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Abstract

Many phylogenetic algorithms search the space of possibéstusing topological rearrangements
and some optimality criterion. FastME is such an approaah tises thdxalanced minimum evolution
(BME) principle, which computer studies have demonstrated te lagh accuracy. FastME includes
two variants:balanced subtree prune and regraft (BSPR) and balanced nearest neighbor interchange
(BNNI). These algorithms take as input a distance matrix and aiypeialylogenetic tree. The tree is
modified using SPR or NNI operations, respectively, to redine BME length relative to the distance
matrix, until a tree with (locally) shortest BME length isufied.

Following computer simulations, it has been conjectured BSPR and BNNI are consistent, i.e.
for an input distance that is a tree-metric, they convergthéocorresponding tree. We prove that the
BSPR algorithm is consistent. Moreover, even if the inputtams small errors relative to a tree-metric,
we show that the BSPR algorithm still returns the correspandree. Whether BNNI is consistent

remains open.

Index Terms

phylogenetic tree, topological move, subtree prune andafe¢SPR), BSPR algorithm, Nearest
Neighbor Interchange (NNI), BNNI algorithm, balanced minim evolution principle (BME), tree-

length, quartet-distance, Robinson Foulds distance,istensy, safety radius.

. INTRODUCTION

Many practical methods for phylogenetic tree inferenceceea by repeatedly updating a
proposed tree using topological rearrangements, unticallipoptimal tree is found according
to some optimality criterion. Such methods include thosglémented in the widely used PAUP
[29] and PHYLIP packages [12], and optimality criteria undé likelihood and parsimony scores.
The most commonly used topological rearrangements arereulBtrune and Regraft (SPR),
Nearest Neighbor Interchange (NNI), and Tree Bisection Redonnection (TBR); see [25] for
definitions and properties, and the next section for a bresicdption of SPR and NNI moves.

Recently, such a local topology search approach was intextifior inferring phylogenetic
trees from distance matrices, based on Ibakanced minimum evolution (BME) principle [6].
The optimality criterion used is to minimize Pauplin’s [20¢e-length estimate relative to the
given distance matrix. This approach is implemented in awso€ called FastME [6]. Two

topological rearrangement possibilities are availabliénlatest release of FastME: thalanced
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subtree prune and regraft (BSPR) algorithm [17] and thebalanced nearest neighbor interchange
(BNNI) algorithm [6]. FastME has been shown [6], [7] to be a fast and accuratiéadefor
tree inference, compared to other popular distance-bagtidoas such as NJ [23], BIONJ [15],
FITCH [13] or WEIGHBOR [3]. Vinh et al. [30] even concluded ‘@\found that BNNI boosts
the topological accuracy of all [distance-based] mettiddste that the local search range under
NNI operations is a subset of that under SPR operations, #IRBS expected to be at least as
accurate as BNNI.

A number of studies have been dedicated to the greedy digmitused to infer an initial
tree for use in a topological search. For example, Attesstugly of NJ [2]. However, to the
best of our knowledge, no one has explored theoretical ptiepeof topological moves in the
context of tree inference. Here we will make a first step talsdilling this gap in relation to
the BME framework, and in this way, shed some light on why BSPR BNNI work so well
in practise. In particular, we consider the following qumst Suppose the matrix of pairwise
distances given as input is in factti@e-metric ¢*, i.e. there is a unique phylogenetic tré&
with positive edge lengths fdf* so that, for eachr,y € X, the distance);, is the length of
the path betweem andy in 7. If we apply the BSPR (BNNI) algorithm starting with distanc
0* and any initial phylogenetic tre€, is the algorithm guaranteed to outglit? That is to say,
is the BSPR (BNNI) algorithntonsistent?

