criterion.
NJ, BIONJ and MVR select the pair which maximizes [1,2]:

T̂

T T wxu xy yu xy i xi yi

i L x yr

= − = + −( )
∈ −
∑Δ Δ Δ Δ1

2
{ , }

wi
i L x yr

=
∈ −

∑ 1
2

{ , }
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Let (Δij) be additive [61], i.e. be defined as the path-length
distance between taxa in a phylogenetic tree T with posi-
tive branch lengths; then, maximizing Qxy over all taxon
pairs selects a cherry of T, i.e. a pair of taxa being separated
by a unique internal node in T. In other words, Qxy is con-
sistent [36]. However, it is easily shown (using counter-
examples) that the second best taxon pair (based on Qxy
values) is not necessarily a cherry of T.

Conversely, the ADDTREE [5] pair selection criterion
implies that all cherries of T have highest criterion value.
The ADDTREE criterion counts the number of times
where the xy pair is a cherry in all taxon quartets xyij:

where H(t) = 1 if t ≥ 0, and H(t) = 0 if t < 0. This criterion
has integer values ranging from 0 to (n - 2)(n - 3)/2, and
this maximum value is reached for all cherries (but for the
cherries only) with additive distance matrices. Careful
implementation [39] of ADDTREE allows for O(n4) run
time. NJ, BIONJ and MVR are much faster. They first com-
pute all Rz sums in Equation (3), and then compute in
O(1) the Qxy value of each xy pair. Each agglomeration
stage thus requires O(r2) time (branch-length estimation
and matrix reduction are achieved in O(r)), and the whole
algorithm is in O(n3). Moreover, Qxy can be seen as a con-
tinuous version of Nxy [62].

After xy pair selection, x and y are connected to the new
node u, and the lengths of xu and yu branches are esti-
mated using Equation (1). Assuming that (Δij) is additive
and corresponds to tree T, we have Txu = (Δxy + Δxi - Δyi)/2,
∀i ≠ x, y. Equation (1) averages these elementary estima-
tors using various (wi) weightings. With NJ, the average is
equally-weighted and we have wi = w = 1/(2(r - 2)). We
shall see that MVR uses different wi weights.

Finally (step (c)), (Δij) is reduced by replacing x and y with
the new node u, and by computing all Δui distances, ∀i ≠
x, y. When (Δij) is additive and corresponds to tree T, we
have Δui = Δxi - Txu = Δyi - Tyu. Equation (2) averages these
two elementary estimators. NJ uses equal weights (λi = 1 -
λi = 1/2) while BIONJ and MVR adjust λi in order to min-
imize the variance of Δui and to have reliable distance esti-
mates during all agglomeration stages. For this purpose,
BIONJ and MVR use (approximate) models for the vari-
ances and covariances of the distance estimates in (Δij).

NJ*: generalizing NJ to incomplete distance matrices
When (Δij) is incomplete (missing entries are denoted as
∅), the criteria and equations above do not apply. We
shall see in this section how they are generalized to define
the NJ* algorithm, which keeps NJ's O(n3) time complex-
ity and is nearly equivalent to NJ with complete matrices.

(a) Agglomeration criterion

Let  = Qxy/(r - 2). Maximizing  is the same as max-

imizing Qxy (Equation (3)), and we have:

, where ,

which can be rewritten as:

The sum in Equation (5) relates to terms representing how

distant is the path joining x to y from other taxa i ≠ x, y (Δxi

+ Δyi - Δxy equals twice the distance between u and i),

whereas the first term expresses the additional distance

induced by Δxy. It has been shown [63,64] that the relative

weight of these two factors is unique, due to consistency

requirement, and  can be interpreted as the mean

acentrality of the xy pair [35,36]. To extend this criterion
to incomplete distance matrices, we estimate it using the

set of taxa with non-missing distances:  = {i ∈ Lr : Δxi,

Δyi ≠ ∅}. Moreover, we assume Δxy ≠ ∅, and thus x, y ∈

. The normalization factor is then equal to | | - 2

(instead of r - 2) and we obtain the following generaliza-
tion of Equation (5):

which applies to incomplete distance matrices, and is

identical to  with complete ones. This equation fur-

ther simplifies into:

