N. Saitou and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees, Mol Biol Evol, vol.4, pp.406-425, 1987.

J. Studier and K. Kepler, A note on the neighbor-joining method of Saitou and Nei, Mol Biol Evol, vol.5, pp.729-731, 1988.

O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Molecular Biology and Evolution, vol.14, issue.7, pp.685-695, 1997.
DOI : 10.1093/oxfordjournals.molbev.a025808

URL : https://hal.archives-ouvertes.fr/lirmm-00730410

O. Gascuel, Data Model and Classification by Trees: The Minimum Variance Reduction (MVR) Method, Journal of Classification, vol.17, issue.1, pp.67-99, 2000.
DOI : 10.1007/s003570000005

S. Sattath and A. Tversky, Additive similarity trees, Psychometrika, vol.42, issue.3, pp.319-345, 1977.
DOI : 10.1007/BF02293654

A. Criscuolo, V. Berry, E. Douzery, and O. Gascuel, SDM: A Fast Distance-Based Approach for (Super)Tree Building in Phylogenomics, Systematic Biology, vol.55, issue.5, pp.740-755, 2006.
DOI : 10.1080/10635150600969872

URL : https://hal.archives-ouvertes.fr/lirmm-00136655

O. Bininda-emonds, Phylogenetic supertree: combining information to reveal the tree of life Kluwer Academic, 2004.

J. Sourdis and M. Nei, Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree, Mol Biol Evol, vol.5, issue.3, pp.298-311, 1988.

N. Saitou and T. Imanishi, Relative efficiencies of the Fitch-Margoliash , maximum-parsimony, maximum-likelihood, minimumevolution and neighbor-joining methods of phylogenetic tree construction in obtaining the correct tree, Mol Biol Evol, vol.6, issue.5, pp.514-525, 1989.

M. Kuhner and J. Felsenstein, A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates

K. Strimmer and A. Von-haeseler, Accuracy of Neighbor Joining for n-Taxon Trees, Systematic Biology, vol.45, issue.4, pp.516-523, 1996.
DOI : 10.1093/sysbio/45.4.516

M. Nei, S. Kumar, and K. Takahashi, The optimization principle in phylogenetic analysis tends to give incorrect topologies when the number of nucleotides or amino acids used is small, Proceedings of the National Academy of Sciences, vol.95, issue.21, pp.12390-12397, 1998.
DOI : 10.1073/pnas.95.21.12390

S. Kumar and S. Gadagkar, Efficiency of the Neighbor-Joining Method in Reconstructing Deep and Shallow Evolutionary Relationships in Large Phylogenies, Journal of Molecular Evolution, vol.51, issue.6
DOI : 10.1007/s002390010118

K. Takahashi and M. Nei, Efficiencies of Fast Algorithms of Phylogenetic Inference Under the Criteria of Maximum Parsimony, Minimum Evolution, and Maximum Likelihood When a Large Number of Sequences Are Used, Molecular Biology and Evolution, vol.17, issue.8, pp.1251-1258, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026408

M. Rosenberg and S. Kumar, Traditional Phylogenetic Reconstruction Methods Reconstruct Shallow and Deep Evolutionary Relationships Equally Well, Molecular Biology and Evolution, vol.18, issue.9, pp.1823-1827, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003969

URL : http://mbe.oxfordjournals.org/cgi/content/short/18/9/1823

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Swofford, G. Olsen, P. Waddell, D. Hillis, D. Hillis et al., Phylogenetic inference, Molecular Systematics Edited by, pp.407-509, 1996.

F. Lapointe and G. Cucumel, The Average Consensus Procedure: Combination of Weighted Trees Containing Identical or Overlapping Sets of Taxa, Systematic Biology, vol.46, issue.2, pp.306-312, 1997.
DOI : 10.1093/sysbio/46.2.306

A. Driskell, C. Ané, J. Burleigh, M. Mcmahon, O. Meara et al., Prospects for Building the Tree of Life from Large Sequence Databases, Science, vol.306, issue.5699, pp.1172-1174, 2004.
DOI : 10.1126/science.1102036

H. Philippe, E. Snell, E. Bapteste, P. Lopez, P. Holland et al., Phylogenomics of Eukaryotes: Impact of Missing Data on Large Alignments, Molecular Biology and Evolution, vol.21, issue.9, pp.1740-1752, 2004.
DOI : 10.1093/molbev/msh182

N. Galtier, A Model of Horizontal Gene Transfer and the Bacterial Phylogeny Problem, Systematic Biology, vol.56, issue.4, pp.633-642, 2007.
DOI : 10.1080/10635150701546231

URL : https://hal.archives-ouvertes.fr/halsde-00424419

M. Steel and R. A. , Maximum Likelihood Supertrees, Systematic Biology, vol.57, issue.2, 2008.
DOI : 10.1080/10635150802033014