Numerous computer simulations have suggested that botBSR& and BNNI algorithms are
consistent [7]. Here we prove that the BSPR algorithm is éddeonsistent. In fact, we show
that even if the inpud contains some errors, but remains sufficiently clos&tdhen the BSPR
algorithm will still output7™ (Theorem 5.2). Here, sufficiently close meafis —d;, | is less than
1/3 of the smallest edge weight @af*, for all z,y € X, i.e. the BSPR algorithm has safety
radius of at least 1/3. As a corollary, we show that the BME princigdelf has a safety radius of
at least 1/3, which solves an open question [8]. Safety saainalysis was introduced by Atteson
[2], and has become a standard approach to characterizetfoerpance of distance-based, tree
building algorithms (see.g. [9] for a review). In particular, Atteson showed that no diste
method can have a safety radius larger than 1/2, and that dNdetated greedy algorithms have
optimal 1/2 safety radius.

The rest of the paper is organised as follows. In the follgwsection, we review some

basic definitions concerning phylogenetic trees and bathmainimum evolution, and prove a
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key lemma concerning the structure of pairs of trees. IniGestlll and IV, we prove some
results analogous to consistency of the BSPR algorithmHherRobinson-Foulds [22] and the
quartet [11] tree comparison metrics. In particular, inti®eclll we show that for two distinct
phylogenetic tree§” and 7™ there is a sequence of SPR operations which transfarnirsto
T* and decreases the Robinson-Foulds distancé*tat every step. In Section 1V, we prove
a similar result for the quartet distance. In Section V, wevshhat the BSPR algorithm is
consistent and has safety radius at legst. However, the question remains open for BNNI.

This is discussed along with other open questions in Sed&tion

[I. BASICS, DEFINITIONS AND NOTATION

A phylogenetic tree is a binary tre€l” whose leaves are bijectively labelled by the elements of
some finite seX'. The setX usually denotes a set of species or taxa, and theltrepresents the
evolutionary relationships between them. Unless statbdraise, from now onX will denote
a finite set and all trees considered will be phylogenetiestren X. Throughout we consider
phylogenetic trees as unweighted, i. e. they do not havimsitredge lengths, with the exception
of the true tre€l™ which does have edge lengths (or weights). Furthermoretatagtters will
be used in all figures to represent subtrees.

The NNI and SPR tree rearrangement operations can be desatfollows [25]. Suppose
that T is the tree depicted in Fig. 1 that, B, C, Cy,...,C, and D are subtrees of’ as
indicated in that figure, and that’ is a tree resulting from one NNI or SPR operation applied
to 7. Regarding NNI,7” is obtained fromI" by deleting some edge = {u,rp} of T" where
rp is the root of B, suppressing vertex, and adding an edge€ betweenrz and a vertex that
subdivides the edge betweerand D or betweernw to C' wherew is the neighbor ofs in 7" — ¢
(cf. Fig. 1(a)). Regarding SPH,’ is obtained fromI" by deleting some edge= {u,rg} in T
where again g is the root of B, suppressing, and adding an edgée betweenrz and a vertex
that subdivides an edge in the componeni 6f e that does not contai® (cf. Fig. 1(b)). Note
that in both operations the root &f is unchanged, i.e.the edgesnde’ share the same vertex
of B.

The BSPR (BNNI, respectively) algorithm works as followsr Fan input distance matrix,

with entriesé,,, x,y € X and some phylogenetic tree on X, thetotal tree length Z(T) of T
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Fig. 1. A schematic description of an NNI and an SPR operatBae text for details.

(relative tod) is defined according to the following formula due to Paupi]

1) Z(T) = Z 21_pzy5xya

z,yeX
wherep,, denotes the number of edges in the path froto y. Semple and Steel [26] provided
an elegant interpretation of Equation (1) which we preserfig. 2 for the convenience of the
reader. Then, for all tree$” that can be obtained fro' by performing a single SPR (NNI,

Fig. 2. The figure depicts two drawings of the same tfeen the setX = {a,b,¢,d}. By crossing each edge twice as
indicated, the tree length{T") of the treeT" depicted in (a) equates (8ad + 0ac + Ocb + 0pa) AN 103 (Gac + Sed + Sab + Gba)

in (b) whered,, denotes the distance between any two elemeniX.ifPauplin’s formula fori( ) is the average of these two
alternative ways to computliéT) i.e. f(T) 1( (8ad + dde + deb + Ova) + (&w + dcd + dap + dba)). This interpretation can
be extended to larger trees using circular orderingX pkee [26].