Q R R r Rxy x y xy z zi

i Lr

= + − −( ) =
∈
∑2 Δ Δ, .where

(3)

N H Hxy xi yj xy ij xj yi xy ij

i j L x yr

= + − −( ) + − −( )
< ∈ −

∑ Δ Δ Δ Δ Δ Δ Δ Δ
{ , }

(4)
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r 2 Δ Rxy xi yi
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∈
∑ Δ Δ
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Other solutions are possible to extend Equation (5), e.g.

preserving Δxy/(r - 2) term rather than transforming it into

Δxy/(  - 2). Simulation results (not shown) indicate that

criterion (6) has better topological accuracy than these
alternatives. Theoretical results would be desirable to
explain these observations and establish the properties of
criterion (6), but a first simple explanation is that Equa-

tion (6) precisely corresponds to the  value being

computed on  taxon subset. To be consistent on the

whole set of taxa (Lr), it is mandatory that the criterion is

consistent on taxon subsets ( , here), and Equation (6)

satisfies this requirement.

Maximizing  seems to require O(r3) time for each iter-

ation, and thus a total time complexity of O(n4). How-
ever, efficient implementation allows for O(n3) total run

time. At the first stage (r = n),  and | | values are

computed and stored for all x, y ∈ Ln, which requires

O(n3) time. In the subsequent agglomeration stages, these
values are updated as follows:

• After step (a), for all i, j ∈ Lr - {x, y} we remove from 

and | | : Δxi and Δxj (if Δxi ≠ ∅ and Δxj ≠ ∅), and Δyi and

Δyj (if Δui ≠ ∅ and Δuj ≠ ∅).

• After step (c), we compute  and | | for all i ∈ Lr -

{u}, and

• for all i, j ∈ Lr - {u}, we add Δui and Δuj to  and | |

(if Δui ≠ ∅ and Δuj ≠ ∅).

Each of these three updating routines requires O(r2) time,
just as pair selection using criterion (6), meaning that

using  instead of Qxy does not change the total O(n3)

time complexity of the original NJ algorithm.

However, as discussed earlier, a limitation of criterion

 is that: (1) it cannot be computed when Δxy = ∅, and

(2) only the best pair is guaranteed (with additive dis-
tance) to be a cherry in the correct tree. When xy is the best

pair in the complete additive distance matrix, but Δxy is

missing in the available distance matrix, then using 

does not provide any guaranty of correctness. This diffi-
culty is partly alleviated when using a generalization of
Nxy, as this criterion selects all cherries in the correct tree

with complete additive distances. When some of the cher-
ries correspond to missing distances, we are still able to
select the others that correspond to non-missing entries.
Our generalization of Nxy (Equation (4)) to incomplete

distances is defined as follows. Let:

 differs from Nxy in that we sum both H terms, instead

of multiplying them. This way we exploit all available

information. Indeed, when Δxj = ∅ and/or Δyi = ∅ but the

other entries are available, we still use H(Δxi + Δyi - Δxy - Δij)

in  while a multiplicative solution in the line of Nxy

would discard this term. Moreover, it is easily seen that

 = 2Nxy with complete additive distances. To select

among taxon pairs, we use the averaged form of , that

is:

which expresses the mean number of quartets where the
xy pair corresponds to a cherry.

