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Abstract

Many phylogenetic algorithms search the space of possible trees using topological rearrangements

and some optimality criterion. FastME is such an approach that uses thebalanced minimum evolution

(BME) principle, which computer studies have demonstrated to have high accuracy. FastME includes

two variants:balanced subtree prune and regraft (BSPR) and balanced nearest neighbor interchange

(BNNI). These algorithms take as input a distance matrix and a putative phylogenetic tree. The tree is

modified using SPR or NNI operations, respectively, to reduce the BME length relative to the distance

matrix, until a tree with (locally) shortest BME length is found.

Following computer simulations, it has been conjectured that BSPR and BNNI are consistent, i.e.

for an input distance that is a tree-metric, they converge tothe corresponding tree. We prove that the

BSPR algorithm is consistent. Moreover, even if the input contains small errors relative to a tree-metric,

we show that the BSPR algorithm still returns the corresponding tree. Whether BNNI is consistent

remains open.

Index Terms

phylogenetic tree, topological move, subtree prune and regraft (SPR), BSPR algorithm, Nearest

Neighbor Interchange (NNI), BNNI algorithm, balanced minimum evolution principle (BME), tree-

length, quartet-distance, Robinson Foulds distance, consistency, safety radius.

I. INTRODUCTION

Many practical methods for phylogenetic tree inference proceed by repeatedly updating a

proposed tree using topological rearrangements, until a locally optimal tree is found according

to some optimality criterion. Such methods include those implemented in the widely used PAUP∗

[29] and PHYLIP packages [12], and optimality criteria include likelihood and parsimony scores.

The most commonly used topological rearrangements are Subtree Prune and Regraft (SPR),

Nearest Neighbor Interchange (NNI), and Tree Bisection andReconnection (TBR); see [25] for

definitions and properties, and the next section for a brief description of SPR and NNI moves.

Recently, such a local topology search approach was introduced for inferring phylogenetic

trees from distance matrices, based on thebalanced minimum evolution (BME) principle [6].

The optimality criterion used is to minimize Pauplin’s [20]tree-length estimate relative to the

given distance matrix. This approach is implemented in a software called FastME [6]. Two

topological rearrangement possibilities are available inthe latest release of FastME: thebalanced
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subtree prune and regraft (BSPR) algorithm [17] and thebalanced nearest neighbor interchange

(BNNI) algorithm [6]. FastME has been shown [6], [7] to be a fast and accurate method for

tree inference, compared to other popular distance-based methods such as NJ [23], BIONJ [15],

FITCH [13] or WEIGHBOR [3]. Vinh et al. [30] even concluded “We found that BNNI boosts

the topological accuracy of all [distance-based] methods.” Note that the local search range under

NNI operations is a subset of that under SPR operations, so BSPR is expected to be at least as

accurate as BNNI.

A number of studies have been dedicated to the greedy algorithms used to infer an initial

tree for use in a topological search. For example, Atteson’sstudy of NJ [2]. However, to the

best of our knowledge, no one has explored theoretical properties of topological moves in the

context of tree inference. Here we will make a first step towards filling this gap in relation to

the BME framework, and in this way, shed some light on why BSPRand BNNI work so well

in practise. In particular, we consider the following question. Suppose the matrix of pairwise

distances given as input is in fact atree-metric δ∗, i.e. there is a unique phylogenetic treeT ∗

with positive edge lengths forT ∗ so that, for eachx, y ∈ X, the distanceδ∗xy is the length of

the path betweenx andy in T ∗. If we apply the BSPR (BNNI) algorithm starting with distance

δ∗ and any initial phylogenetic treeT , is the algorithm guaranteed to outputT ∗? That is to say,

is the BSPR (BNNI) algorithmconsistent?

Numerous computer simulations have suggested that both theBSPR and BNNI algorithms are

consistent [7]. Here we prove that the BSPR algorithm is indeed consistent. In fact, we show

that even if the inputδ contains some errors, but remains sufficiently close toδ∗, then the BSPR

algorithm will still outputT ∗ (Theorem 5.2). Here, sufficiently close means|δxy−δ∗xy| is less than

1/3 of the smallest edge weight ofT ∗, for all x, y ∈ X, i. e. the BSPR algorithm has asafety

radius of at least 1/3. As a corollary, we show that the BME principleitself has a safety radius of

at least 1/3, which solves an open question [8]. Safety radius analysis was introduced by Atteson

[2], and has become a standard approach to characterize the performance of distance-based, tree

building algorithms (seee.g. [9] for a review). In particular, Atteson showed that no distance

method can have a safety radius larger than 1/2, and that NJ and related greedy algorithms have

optimal 1/2 safety radius.