respectively) operation off (see Fig. 1), it is checked wheth&f’) — I(T”) > 0. If this holds,

i.e. the total tree length of” is less than that of’, the treeT” is taken in preference té' and
the process is iterated. This process is repeated untiled/tftés found with the property that
no SPR operation (NNI, respectively) @i yields a tree having shorter total tree length. Note
that (i) if J is a tree metric and” an edge weighted phylogenetic tree that realizéisen (7"

is the sum of the branch lengths 6f[26], (ii) the local search range under NNI operations is
a subset of that under SPR, and (jii) the chégk) — [(T”) > 0 can be performed efficiently.
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Indeed in both BSPR and BNNI it takes tini | X'|?) to evaluate all moves and update all data
structures corresponding to the new current tree, see 18], fpr details.

A split S = {A, B} on a taxa se is a bipartition of X into two non-empty disjoint subsets
A, B C X whose union isX. For ease of notation, we will writel| B or, equivalentlyB|A for
the split{ A, B}. In general, a collection of splits oX is called asplit system of X.

Suppose thaf” is a tree onX. Then a split systen&(7") can be associated t6 in the
following way. Consider some edgec E(T'). Then deleting: induces a splitS, = A|B of the
leaf setL(T) = X where A is the leaf-label set of one of the resulting connected caomapts
and B is the leaf-label set of the other. The collection of splits)0 obtained by deleting, in
turn, every edge i7" is the split systens (7).

A subtree 7" of T is any tree that can be obtained framby removing an edge df' and
picking of the connected components in the resulting gralbte that7” can always be thought
of as a tree rooted at the unique vertexin V' (7"), or as unrooted by suppressing this degree
2 vertex. For convenience, we will always denote the root slubtree7” of T by r;. Note
also that every leaf of " is a subtree off".

Given two subtreesd and B of T, we call A and B digoint if V(A)NV(B) = 0. If A
and B are disjoint and there exist some vertexe V(T') such thate,, = {z,ra}, €., =
{z,rp} € E(T), then we denote the subtree Bfwith vertex setl/(A) UV (B) U {z} and edge
setE(A)UE(B)U{e,, e} by AUB.

We conclude this section with a lemma concerning trees thiatoes helpful throughout the
paper. Given a tre@’, we call a pair of leaves, b in T" which are incident with the same vertex
acherry of 7', and denote the set of cherriesBfby C(T').

Lemma 2.1: Supposé’ andT™* are two trees with distinct topologies. Then there exigodis
subtreesB, D in T such thatB, D, and B U D are subtrees of™* but B U D is not a subtree
of T

Proof: Supposel’ andT™ are two trees with distinct topologies. To prove the lemma, w
distinguish between the cases that (a) there exist elemepts X such thatr andy form a
cherry inT* but not inT', and (b)C(T™) C C(T).

Suppose that (a) holds, i.e., there exisy € X such thatr andy form a cherry in7T* but

INote that this definition of a subtree is more restrictiventittae one that is commonly used, as described in e.g. [25].
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not in 7". Then takingB to be the subtree and D to be the subtreg, the statement holds.

Now suppose (b) holds, i.eC(T*) C C(T). Associate toI’ and T* new treesT' and T*,
respectively, by contracting every cherry, with labeland b say, ofC(7*) in bothT and 7™,
into a leaf which we labe{a,b}. Clearly, sincel’ andT* have distinct topologies]' and T*
have distinct topologies.