URL : https://hal.archives-ouvertes.fr/lirmm-00335162

M. Farach, S. Kannan, and T. Warnow, A robust model for finding optimal evolutionary trees, Algorithmica, vol.2, issue.1, pp.155-179, 1995.
DOI : 10.1007/BF01188585

G. De-soete, Ultrametric tree representations of incomplete dissimilarity data, Journal of Classification, vol.12, issue.1, pp.235-242, 1984.
DOI : 10.1007/BF01890124

P. Landry, F. Lapointe, and J. Kirsch, Estimating Phylogenies from Lacunose Distance Matrices: Additive is Superior to Ultrametric Estimation, Molecular Biology and Evolution, vol.13, issue.6, pp.818-823, 1996.
DOI : 10.1093/oxfordjournals.molbev.a025642

URL : http://mbe.oxfordjournals.org/cgi/content/short/13/6/818

F. Lapointe and P. Landry, A fast procedure for estimating missing distances in incomplete matrices prior to phylogenetic analysis, Currents computational molecular biology Edited by: El- Mabrouk N, Lengauer T, Sankoff D. Publications CRM Montréal, pp.189-190

A. Guénoche and S. Grandcolas, Tree adjustments for partial distances, Math??matiques et sciences humaines, vol.146, issue.146, pp.51-64, 1999.
DOI : 10.4000/msh.2790

J. Felsenstein, PHYLIP: Phylogeny inference package, version 3.6b. Distributed by the author, 1993.

V. Makarenkov and B. Leclerc, An Algorithm for the Fitting of a Tree Metric According to a Weighted Least-Squares Criterion, Journal of Classification, vol.16, issue.1, pp.3-26, 1999.
DOI : 10.1007/s003579900040

V. Makarenkov and F. Lapointe, A weighted least-squares approach for inferring phylogenies from incomplete distance matrices, Bioinformatics, vol.20, issue.13, pp.2113-2121, 2004.
DOI : 10.1093/bioinformatics/bth211

O. Gascuel and M. Steel, Neighbor-Joining Revealed, Molecular Biology and Evolution, vol.23, issue.11, pp.1997-2000, 2006.
DOI : 10.1093/molbev/msl072

URL : https://hal.archives-ouvertes.fr/lirmm-00136653

B. Mirkin, Mathematical classification and clustering Kluwer Academic, 1996.

O. Gascuel, B. Mirkin, F. Mcmorris, F. Roberts, and A. Rzhetsky, Concerning the NJ algorithm and its unweighted version, UNJ. In Mathematical Hierarchies and Biology DIMACS series in Discrete Mathematics and Theoretical Computer Science, pp.140-170, 1997.

K. Zaretskii, Postroenie dereva po naboru rasstoianii mezhdu visiacimi vershinami (Constructing a tree on the basis of a set of distances between the hanging vertices

P. Buneman, F. Hudson, D. Kendall, and P. Tautu, The recovery of trees from measures of dissimilarity, Mathematics in archaeological and historical sciences Edited by, pp.387-395

O. Elemento and O. Gascuel, An efficient and accurate distance based algorithm to reconstruct tandem duplication trees, Bioinformatics, vol.18, issue.Suppl 2, pp.92-99, 2002.
DOI : 10.1093/bioinformatics/18.suppl_2.S92

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/18/suppl_2/S92

W. Bruno, N. Socci, and A. Halpern, Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction, Molecular Biology and Evolution, vol.17, issue.1, pp.189-197, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026231

URL : http://mbe.oxfordjournals.org/cgi/content/short/17/1/189

K. Howe, A. Bateman, and R. Durbin, QuickTree: building huge Neighbour-Joining trees of protein sequences, Bioinformatics, vol.18, issue.11, pp.1546-1547, 2002.
DOI : 10.1093/bioinformatics/18.11.1546

R. Desper and O. Gascuel, Fast and accurate phylogeny reconstruction algorithms based on the minimum-evolution principle
DOI : 10.1089/106652702761034136

URL : https://hal.archives-ouvertes.fr/lirmm-00269513

T. Mailund and C. Pedersen, QuickJoin--fast neighbour-joining tree reconstruction, Bioinformatics, vol.20, issue.17, pp.3261-3262, 2004.
DOI : 10.1093/bioinformatics/bth359

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/20/17/3261

S. Vinh-le and A. Von-haeseler, Shortest triplet clustering: reconstructing large phylogenies using representative sets, BMC Bioinformatics, vol.6, issue.1, p.92, 2005.
DOI : 10.1186/1471-2105-6-92