The rest of the paper is organised as follows. In the following section, we review some

basic definitions concerning phylogenetic trees and balanced minimum evolution, and prove a
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key lemma concerning the structure of pairs of trees. In Sections III and IV, we prove some

results analogous to consistency of the BSPR algorithm for the Robinson-Foulds [22] and the

quartet [11] tree comparison metrics. In particular, in Section III we show that for two distinct

phylogenetic treesT and T ∗ there is a sequence of SPR operations which transformsT into

T ∗ and decreases the Robinson-Foulds distance toT ∗ at every step. In Section IV, we prove

a similar result for the quartet distance. In Section V, we show that the BSPR algorithm is

consistent and has safety radius at least1/3. However, the question remains open for BNNI.

This is discussed along with other open questions in SectionVI.

II. BASICS, DEFINITIONS AND NOTATION

A phylogenetic tree is a binary treeT whose leaves are bijectively labelled by the elements of

some finite setX. The setX usually denotes a set of species or taxa, and the treeT represents the

evolutionary relationships between them. Unless stated otherwise, from now onX will denote

a finite set and all trees considered will be phylogenetic trees onX. Throughout we consider

phylogenetic trees as unweighted, i. e. they do not have intrinsic edge lengths, with the exception

of the true treeT ∗ which does have edge lengths (or weights). Furthermore, capital letters will

be used in all figures to represent subtrees.

The NNI and SPR tree rearrangement operations can be described as follows [25]. Suppose

that T is the tree depicted in Fig. 1 thatA, B, C, C0, . . . , Ck and D are subtrees ofT as

indicated in that figure, and thatT ′ is a tree resulting from one NNI or SPR operation applied

to T . Regarding NNI,T ′ is obtained fromT by deleting some edgee = {u, rB} of T where

rB is the root ofB, suppressing vertexu, and adding an edgee′ betweenrB and a vertex that

subdivides the edge betweenv andD or betweenv to C wherev is the neighbor ofu in T − e

(cf. Fig. 1(a)). Regarding SPR,T ′ is obtained fromT by deleting some edgee = {u, rB} in T

where againrB is the root ofB, suppressingu, and adding an edgee′ betweenrB and a vertex

that subdivides an edge in the component ofT − e that does not containB (cf. Fig. 1(b)). Note

that in both operations the root ofB is unchanged, i.e. the edgese ande′ share the same vertex

of B.

The BSPR (BNNI, respectively) algorithm works as follows. For an input distance matrixδ,

with entriesδxy, x, y ∈ X and some phylogenetic treeT on X, the total tree length l̂(T ) of T
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Fig. 1. A schematic description of an NNI and an SPR operation. See text for details.

(relative toδ) is defined according to the following formula due to Pauplin[20]

(1) l̂(T ) =
∑

x,y∈X

21−pxyδxy,

wherepxy denotes the number of edges in the path fromx to y. Semple and Steel [26] provided

an elegant interpretation of Equation (1) which we present in Fig. 2 for the convenience of the

reader. Then, for all treesT ′ that can be obtained fromT by performing a single SPR (NNI,

b

a

c

d

b

a

d

c

(a) (b)

T T

Fig. 2. The figure depicts two drawings of the same treeT on the setX = {a, b, c, d}. By crossing each edge twice as

indicated, the tree lengtĥl(T ) of the treeT depicted in (a) equates to1
2
(δad + δdc + δcb + δba) and to 1

2
(δac + δcd + δdb + δba)

in (b) whereδxy denotes the distance between any two elements inX. Pauplin’s formula for̂l(T ) is the average of these two

alternative ways to computêl(T ) i.e. l̂(T ) = 1

2
( 1

2
(δad + δdc + δcb + δba) + 1

2
(δac + δcd + δdb + δba)). This interpretation can

be extended to larger trees using circular orderings ofX, see [26].

respectively) operation onT (see Fig. 1), it is checked whetherl̂(T ) − l̂(T ′) > 0. If this holds,

i.e. the total tree length ofT ′ is less than that ofT , the treeT ′ is taken in preference toT and

the process is iterated. This process is repeated until a tree T ′′ is found with the property that

no SPR operation (NNI, respectively) onT ′′ yields a tree having shorter total tree length. Note

that (i) if δ is a tree metric andT an edge weighted phylogenetic tree that realizesδ then l̂(T )

is the sum of the branch lengths ofT [26], (ii) the local search range under NNI operations is

a subset of that under SPR, and (iii) the checkl̂(T ) − l̂(T ′) > 0 can be performed efficiently.
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Indeed in both BSPR and BNNI it takes timeO(|X|2) to evaluate all moves and update all data

structures corresponding to the new current tree, see [6], [17] for details.