Now, defineX to be the leaf-label set df. If there existz,y € X such thatr andy form
a cherry inT* but not inT, then we define the treeB and D as described in case (a) (with
X, T, andT* replaced byX, T and T*, respectively). The required subtreBsand D of T
and7T™* can then be obtained frol® and D by expanding every leaf labelled by a subgeof
X of size 2, to a cherry with label set. If, on the other hand;(T*) C C(T), then we iterate
the contraction process until we have found two binary leatlled tree§” and T+ for which
there is a cherry irﬁ(ﬁ) which is not inC(?). From this cherry we obtai and D, and the
required subtree® and D of 7" andT™ can then be obtained by repeatedly applying the above

described expansion process. [ |

IIl. ROBINSON-FOULDS DISTANCE

The Robinson-Foulds distance [22] is tree comparison metric that is commonly used to mesasu
dissimilarity between phylogenetic trees on the same leafFor two treed; and7; on X, it
is defined by
drr(T1,T2) = |S(T1) — S(12)| + [S(T2) — S(Th)|.

Note that7; and 7, have the sam&pology if and only if drr (T}, 1) = 0.

In this section, we prove the following result.

Theorem 3.1: If T* is a fixed tree and’ is any other tree, then there is a sequence of trees
Ty =1T,1y,...,T, =T, such that

1) treeT;,; is obtained fromI; by a single SPR-operation, and

2) dgp(1;,T*) — drp(Tis1, T) > 0,
forall 0 <:<k-—1.

This result is a direct consequence of the following lemna.tiwo treesl’; and7; the SPR-
distance dspr(11, 1) betweenT; andT; is the minimal number of SPR-operations needed to

transform the topology of into that one ofT5.
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Lemma 3.2: Supposel’ andT™ are two trees with distinct topologies. Then there existea t
T" such thatdgpr(T,7") = 1 anddgp(T*,T") < dgp(T*,T).
Proof: Supposel’ andT™ are two trees with distinct topology. Then, by Lemma 2.1r¢he
exist disjoint subtree®, D in T" such thatB and D are subtrees of * and the subtre& U D
is also a subtree of * but not of 7. Consider the tred” obtained fromT by pruning the
subtreeB and regrafting it adjacent t® (see Fig. 3) giving rise to a new vertex Clearly,
dspr(T,T") = 1.

Fig. 3. The treed’ andT” considered in the proof of Lemma 3.2.

To see that the inequality stated in the lemma holds, wengjsish between two types of
splits displayed byl". For R denoting eithefl” or 7", let S,(R) denote the set of splits i§(R)
which correspond to the edges in the path frano b in caseR = T and the edges in the
path froms to p in caseR = T". For the convenience of the reader we indicate these edges in
bold (see Fig. 3). Pu§,,(R) = S(R) — Sy(R). Note that the latter set also contains those splits
that correspond to an edge in the subtrégsD or in one of the subtrees ak indicated by
Co,...,Ck, k>0, in Fig. 3.

Now suppose thats is a split on X. Then, by constructionsS € S,,(7) if and only if
S € Su(T"). Let S; = L(B)|X — L(B) and Sy = L(D)|X — L(D). Note thatS,, Sy €
Su(T)NS(T")NS(T™). Let S, denote the split i (7”) that corresponds to the edges E(17)

as specified in Fig. 3. Observe that

1) Su(T) = Sun(T"),

2) S,(T)NnS(T*) =0, since the only splits of™ which separatd3 and D are S; and Ss,

3) Sy(T") NS(T*) # b sincesS, is a split of 7" and 7.
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Hence it follows that

ST = ST)| = IS(T") — SulT) — S(T)|
= [S(T*) — SulT) — Si(T)
> [S(T7) — SulT) — ST
= |S(T7) - (1)

Since the trees are binary, they all have the same numbernerhal edges and hence splits.
Thus
|S(T) = S(T7)| = [S(T7) = S(T)| > [S(T™) = S(T")] = |S(T") = S(T7)].

The inequality stated in the lemma follows. [ ]

V. QUARTET DISTANCE

In this section we prove the following analogous result tediem 3.1 in which we replace
the Robinson-Foulds distanck:» by the quartet distancé,, another popular tree-comparison
metric [5], [11], [19], [27].