However, selecting pairs using  sometimes produces

ties. In this case, we select the pair with higher | |

value, that is the pair which is supported by the larger
number of quartets. But ties may still occur, in which case
we use:

where Miss(z) = {i ∈ Lr, ≠ z : Δiz = ∅ } corresponds to miss-

ing entries for taxon z.  counts the number of missing
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entries in the current matrix that will be removed in the
next step (see reduction procedure (13)). Maximizing

 tends to quickly fill missing entries in the running

distance matrix, which both frees from Δxy ≠ ∅ limitation

and allows using Qxy pair selection criterion only. Finally,

in some (very rare) cases, we still have ties and then max-

imize the continuous version [62] of :

Pair selection criteria  (9), | | (8),  (10) and

 (11) are used in a lexicographic way: taxon pairs are

ranked based on the first criterion ( ), the second one

(| |) is used in case of ties, etc. However, using these

four criteria only would result in O(n4) time complexity.
In order to preserve O(n3) run times, we first select the s

top pairs based on  criterion (6), and then use the

other criteria in lexicographic order to select the pair to be
agglomerated among these s pairs. As computing Equa-
tions (7) to (11) requires O(r2) or less per taxon pair, the
total time complexity of pair selection is O(n3) (first selec-

tion using (6)) plus O(s∑r2) (final selection using (8) to

(11)), i.e. O(n3). As explained above,  does not pro-

vide any guaranty of correctness with missing distances,

while  and  partly circumvent the difficulty.

However,  enables to extract the most promising pairs

for agglomeration and we have seen (Figure 1) that using
for s a small constant (typically 15) is sufficient to obtain
high accuracy, meaning that, in practice, run times are in
O(n3).

(b) Branch length estimation
Equation (1) is easily rewritten using non-missing entries
only:

NJ uses the same weight wi for every taxon i. The same

holds for NJ*, that is, wi = w = 1/(2(| | - 2)). Note that

for the selected pair we have Δxy,  ≠ ∅, meaning that

Equation (12) is always applicable. Just as with NJ, branch
length estimation (12) requires O(r) time at each agglom-
eration stage.

(c) Matrix reduction
Equation (2) averages two elementary estimators, and
with NJ this average is equally weighted. With missing dis-
tances it may occur that one of these two estimators is not
applicable (e.g. when Δxi ≠ ∅), that both are applicable, or
that none is applicable. Thus, in NJ* Equation (2)
becomes:

where λi = λ = 1/2. In the second and third cases, entries
missing in the previous matrix are now present in the new,
reduced matrix. We have seen that criterion (10) tends to
maximize the number of such entries, in order to fill as
fast as possible the missing distances in the running
matrix. Just as branch length estimation (12), matrix
reduction (13) requires O(r) time at each stage and does
not impact total time complexity. Thus, NJ* requires
O(n3) run times, when s is kept constant.

BIONJ*: improving the reduction step, a first simple 
solution
BIONJ* uses the same pair selection criteria as NJ*, and
adapts to missing distances BIONJ reduction procedure.
BIONJ uses the degree of freedom corresponding to the λi
parameter in Equation (2), in order to minimize the vari-
ance of the new Δui estimates in step (c). For this purpose,
BIONJ assumes a simple Poisson model of the variances
in the original (Δij) matrix, stating that the variance Vij of
Δij is proportional to Δij. BIONJ also accounts for the cov-
ariances in (Δij) (see [3] for more details). It uses a single
λ parameter for every xy pair, which does not depend on i
and is given by

Again, this equation may be seen as an average and can be
rewritten using available entries only as:
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The reduction step (c) is achieved by BIONJ* as defined
by Equation (13), but using so-defined λ* (instead of 1/
2) when Δxi ≠ ∅ and Δyi ≠ ∅.

Moreover, BIONJ starts with variance matrix (Vij) = (Δij)
and reduces this matrix at each stage using λ value from
Equation (14) and equation:

Vui = λVxi + (1-λ)Vyi - λ(1 - λ)Vxy.

BIONJ* combines this formula with Equation (13) and
(15) to reduce the variance matrix, that is:

Computing λ* using Equation (15) and achieving matrix
reductions (13) and (16) requires O(r) run times. Thus,
BIONJ* has O(n3) time complexity (when s is kept con-
stant, else O(sn3)).