A split S = {A, B} on a taxa setX is a bipartition ofX into two non-empty disjoint subsets

A, B ⊆ X whose union isX. For ease of notation, we will writeA|B or, equivalentlyB|A for

the split{A, B}. In general, a collection of splits ofX is called asplit system of X.

Suppose thatT is a tree onX. Then a split systemS(T ) can be associated toT in the

following way. Consider some edgee ∈ E(T ). Then deletinge induces a splitSe = A|B of the

leaf setL(T ) = X whereA is the leaf-label set of one of the resulting connected components

and B is the leaf-label set of the other. The collection of splits of X obtained by deleting, in

turn, every edge inT is the split systemS(T ).

A subtree T ′ of T is any tree that can be obtained fromT by removing an edge ofT and

picking of the connected components in the resulting graph1. Note thatT ′ can always be thought

of as a tree rooted at the unique vertex ine ∩ V (T ′), or as unrooted by suppressing this degree

2 vertex. For convenience, we will always denote the root of asubtreeT ′ of T by rT ′. Note

also that every leaf ofT is a subtree ofT .

Given two subtreesA and B of T , we call A and B disjoint if V (A) ∩ V (B) = ∅. If A

and B are disjoint and there exist some vertexx ∈ V (T ) such thaterA
= {x, rA}, erB

=

{x, rB} ∈ E(T ), then we denote the subtree ofT with vertex setV (A)∪ V (B)∪ {x} and edge

setE(A) ∪ E(B) ∪ {erA
, erB

} by A ∪ B.

We conclude this section with a lemma concerning trees that will be helpful throughout the

paper. Given a treeT , we call a pair of leavesa, b in T which are incident with the same vertex

a cherry of T , and denote the set of cherries ofT by C(T ).

Lemma 2.1: SupposeT andT ∗ are two trees with distinct topologies. Then there exist disjoint

subtreesB, D in T such thatB, D, andB ∪ D are subtrees ofT ∗ but B ∪ D is not a subtree

of T .

Proof: SupposeT andT ∗ are two trees with distinct topologies. To prove the lemma, we

distinguish between the cases that (a) there exist elementsx, y ∈ X such thatx and y form a

cherry inT ∗ but not inT , and (b)C(T ∗) ⊆ C(T ).

Suppose that (a) holds, i.e., there existx, y ∈ X such thatx and y form a cherry inT ∗ but

1Note that this definition of a subtree is more restrictive than the one that is commonly used, as described in e.g. [25].
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not in T . Then takingB to be the subtreex andD to be the subtreey, the statement holds.

Now suppose (b) holds, i.e.,C(T ∗) ⊆ C(T ). Associate toT and T ∗ new treesT and T ∗,

respectively, by contracting every cherry, with labelsa and b say, ofC(T ∗) in both T andT ∗,

into a leaf which we label{a, b}. Clearly, sinceT and T ∗ have distinct topologies,T and T ∗

have distinct topologies.

Now, defineX to be the leaf-label set ofT . If there existx, y ∈ X such thatx and y form

a cherry inT ∗ but not in T , then we define the treesB and D as described in case (a) (with

X, T , andT ∗ replaced byX, T and T ∗, respectively). The required subtreesB and D of T

andT ∗ can then be obtained fromB andD by expanding every leaf labelled by a subsetA of

X of size 2, to a cherry with label setA. If, on the other hand,C(T ∗) ⊆ C(T ), then we iterate

the contraction process until we have found two binary leaf labelled treesT andT ∗ for which

there is a cherry inC(T ∗) which is not inC(T ). From this cherry we obtainB andD, and the

required subtreesB andD of T andT ∗ can then be obtained by repeatedly applying the above

described expansion process.

III. ROBINSON-FOULDS DISTANCE

TheRobinson-Foulds distance [22] is tree comparison metric that is commonly used to measure

dissimilarity between phylogenetic trees on the same leaf set. For two treesT1 andT2 on X, it

is defined by

dRF (T1, T2) = |S(T1) − S(T2)| + |S(T2) − S(T1)|.

Note thatT1 andT2 have the sametopology if and only if dRF (T1, T2) = 0.

In this section, we prove the following result.

Theorem 3.1: If T ∗ is a fixed tree andT is any other tree, then there is a sequence of trees

T0 = T, T1, . . . , Tk = T ∗, such that

1) treeTi+1 is obtained fromTi by a single SPR-operation, and

2) dRF (Ti, T
∗) − dRF (Ti+1, T

∗) > 0,

for all 0 ≤ i ≤ k − 1.