We start with recalling the definition of the quartet distantet Q(X) denote the set of all
quartets of X, that is splitsA| B of subsets ofX of size 4 with|A| = 2 = |B|. For brevity, we
write ab|cd rather than{a, b}|{c, d} with {a,b,c,d} C X. For a treel’ and a quartetb|cd, we
say thatl" displays ab|cd if there exists some spli| B € S(T) such thatz,b € A ande,d € B.
Let Q(T") denote the set of all quartets displayed by a tfe@hen for two treed’ and7; the
quartet distance dg (77, 73) between?; andT; is defined as

do(Th, Tz) = |Q(Th) — Q(T2)| + |Q(Tz) — Q(Th)|.

In contrast to the Robinson-Foulds distance, the quarstanite between any tréé and
the optimal treel™ can be directly estimated from the data. For example, thellpofuartet
Puzzling algorithm [28], first estimates all quartets usmgximum-likelihood based on the
sequences corresponding to each of the taxa, and then lauilcke in a greedy way, trying
to maximize the number of quartets being displayed by theriafl tree. Theorem 4.1 is thus
related to the consistency of SPR-moves when the input engivterms of quartets. In particular,

assuming that these quartets exactly correspond to a pényig treel™, it shows that we are
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able to recovefl™ starting from any tre@” by simply applying SPR moves and using the quartet
distance.

Theorem 4.1: If T* is a fixed tree and’ is any other tree, then there is a sequence of trees
Ty =1T,1y,...,T, = T, such that

1) treeT;,; is obtained fromI; by a single SPR-operation, and

2) do(T3, T") — do(Ti41,T7) > 0,
forall 0 <:<k-—1.

Theorem 4.1 is a direct consequence of the following lemmialwis an analogue of Lemma 3.2.

Lemma 4.2: Let 7" andT* be two trees with distinct topologies. Then there existsea 1
such thatdspr(7,1T") = 1 anddo(T*,1") < do(T*,T).

Proof: Let B and D denote two disjoint subtrees 6f and7™ such thatB U D is a subtree

of T* but not of T" (which must exist by Lemma 2.1). We consider the following ttxees:
T’ formed by pruningB and regrafting it adjacent t&, and 7" formed by pruningD and
regrafting it adjacent ta@3.

For R € {T,T',T"} we consider a partition of the séi(R) of displayed quartets into four

classeQf, QF, Q%F, QF defined as follows.
QY = {wzlyz € Q(R) : either|{w,z,y, 2} N B| > 1 or |{w,z,y,2} N D| > 1
or {w,z,y,z} N B| =0 ={w,x,y,z} N DI},
QF = {wzlyz € QR) : |{w,z,y,2} N B| =1 and|{w, z,y,2} N D| = 0},
;= {walyz € QR): {w,z,y.2} N B| = 0 and|{w,z,y,2} N D| = 1},
and

Qs = {wzlyz € QR): {w,z,y,2} N Bl =1 = [{w,z,y,2} N D[}

Note that

(2) 0=Q =Q5 .

and

€) Q5 NQT)| < 1QF NQT)| =1QF N Q(T™)].
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For R € {T,T',7"}, a fixed leafz, andj € {0,1,2,3}, let Qf(z) be the subset o®)%
consisting of quartets containing Now fix someb € B. Observe that sinc® is a subtree of
T,

Q1 NQ(T™)| = |BlIQT (b)) N Q(T™)].
Similarly, for a fixed leafd € D, we have
Q2 NQ(T)] = |D[|Q2(d) N Q(T™)].
Moreover, sinceB and D are adjacent irf™* we can conclude that
QT NQT™)| = |BIQT(D) NQ(T™)| and Q3" N Q(T™)| = |DIIQT (b)) NQ(T")|.
Similarly, we can conclude that
QT NQ(T™) = |BIIQF(d) NQ(T)| and|Qy NQ(T™)| = |DI|Q5(d) NQ(T™)].
Hence
QT V") NQ(TY)| - [(QF L Q) NQT)
= [D|(IQT(0) N Q(T™)| - Q3 (d) N Q(T™)]),
and
(QT UQI)NQT)| - QT UQT) N QT
= [B](1Q2(d) N Q(T™)| — QT (b) N Q(T™))).
Since these cannot both be negative, and by (2) and (3)reithe
|Q(T) NQT™)| < |Q(T") NQ(T™)]
or
Q(T) NQ(T™)| < |Q(T") NQ(T™)]

holds. The result now follows. [ |
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V. SPRMOVES AND THE BME TREE LENGTH