I. Elias, J. Lagergren, L. Caires, G. Italiano, L. Monteiro et al., Fast neighbor joining, Proceedings of ICALP 2005 (Lisbon), pp.1263-1274
DOI : 10.1016/j.tcs.2008.12.040

URL : http://doi.org/10.1016/j.tcs.2008.12.040

J. Evans, L. Sheneman, and J. Foster, Relaxed Neighbor Joining: A Fast Distance-Based Phylogenetic Tree Construction Method, Journal of Molecular Evolution, vol.64, issue.6, pp.785-792, 2006.
DOI : 10.1007/s00239-005-0176-2

G. Estabrook, F. Mcmorris, and C. Meacham, Comparison of Undirected Phylogenetic Trees Based on Subtrees of Four Evolutionary Units, Systematic Zoology, vol.34, issue.2, pp.193-200, 1985.
DOI : 10.2307/2413326

D. Robinson and L. Foulds, Comparison of weighted labelled trees, Lect Notes Math, vol.3, pp.119-126, 1979.
DOI : 10.1007/BF01797452

M. Steel and D. Penny, Distribution of tree comparison metrics-- Some new results, Syst Biol, vol.42, pp.126-141, 1993.

W. Dixon and A. Mood, The Statistical Sign Test, Journal of the American Statistical Association, vol.40, issue.236, pp.557-566, 1946.
DOI : 10.1080/01621459.1946.10501898

B. Baum, Combining Trees as a Way of Combining Data Sets for Phylogenetic Inference, and the Desirability of Combining Gene Trees, Taxon, vol.41, issue.1, pp.3-10, 1992.
DOI : 10.2307/1222480

M. Ragan, Phylogenetic inference based on matrix representation of trees, Molecular Phylogenetics and Evolution, vol.1, issue.1, pp.53-58, 1992.
DOI : 10.1016/1055-7903(92)90035-F

F. Lapointe and G. Cucumel, The Average Consensus Procedure: Combination of Weighted Trees Containing Identical or Overlapping Sets of Taxa, Systematic Biology, vol.46, issue.2, pp.306-312, 1997.
DOI : 10.1093/sysbio/46.2.306

O. Eulenstein, D. Chen, J. Burleigh, D. Fernandez-baca, and H. Sanderson, Performance of Flip Supertree Construction with a Heuristic Algorithm, Systematic Biology, vol.53, issue.2, pp.299-308, 2004.
DOI : 10.1080/10635150490423719

J. Gatesy, C. Matthee, R. Desalle, and C. Hayashi, Resolution of a Supertree/Supermatrix Paradox, Systematic Biology, vol.51, issue.4, pp.652-664, 2002.
DOI : 10.1080/10635150290102311

R. Beck, O. Bininda-emonds, M. Cardillo, and F. Liu, Purvis A: A higher level supertree of placental mammals, BMC Evolutionary Biology, vol.6, issue.1, p.93, 2006.
DOI : 10.1186/1471-2148-6-93

M. Macmahon and M. Sanderson, Phylogenetic Supermatrix Analysis of GenBank Sequences from 2228 Papilionoid Legumes, Systematic Biology, vol.55, issue.5, pp.818-836, 2006.
DOI : 10.1080/10635150600999150

P. Goloboff, J. Farris, and K. Nixon, TNT: Tree analysis using new technology, 2003.

O. Bininda-emonds and N. Bryant, Properties of matrix representation with parsimony analyses, Syst Biol, vol.47, pp.497-508, 1998.

H. Chan, J. Jansson, T. Lam, and S. Yiu, Reconstructing an ultrametric galled phylogenetic network from a distance matrix, Mathematical Foundation of Computer Science, pp.224-235
DOI : 10.1007/11549345_20

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Barthélemy and A. Guénoche, Trees and proximity relations Wiley-Interscience Series in Discrete Mathematics and Optimization, 1991.

O. Gascuel, A note on Sattath and Tversky's, Saitou and Nei's and Studier and Keppler's algorithms for inferring phylogenies from evolutionary distances, Mol Biol Evol, vol.11, issue.6, pp.961-963, 1994.

M. Charleston, M. Hendy, and D. Penny, Neighbor-Joining Uses the Optimal Weight for Net Divergence, Molecular Phylogenetics and Evolution, vol.2, issue.1, pp.6-12, 1993.
DOI : 10.1006/mpev.1993.1002

D. Bryant, On the Uniqueness of the Selection Criterion in Neighbor-Joining, Journal of Classification, vol.22, issue.1, pp.3-15, 2005.
DOI : 10.1007/s00357-005-0003-x

R. Sanjuán and B. Wróbel, Weighted Least-Squares Likelihood Ratio Test for Branch Testing in Phylogenies Reconstructed from Distance Measures, Systematic Biology, vol.54, issue.2, pp.218-229, 2005.
DOI : 10.1080/10635150590923308