This result is a direct consequence of the following lemma. For two treesT1 andT2 the SPR-

distance dSPR(T1, T2) betweenT1 andT2 is the minimal number of SPR-operations needed to

transform the topology ofT1 into that one ofT2.
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Lemma 3.2: SupposeT andT ∗ are two trees with distinct topologies. Then there exists a tree

T ′ such thatdSPR(T, T ′) = 1 anddRF (T ∗, T ′) < dRF (T ∗, T ).

Proof: SupposeT andT ∗ are two trees with distinct topology. Then, by Lemma 2.1, there

exist disjoint subtreesB, D in T such thatB andD are subtrees ofT ∗ and the subtreeB ∪D

is also a subtree ofT ∗ but not of T . Consider the treeT ′ obtained fromT by pruning the

subtreeB and regrafting it adjacent toD (see Fig. 3) giving rise to a new vertexp. Clearly,

dSPR(T, T ′) = 1.

T

DB C1 C2 Ck−1

C0 Ck

. . .

a
b

B

T ′

D

C0

C1 C2

Ck

Ck−1

. . .

s

pe

Fig. 3. The treesT andT ′ considered in the proof of Lemma 3.2.

To see that the inequality stated in the lemma holds, we distinguish between two types of

splits displayed byT . For R denoting eitherT or T ′, let Sb(R) denote the set of splits inS(R)

which correspond to the edges in the path froma to b in caseR = T and the edges in the

path froms to p in caseR = T ′. For the convenience of the reader we indicate these edges in

bold (see Fig. 3). PutSnb(R) = S(R)−Sb(R). Note that the latter set also contains those splits

that correspond to an edge in the subtreesB, D or in one of the subtrees ofR indicated by

C0, . . . , Ck, k ≥ 0, in Fig. 3.

Now suppose thatS is a split onX. Then, by construction,S ∈ Snb(T ) if and only if

S ∈ Snb(T
′). Let S1 = L(B)|X − L(B) and S2 = L(D)|X − L(D). Note thatS1, S2 ∈

Snb(T )∩Snb(T
′)∩S(T ∗). Let Se denote the split inS(T ′) that corresponds to the edgee ∈ E(T ′)

as specified in Fig. 3. Observe that

1) Snb(T ) = Snb(T
′),

2) Sb(T ) ∩ S(T ∗) = ∅, since the only splits ofT ∗ which separateB andD areS1 andS2,

3) Sb(T
′) ∩ S(T ∗) 6= ∅ sinceSe is a split ofT ′ andT ∗.
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Hence it follows that

|S(T ∗) − S(T )| = |S(T ∗) − Snb(T ) − Sb(T )|

= |S(T ∗) − Snb(T
′) − Sb(T )|

> |S(T ∗) − Snb(T
′) − Sb(T

′)|

= |S(T ∗) − S(T ′)|.

Since the trees are binary, they all have the same number of internal edges and hence splits.

Thus

|S(T ) − S(T ∗)| = |S(T ∗) − S(T )| > |S(T ∗) − S(T ′)| = |S(T ′) − S(T ∗)|.

The inequality stated in the lemma follows.

IV. QUARTET DISTANCE

In this section we prove the following analogous result to Theorem 3.1 in which we replace

the Robinson-Foulds distancedRF by the quartet distancedQ, another popular tree-comparison

metric [5], [11], [19], [27].

We start with recalling the definition of the quartet distance. Let Q(X) denote the set of all

quartets of X, that is splitsA|B of subsets ofX of size 4 with|A| = 2 = |B|. For brevity, we

write ab|cd rather than{a, b}|{c, d} with {a, b, c, d} ⊆ X. For a treeT and a quartetab|cd, we

say thatT displays ab|cd if there exists some splitA|B ∈ S(T ) such thata, b ∈ A andc, d ∈ B.

Let Q(T ) denote the set of all quartets displayed by a treeT . Then for two treesT1 andT2 the

quartet distance dQ(T1, T2) betweenT1 andT2 is defined as

dQ(T1, T2) = |Q(T1) − Q(T2)| + |Q(T2) − Q(T1)|.

In contrast to the Robinson-Foulds distance, the quartet distance between any treeT and

the optimal treeT ∗ can be directly estimated from the data. For example, the popular Quartet

Puzzling algorithm [28], first estimates all quartets usingmaximum-likelihood based on the

sequences corresponding to each of the taxa, and then buildsa tree in a greedy way, trying

to maximize the number of quartets being displayed by the inferred tree. Theorem 4.1 is thus

related to the consistency of SPR-moves when the input is given in terms of quartets. In particular,

assuming that these quartets exactly correspond to a phylogenetic treeT ∗, it shows that we are
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able to recoverT ∗ starting from any treeT by simply applying SPR moves and using the quartet

distance.