In this section we prove the main result of the paper (Thed&)) from which it immediately
follows that the BSPR algorithm is consistent with safe@ima%. Note that for the rest of this
section we assume that we are given a matrof estimated distances oXi, which corresponds
in practise to estimated evolutionary distances betweemehts ofX.

The key tool used in our proof is [6, Equation 10] which we n@walil. First, for any tree?
and for any two disjoint subtred$ andV of R, we define thebalanced average distance ¢/,
between the leaf sets &f and V' recursively as follows. IV and V" only contain a single taxa
u andwv, respectively, then/?,, equals the estimated distangg betweenu andv. Moreover, if
one of U andV, sayV, is of the formV = V; U V; for disjoint subtreed’; and V5 then

1
(4) 55\/ = 55(V1UV2) = 5(5[1]%‘/1 + 5[}}‘/2)'

This definition is motivated by the observation that in bgptal studies a single isolated taxon
often gives as much information as a cluster containingrag¢vemote taxa [24]. Also by placing
less weight on pairs of taxa that are separated by humer@esedaddresses the problem that
long evolutionary distances are poorly estimated (seed8ti& 1.2.7)] and [6] for more details).
Now, let 7' be the tree on the left in Fig. 1(a) arlf be the tree obtained frori" by
interchanging the subtred$ and C of T' (i.e. 7" is the tree depicted in the right of Fig. 1(a)).
Then, with the total tree length as defined by (1) in the intistign, [6, Equation 10] states that

® i)~ I(T") = {1(6%a + 680) ~ (5 + 5F)].

As mentioned in the introduction, this formula allows a gigant improvement of the efficiency
of the BNNI algorithm [6].

Fig. 4. Edge length estimation from average distance betwebtrees using Equation (6).
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Moreover, the balanced framework allows for simple edg@tlerestimators [20] (see also
[7]). Let e be the branch shown in Fig. 4, and assubés composed of two disjoint subtrees
B, B",i.e. B = B'"UB". The estimated length af is then equal to:

N 1
(6) I(e) = 5(—5£fo' + 054+ 0hc — 0ac),

where the same formula holds #f is a leaf by definingy%, 5, = 0.
As a first step towards proving Theorem 5.2 we look at how alsi8fR-operation applied

to a treeT affects the total tree length @f.

Co D Co D
e : —— i e’
o C o
B C1 Co Cr_1Cg Cy Co Cr_1 Ck B

T T’

Fig. 5. The treed" and7’ have SPR-distance Ly, ...,C, B and D denote subtrees daFf (or equivalently of7™”).

Lemma 5.1: Let T and7” be the trees given in Fig. 5, so thAt can be obtained frori’ by
a single SPR operation in which subtrBeis pruned and regrafted. Thé(l') — ((7") =

k
(% - %) (0645 — 05p) + Z {ﬁ@gm —06p) — %(5&@ —0t.5)

Proof: We first provide a reforir:nlulation of (5), which gives the difface in tree length
when performing one NNI operation. Lé&tand7” be the two trees in Fig. 1(a), in whicH is
obtained fromI" by using a single NNI operation, and letand ¢’ be the edges connecting
in T"and 7", respectively. Using (4), (5) and (6) it follows that

A N 1
l(e) —l(e') = =(—0ppn+0pa+ 6£(CUD) - 5£(CUD))

2
1
—5(—5£fo/ +8pp + 5£(AUC) - 5%)(AUC))

1
1(553 +06p — 0he — 0pp)

= I(T)=1(T").
In other words, the difference in tree length is simply th#edénce between the lengths of
edgese and¢'.