MVR*: improving BIONJ* using variances dedicated to 
distance supermatrices
The BIONJ variance model is well suited for one-gene
studies where distance estimations all use the same
number of sites (at least when gaps are removed). With
phylogenomic studies, some distances are computed
using a large number of genes, and thus are reliable, while
other distances are based on a few genes and are poorly
estimated. Moreover, some distances may be missing due
to the absence of common genes between the two species
being compared. Altogether, this implies that the BIONJ
and BIONJ* variance model can be improved to better fit
phylogenomic requirements. This section describes the
MVR* algorithm that is intended to this purpose.

Steps (b) and (c) in the generic scheme are based on wi
and λi parameters, respectively. The MVR algorithm [4]
generalizes the BIONJ approach and uses these degrees of
freedom in order to minimize the variance of the new esti-
mates Tux, Tuy and Δui. The main difference from BIONJ is
that MVR is able to deal with any variance-covariance
model of the δij distance estimates, while BIONJ is
restricted to the Poisson model. The MVR variant that we
use here only considers the variances and neglects the cov-
ariances, thus assuming a weighted least-squares model
(it was called MVR-WLS in [4], but is named MVR here for
simplicity). Thus, MVR inputs a distance matrix (Δij) and
the corresponding (Vij) variance matrix. We shall see in
the next section how (Vij) is calculated to deal with phyl-
ogenomic data, and describe now the way MVR and MVR*

use and update these matrices all along the agglomeration
procedure.

MVR uses Qxy pair selection criterion (3), just as NJ and
BIONJ, while MVR* uses the same criteria and selection
procedure as NJ* and BIONJ*.

In MVR step (b), i.e. branch length estimation, wi weights
in Equation (1) depend on i and are given by:

MVR* uses Equation (12) (instead of Equation (1)) to
deal with missing entries, and adapts above Equation (17)

by replacing Lr by .

In MVR step (c), i.e. matrix reduction, a different λi param-
eter is associated in Equation (2) to each taxon i ≠ x, y
using:

This value puts more weight and confidence on (Δxi - Txu)
when the associated variance Vxi is low, compared to Vyi.
Equation (18) is also used by MVR*, but combined with
Equation (13) to deal with missing distances.

Finally, MVR (just like BIONJ) reduces the variance matrix
at each agglomeration stage. To this purpose, MVR uses
the following equation:

This equation is also used by MVR* in combination with
Equation (16).

All the computations described above (except pair selec-
tion) require O(r) run times at each agglomeration stage,
and thus MVR* has O(n3) time complexity, just as do NJ*
and BIONJ*.

Estimating the variances associated to distance 
supermatrices

Distance supermatrices are computed [6,19] from source
matrices which are first rescaled, and then averaged. SDM
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[6] inputs a collection C =  of k

distance matrices – each defined on taxon set Lp and esti-

mated from sequences with size sp—, and deforms them,

without changing their topological signal, so as to bring
them as close as possible to each other before averaging.
The first deformation is scaling, which multiplies each

( ) distance matrix by a factor αp. The second (optional

in SDM) deformation adds a constant aip to every non-

diagonal  entries. Then, SDM averages the resulting

modified matrices to obtain the ( ) super-matrix that

is defined by:

Neglecting the variance of the deformation factors, we

obtain a simple expression of the variance of :

where  is the variance of . Note that no covariance

terms between any  and  estimates appear in Equa-

tion (20), as these source distances are estimated from dif-
ferent genes and are independent. Moreover, the
covariances between the entries in the SDM supermatrix
are neglected, as is the case in a number of (WLS)
approaches [30,32,40].

Several studies have shown that the variance Vij associated

with the evolutionary distance Δij (estimated from a single

gene) is approximately equal to  with ρ ≈ 2

[11,65]. Based on various experiments (not shown), we

have chosen the usual formula , which cor-

responds to default option in FITCH program. Equation
(20) then becomes:
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