Theorem 4.1: If T ∗ is a fixed tree andT is any other tree, then there is a sequence of trees

T0 = T, T1, . . . , Tk = T ∗, such that

1) treeTi+1 is obtained fromTi by a single SPR-operation, and

2) dQ(Ti, T
∗) − dQ(Ti+1, T

∗) > 0,

for all 0 ≤ i ≤ k − 1.

Theorem 4.1 is a direct consequence of the following lemma which is an analogue of Lemma 3.2.

Lemma 4.2: Let T andT ∗ be two trees with distinct topologies. Then there exists a treeT ′

such thatdSPR(T, T ′) = 1 anddQ(T ∗, T ′) < dQ(T ∗, T ).

Proof: Let B andD denote two disjoint subtrees ofT andT ∗ such thatB∪D is a subtree

of T ∗ but not of T (which must exist by Lemma 2.1). We consider the following two trees:

T ′ formed by pruningB and regrafting it adjacent toD, and T ′′ formed by pruningD and

regrafting it adjacent toB.

For R ∈ {T, T ′, T ′′} we consider a partition of the setQ(R) of displayed quartets into four

classesQR
0 , QR

1 , QR
2 , QR

3 defined as follows.

QR
0 = {wx|yz ∈ Q(R) : either |{w, x, y, z} ∩ B| > 1 or |{w, x, y, z} ∩ D| > 1

or |{w, x, y, z} ∩ B| = 0 = {w, x, y, z} ∩ D|},

QR
1 = {wx|yz ∈ Q(R) : |{w, x, y, z} ∩ B| = 1 and |{w, x, y, z} ∩ D| = 0},

QR
2 = {wx|yz ∈ Q(R) : |{w, x, y, z} ∩ B| = 0 and |{w, x, y, z} ∩ D| = 1},

and

QR
3 = {wx|yz ∈ Q(R) : |{w, x, y, z} ∩ B| = 1 = |{w, x, y, z} ∩ D|}

Note that

QT
0 = QT ′

0 = QT ′′

0 ,(2)

and

|QT
3 ∩ Q(T ∗)| < |QT ′

3 ∩ Q(T ∗)| = |QT ′′

3 ∩ Q(T ∗)|.(3)

March 14, 2008 DRAFT



11

For R ∈ {T, T ′, T ′′}, a fixed leafx, and j ∈ {0, 1, 2, 3}, let QR
j (x) be the subset ofQR

j

consisting of quartets containingx. Now fix someb ∈ B. Observe that sinceB is a subtree of

T ∗,

|QT
1 ∩ Q(T ∗)| = |B||QT

1 (b) ∩ Q(T ∗)|.

Similarly, for a fixed leafd ∈ D, we have

|QT
2 ∩ Q(T ∗)| = |D||QT

2 (d) ∩ Q(T ∗)|.

Moreover, sinceB andD are adjacent inT ∗ we can conclude that

|QT ′′

1 ∩ Q(T ∗)| = |B||QT
1 (b) ∩ Q(T ∗)| and |QT ′′

2 ∩ Q(T ∗)| = |D||QT
1 (b) ∩ Q(T ∗)|.

Similarly, we can conclude that

|QT ′

1 ∩ Q(T ∗)| = |B||QT
2 (d) ∩ Q(T ∗)| and |QT ′

2 ∩ Q(T ∗)| = |D||QT
2 (d) ∩ Q(T ∗)|.

Hence

|(QT ′′

1 ∪ QT ′′

2 ) ∩ Q(T ∗)| − |(QT
1 ∪ QT

2 ) ∩ Q(T ∗)|

= |D|(|QT
1 (b) ∩ Q(T ∗)| − |QT

2 (d) ∩ Q(T ∗)|),

and

|(QT ′

1 ∪ QT ′

2 ) ∩ Q(T ∗)| − |(QT
1 ∪ QT

2 ) ∩ Q(T ∗)|

= |B|(|QT
2 (d) ∩ Q(T ∗)| − |QT

1 (b) ∩ Q(T ∗)|).

Since these cannot both be negative, and by (2) and (3), either

|Q(T ) ∩ Q(T ∗)| < |Q(T ′) ∩ Q(T ∗)|

or

|Q(T ) ∩ Q(T ∗)| < |Q(T ′′) ∩ Q(T ∗)|

holds. The result now follows.
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V. SPRMOVES AND THE BME TREE LENGTH

In this section we prove the main result of the paper (Theorem5.2), from which it immediately

follows that the BSPR algorithm is consistent with safety radius 1
3
. Note that for the rest of this

section we assume that we are given a matrixδ of estimated distances onX, which corresponds

in practise to estimated evolutionary distances between elements ofX.