March 14, 2008 DRAFT



14

We now show that this property also holds for SPR moves.ILetnd 7’ be the two trees
shown in Fig. 5, and let and ¢ denote the edges connectidg)in 7" and 7", respectively.
Moreover, consider the series of tréBs= Ty, 11,15, ..., T, = 1", whereT; is obtained froml’
by one NNI move exchanging andC', 75 is obtained froml; by one NNI move exchanging
B and (s, ..., T" is obtained fromI},_; by one NNI move exchanging and C}. Let e = ¢;
be the edge connecting in T;. Just as with the NNI move, we have

k-1
Z(T)—Z(T’)ZZZ( Tita) Zlez l(ei1) = I(e) = ().

Using the equation above and Equations (4) and (6), it fcalltiwat

7 7 5BC d 5£C 5£D : 55 C 6DC
/ _  _bbo i [ 0
UT)-UT") = 9 + Z 9i+1 + ok+1 Z i+l 9k+1

i=1 =1

5T’ k 5T’ 5T/ k 5T’ 5T’
. YBD + Z BC; + BCy _ Z DC; _ DCy
2 ' Qk—i+2 2k+1 . Qk—i+2 2k+1 :

=1 =1

Since the topological structure within each labelled sbwf Fig. 5 is the same i and 7",
we haves),, = o7, for all U,V € {B,Cy,...,Cy, D}. The lemma now follows by simplifying
this formula. [ |

We now prove our main result. Suppdsé is a fixed edge-weighted phylogenetic tree ¥n
and, for any edge of 7™, denote the length of in 7™ by [(e). In addition, leté* denote the
distance onX defined by taking shortest paths between the leav@$ @b that, in particularg*
is a binary tree-metric. Recall that we also have a matontaining estimates of the distances
given by d*.

Theorem 5.2: Let T' be a tree having a different topology #*. Let B and D be disjoint
subtrees irf” such thatB, D, and BU D are subtrees df”* but BU D is not a subtree of . Let
T’ be obtained fron¥" by pruning the subtre® and regrafting it adjacent t®. Then provided
that [0, — 0% < € := 2 mineper-) l(e) for all a,b € X, we havel(T) — (T") > 0.

Proof: Note thatB and D are well defined by Lemma 2.1. Lét, ..., C, denote the
subtrees depicted in Fig. 5, as in Lemma 5.1. For notatiomaplgity, for any two disjoint
subtreed/, V' of T we will write &, for &7, and for any subtre& of 7" and leafv ¢ U we
will write 4y, for 55{ }- Let z be the parent vertex of subtreésand D in T*. Let e, be the

edge adjacent ta but notB or D, (see Fig. 6). Then for any subtreein 7™ disjoint with B
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Co D

Zege; [
C; B

Fig. 6. Sketch illustrating the proof of Theorem 5.2

we haved g = >, 5 21§ 44, Wherep,, is the number of edges in the path frano b in 7%,
Likewise dap = Y cp 2! Peddaq. Sinced , 217 =1 =3, 2!7P=¢, Lemma 5.1 yields

(7) Z(T) . Z(T/) _ Z 22_pzb_pzd [ <% — #) (5Cob — 5bd>

beB,deD

k
1 1
- Z |:2k—z'+2 (0c,a — 0c,p) — 9it1 ——=(0cyc; — 5@&;)} ] .
i=1

We now consider a specific palr € B andd € D and examine its contribution to the
summation oveb andd in (7). To this end, we denote the sum of the lengths of the ®dge
the pathP,, betweenr andb in 7 by ¢§,, and similarly define,

Since the path if™ from any taxon inC; to any taxon inB or D must pass through, and

the error in any estimated distance is at mgstve have

5Cd 5Cb 2¢)

Mw

> eeatiu—bos) 2

=1 i=1

1 1 . .
(5 - W) (—0ba) = (5 - W) (=034 — Ogp — €)-

k
11 1
(5 - W) Ocyb = Z [Qwﬁcob] :

2]9 142

and also

In addition
7 7 / _ _ 1 ]_ %
(8) (D)= LT > ) 2% P l<§ — W) (=267, — 3¢)
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Now consider the ternidc,, — dc,c, + dc;p). FOrco € Co, ¢; € C; let z.,., be the vertex inl™
on the path between, and¢; at which the path to the subtrdeu D is attached, (see Fig. 6).
Then

(5001) - 50002- + 56#)) > ( cob 5:00 + 5;&; - 36)

_ * * _ * _ * * * _
- C0Zeqge, Zege; CoZcqe; Zege; Ci CiZege; Zegeg
(6 0 +6 0 zb 6 0¢q 6 0¢i +6 +6 0 36)
_ *
= 207, ., 3€

> 2l(ey) + 285, —

It follows that (6cyp — dcye, + deyp) > 2l(es) + 267, — 3¢, and therefore (8) implies

7 e sl —Dab— 1 1 *
(D)= LT = ) 2% P [(5 —~ W) (—26%, — 3e)

beB,deD

+ Z{QH 2(e.) + 203, —36)H

. 22_%_“{(%_%) 2(z<e$)—36)}

beB,deD
= (1-2"M((es) — 3¢)
> 0.

This completes the proof. [ ]

We next show that our results imply that the safety radiushef BME principle itself is at
least1/3. Recall that BSPR and BNNI are only heuristics for finding eetof minimal tree
length. The following corollary states that the tree thdtieees the minimal tree length is the
correct tree provided that the errors in the distance mainxat most 1/3 the minimum edge
length. In particular, this radius is independent of thehmdtused to find the shortest tree.

Corollary 5.3: Suppose thafd,, — d;,| < € := i min.cp- l(e) for all a,b € X, then the
unique phylogenetic tree that minimises tree length nedatid 6 is 7.

Proof: Suppose for contradiction that there is a tieelistinct from 7™ which minimises
tree length relative t@, i.e. [(T') < [(T") for all treesT’. Thusi(T) is minimal relative tod.
By Lemma 2.1 there exist disjoint subtreBs D in 7" such thatB, D, and BU D are subtrees
of T* but BU D is not a subtree of'. By Theorem 5.2 there exists a tréé distinct from T’
such that/(T) — I(T") > 0, i.e.{(T) > I(T"), contradicting the minimality of(T). m
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VI. DISCUSSION

In this paper, we have shown that the BSPR algorithm is ctengisAs noted in the intro-
duction, SPR moves are more general than NNI moves in thaS&® move can be achieved
through a sequence of NNI moves (Fig. 1). It would be inténgsto know whether BNNI is
also consistent.

In addition to consistency, we have shown that BSPR hasysafdius of at least 1/3. Can this
result be improved or extended to other variants of minimwelwtion (ME) and to different

search algorithms? We make the following observations.

1) As previously mentioned, no distance based method cae &aafety radius greater than
than 1/2 [2].

2) We have observed that our results imply that the safetiysaaf the BME principle itself is
at leastl /3. In particular, this radius is independent of the methodlusdfind the shortest
tree. We believe that the BME safety radius should ji&but a proof remains to be found.

3) Several variants of ME are discussed in the literature amedmplemented within various
computer programs. The most common, first proposed by KidSgatamella-Zonta [18]
and studied in depth by Rzhetsky and Nei [21], estimatesddeg lengths using ordinary
least squares (OLS) and defines the tree length estimate tteeb®um of the edge length
estimates (including the negative ones). In [31], it is shdhat this OLS version of ME
has safety radius at mo$y4 as the number of taxa grows large. Moreover, Gascuel and
Guillemot [16] have recently shown that OLS-ME actually Isagety radius converging to
0 as the number of taxa tends to infinity. These results coxpthen the poor accuracy of
OLS-ME compared to BME, which has been observed in simulat{e.g. [6]). Moreover,
it suggests that our approach to proving the consistench@BSPR algorithm will not
apply to the OLS-ME variant without significant modification

In summary, there are a number of open problems in the coofexsing topological moves

for inferring phylogenetic trees. We believe that this israportant direction for further research,

and that such research should yield fundamental insigtdgte performance of some commonly

used tree inference methods.
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