The key tool used in our proof is [6, Equation 10] which we now recall. First, for any treeR

and for any two disjoint subtreesU andV of R, we define thebalanced average distance δR
UV

between the leaf sets ofU andV recursively as follows. IfU andV only contain a single taxa

u andv, respectively, thenδR
UV equals the estimated distanceδuv betweenu andv. Moreover, if

one ofU andV , sayV , is of the formV = V1 ∪ V2 for disjoint subtreesV1 andV2 then

δR
UV = δR

U(V1∪V2) =
1

2
(δR

UV1
+ δR

UV2
).(4)

This definition is motivated by the observation that in biological studies a single isolated taxon

often gives as much information as a cluster containing several remote taxa [24]. Also by placing

less weight on pairs of taxa that are separated by numerous edges it addresses the problem that

long evolutionary distances are poorly estimated (see [8, Section 1.2.7)] and [6] for more details).

Now, let T be the tree on the left in Fig. 1(a) andT ′ be the tree obtained fromT by

interchanging the subtreesB andC of T (i.e. T ′ is the tree depicted in the right of Fig. 1(a)).

Then, with the total tree length as defined by (1) in the introduction, [6, Equation 10] states that

l̂(T ) − l̂(T ′) =
1

4
[(δT

AB + δT
CD) − (δT

AC + δT
BD)].(5)

As mentioned in the introduction, this formula allows a significant improvement of the efficiency

of the BNNI algorithm [6].

C

A

δT
BC

δT
AC

δT
BA

B

B′′

B′

δT
B′B′′

e

Fig. 4. Edge length estimation from average distance between subtrees using Equation (6).
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Moreover, the balanced framework allows for simple edge length estimators [20] (see also

[7]). Let e be the branch shown in Fig. 4, and assumeB is composed of two disjoint subtrees

B′, B′′, i.e. B = B′ ∪ B′′. The estimated length ofe is then equal to:

l̂(e) =
1

2
(−δT

B′B′′ + δT
BA + δT

BC − δT
AC),(6)

where the same formula holds ifB is a leaf by definingδT
B′B′′ = 0.

As a first step towards proving Theorem 5.2 we look at how a single SPR-operation applied

to a treeT affects the total tree length ofT .

C0

C1 C2 Ck

D

B

T T ′

C0

C1 C2 Ck

D

B

. . . . . .
Ck−1 Ck−1

e′e

Fig. 5. The treesT andT ′ have SPR-distance 1;C0, . . . , Ck, B andD denote subtrees ofT (or equivalently ofT ′).

Lemma 5.1: Let T andT ′ be the trees given in Fig. 5, so thatT ′ can be obtained fromT by

a single SPR operation in which subtreeB is pruned and regrafted. Then̂l(T ) − l̂(T ′) =

(

1

2
−

1

2k+1

)

(

δT
C0B − δT

BD

)

+

k
∑

i=1

[

1

2k−i+2
(δT

CiD
− δT

CiB
) −

1

2i+1
(δT

C0Ci
− δT

CiB
)

]

.

Proof: We first provide a reformulation of (5), which gives the difference in tree length

when performing one NNI operation. LetT andT ′ be the two trees in Fig. 1(a), in whichT ′ is

obtained fromT by using a single NNI operation, and lete and e′ be the edges connectingB

in T andT ′, respectively. Using (4), (5) and (6) it follows that

l̂(e) − l̂(e′) =
1

2
(−δT

B′B′′ + δT
BA + δT

B(C∪D) − δT
A(C∪D))

−
1

2
(−δT

B′B′′ + δT
BD + δT

B(A∪C) − δT
D(A∪C))

=
1

4
(δT

AB + δT
CD − δT

AC − δT
BD)

= l̂(T ) − l̂(T ′).

In other words, the difference in tree length is simply the difference between the lengths of

edgese ande′.
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We now show that this property also holds for SPR moves. LetT and T ′ be the two trees

shown in Fig. 5, and lete and e′ denote the edges connectingB in T and T ′, respectively.

Moreover, consider the series of treesT = T0, T1, T2, . . . , Tk = T ′, whereT1 is obtained fromT

by one NNI move exchangingB andC1, T2 is obtained fromT1 by one NNI move exchanging

B andC2, . . ., T ′ is obtained fromTk−1 by one NNI move exchangingB andCk. Let e = ei

be the edge connectingB in Ti. Just as with the NNI move, we have

l̂(T ) − l̂(T ′) =

k−1
∑

i=0

l̂(Ti) − l̂(Ti+1) =

k−1
∑

i=0

l̂(ei) − l̂(ei+1) = l̂(e) − l̂(e′).

Using the equation above and Equations (4) and (6), it follows that

l̂(T ) − l̂(T ′) =
δT
BC0

2
+

k
∑

i=1

δT
BCi

2i+1
+

δT
BD

2k+1
−

k
∑

i=1

δT
C0Ci

2i+1
−

δT
DC0

2k+1

−

(

δT ′

BD

2
+

k
∑

i=1

δT ′

BCi

2k−i+2
+

δT ′

BC0

2k+1
−

k
∑

i=1

δT ′

DCi

2k−i+2
−

δT ′

DC0

2k+1

)

.

Since the topological structure within each labelled subtree of Fig. 5 is the same inT andT ′,

we haveδT
UV = δT ′

UV for all U, V ∈ {B, C0, . . . , Ck, D}. The lemma now follows by simplifying

this formula.

We now prove our main result. SupposeT ∗ is a fixed edge-weighted phylogenetic tree onX

and, for any edgee of T ∗, denote the length ofe in T ∗ by l(e). In addition, letδ∗ denote the

distance onX defined by taking shortest paths between the leaves ofT ∗ so that, in particular,δ∗

is a binary tree-metric. Recall that we also have a matrixδ containing estimates of the distances

given byδ∗.

Theorem 5.2: Let T be a tree having a different topology toT ∗. Let B and D be disjoint

subtrees inT such thatB, D, andB∪D are subtrees ofT ∗ but B∪D is not a subtree ofT . Let

T ′ be obtained fromT by pruning the subtreeB and regrafting it adjacent toD. Then provided

that |δab − δ∗ab| < ǫ := 1
3
mine∈E(T ∗) l(e) for all a, b ∈ X, we havel̂(T ) − l̂(T ′) > 0.

Proof: Note thatB and D are well defined by Lemma 2.1. LetC0, . . . , Ck denote the

subtrees depicted in Fig. 5, as in Lemma 5.1. For notational simplicity, for any two disjoint

subtreesU, V of T we will write δUV for δT
UV , and for any subtreeU of T and leafv 6∈ U we

will write δUv for δT
U{v}. Let x be the parent vertex of subtreesB and D in T ∗. Let ex be the

edge adjacent tox but notB or D, (see Fig. 6). Then for any subtreeA in T ∗ disjoint with B
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c0

ci

D

B

ex
zc0ci

x

Fig. 6. Sketch illustrating the proof of Theorem 5.2

we haveδAB =
∑

b∈B 21−pxbδAb, wherepxb is the number of edges in the path fromx to b in T ∗.

Likewise δAD =
∑

d∈D 21−pxdδAd. Since
∑

b∈B 21−pxb = 1 =
∑

d∈D 21−pxd, Lemma 5.1 yields

l̂(T ) − l̂(T ′) =
∑

b∈B,d∈D

22−pxb−pxd

[

(

1

2
−

1

2k+1

)

(δC0b − δbd)(7)

+
k
∑

i=1

[

1

2k−i+2
(δCid − δCib) −

1

2i+1
(δC0Ci

− δCib)

]

]

.

We now consider a specific pairb ∈ B and d ∈ D and examine its contribution to the

summation overb andd in (7). To this end, we denote the sum of the lengths of the edges in

the pathPxb betweenx and b in T ∗ by δ∗xb, and similarly defineδ∗xd.

Since the path inT ∗ from any taxon inCi to any taxon inB or D must pass throughx, and

the error in any estimated distance is at mostǫ, we have

k
∑

i=1

1

2k−i+2
(δCid − δCib) ≥

k
∑

i=1

1

2k−i+2
(δ∗Cid

− δ∗Cib
− 2ǫ)

=

(

1

2
−

1

2k+1

)

(δ∗xd − δ∗xb − 2ǫ).

and also
(

1

2
−

1

2k+1

)

(−δbd) ≥

(

1

2
−

1

2k+1

)

(−δ∗xd − δ∗xb − ǫ).

In addition
(

1

2
−

1

2k+1

)

δC0b =

k
∑

i=1

[

1

2i+1
δC0b

]

.

Hence, (7) implies

l̂(T ) − l̂(T ′) ≥
∑

b∈B,d∈D

22−pxb−pxd

[(

1

2
−

1

2k+1

)

(−2δ∗xb − 3ǫ)(8)

+

k
∑

i=1

[

1

2i+1
(δC0b − δC0Ci

+ δCib)

]

]

.
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Now consider the term(δC0b − δC0Ci
+ δCib). For c0 ∈ C0, ci ∈ Ci let zc0ci

be the vertex inT ∗

on the path betweenc0 and ci at which the path to the subtreeB ∪ D is attached, (see Fig. 6).

Then

(δc0b − δc0ci
+ δcib) ≥ (δ∗c0b − δ∗c0ci

+ δ∗cib
− 3ǫ)

= (δ∗c0zc0ci
+ δ∗zc0ci

b − δ∗c0zc0ci
− δ∗zc0ci

ci
+ δ∗cizc0ci

+ δ∗zc0ci
b − 3ǫ)

= 2δ∗zc0ci
b − 3ǫ

≥ 2l(ex) + 2δ∗xb − 3ǫ.

It follows that (δC0b − δC0Ci
+ δCib) ≥ 2l(ex) + 2δ∗xb − 3ǫ, and therefore (8) implies

l̂(T ) − l̂(T ′) ≥
∑

b∈B,d∈D

22−pxb−pxd

[(

1

2
−

1

2k+1

)

(−2δ∗xb − 3ǫ)

+

k
∑

i=1

[

1

2i+1
(2l(ex) + 2δ∗xb − 3ǫ)

]

]

=
∑

b∈B,d∈D

22−pxb−pxd

[(

1

2
−

1

2k+1

)

2(l(ex) − 3ǫ)

]

= (1 − 2−k)(l(ex) − 3ǫ)

> 0.

This completes the proof.

We next show that our results imply that the safety radius of the BME principle itself is at

least1/3. Recall that BSPR and BNNI are only heuristics for finding a tree of minimal tree

length. The following corollary states that the tree that achieves the minimal tree length is the

correct tree provided that the errors in the distance matrixare at most 1/3 the minimum edge

length. In particular, this radius is independent of the method used to find the shortest tree.

Corollary 5.3: Suppose that|δab − δ∗ab| < ǫ := 1
3
mine∈E(T ∗) l(e) for all a, b ∈ X, then the

unique phylogenetic tree that minimises tree length relative to δ is T ∗.

Proof: Suppose for contradiction that there is a treeT distinct fromT ∗ which minimises

tree length relative toδ, i.e. l̂(T ) ≤ l̂(T ′) for all treesT ′. Thus l̂(T ) is minimal relative toδ.

By Lemma 2.1 there exist disjoint subtreesB, D in T such thatB, D, andB ∪D are subtrees

of T ∗ but B ∪ D is not a subtree ofT . By Theorem 5.2 there exists a treeT ′ distinct fromT

such that̂l(T ) − l̂(T ′) > 0, i.e. l̂(T ) > l̂(T ′), contradicting the minimality of̂l(T ).
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VI. D ISCUSSION

In this paper, we have shown that the BSPR algorithm is consistent. As noted in the intro-

duction, SPR moves are more general than NNI moves in that anySPR move can be achieved

through a sequence of NNI moves (Fig. 1). It would be interesting to know whether BNNI is

also consistent.

In addition to consistency, we have shown that BSPR has safety radius of at least 1/3. Can this

result be improved or extended to other variants of minimum evolution (ME) and to different

search algorithms? We make the following observations.

1) As previously mentioned, no distance based method can have a safety radius greater than

than 1/2 [2].

2) We have observed that our results imply that the safety radius of the BME principle itself is

at least1/3. In particular, this radius is independent of the method used to find the shortest

tree. We believe that the BME safety radius should be1/2 but a proof remains to be found.

3) Several variants of ME are discussed in the literature andare implemented within various

computer programs. The most common, first proposed by Kid andSgaramella-Zonta [18]

and studied in depth by Rzhetsky and Nei [21], estimates treeedge lengths using ordinary

least squares (OLS) and defines the tree length estimate to bethe sum of the edge length

estimates (including the negative ones). In [31], it is shown that this OLS version of ME

has safety radius at most1/4 as the number of taxa grows large. Moreover, Gascuel and

Guillemot [16] have recently shown that OLS-ME actually hassafety radius converging to

0 as the number of taxa tends to infinity. These results could explain the poor accuracy of

OLS-ME compared to BME, which has been observed in simulations (e.g. [6]). Moreover,

it suggests that our approach to proving the consistency of the BSPR algorithm will not

apply to the OLS-ME variant without significant modification.

In summary, there are a number of open problems in the contextof using topological moves

for inferring phylogenetic trees. We believe that this is animportant direction for further research,

and that such research should yield fundamental insights into the performance of some commonly

used tree inference methods.
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