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A Site- and Time-Heterogeneous Model of Amino Acid Replacement

Samuel Blanquart and Nicolas Lartillot
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS-Université de Montpellier 2,
Montpellier, France

We combined the category (CAT) mixture model (Lartillot N, Philippe H. 2004) and the nonstationary break point (BP)
model (Blanquart S, Lartillot N. 2006) into a new model, CAT–BP, accounting for variations of the evolutionary process
both along the sequence and across lineages. As in CAT, the model implements a mixture of distinct Markovian
processes of substitution distributed among sites, thus accommodating site-specific selective constraints induced by
protein structure and function. Furthermore, as in BP, these processes are nonstationary, and their equilibrium
frequencies are allowed to change along lineages in a correlated way, through discrete shifts in global amino acid
composition distributed along the phylogenetic tree. We implemented the CAT–BP model in a Bayesian Markov Chain
Monte Carlo framework and compared its predictions with those of 3 simpler models, BP, CAT, and the site- and time-
homogeneous general time–reversible (GTR) model, on a concatenation of 4 mitochondrial proteins of 20 arthropod
species. In contrast to GTR, BP, and CAT, which all display a phylogenetic reconstruction artifact positioning the bees
Apis mellifera and Melipona bicolor among chelicerates, the CAT–BP model is able to recover the monophyly of insects.
Using posterior predictive tests, we further show that the CAT–BP combination yields better anticipations of site- and
taxon-specific amino acid frequencies and that it better accounts for the homoplasies that are responsible for the artifact.
Altogether, our results show that the joint modeling of heterogeneities across sites and along time results in a synergistic
improvement of the phylogenetic inference, indicating that it is essential to disentangle the combined effects of both
sources of heterogeneity, in order to overcome systematic errors in protein phylogenetic analyses.

Introduction

The ‘‘pruning’’ algorithm (Felsenstein 1981) was orig-
inally devised for data likelihood computation under the so-
called F81 Markovian substitution process. It opened the
way for probabilistic approaches in phylogenetics, first using
maximum likelihood (ML), and subsequently using Bayes-
ian analysis based on Markov Chain Monte Carlo (MCMC)
sampling. Those full likelihood methods yield estimations of
parameters, such as the topology, the branch lengths, or the
rates of substitution, based on the observed data and on a set
of assumptions formalized into a probabilistic model.

The original probabilistic evolutionary model was
much simplified, essentially for practical reasons. In partic-
ular, strong assumptions were made concerning 1) the con-
stancy of the overall rate of substitution across sites as well as
along lineages, 2) the independence between positions along
the sequence, and 3) the use of a single Markovian substitu-
tion process applied along all lineages as well as over all
sites. Following this simplified but seminal version, many
models relaxing those assumptions have been proposed.

The rate constancy assumption was relaxed by associ-
ating distinct gamma-distributed rates of substitution to each
site (Yang 1994) and, furthermore, by allowing them to vary
along lineages (Tuffley and Steel 1998; Huelsenbeck 1999;
Galtier 2001). Site independence was partially dealt with by
accounting for structural properties of biochemical sequences,
for example, concerning the Watson–Crick pairs in RNA
stems (Jow et al. 2002; Hudelot et al. 2003; Gibson et al.
2005), the codon positions in DNA genes (Goldman and
Yang 1994), or the physical constraints implied by amino
acid neighborhood in protein folding (Robinson et al.
2003; Rodrigue et al. 2005). We are in this work more con-

cerned with the third assumption, especially in the case of
protein sequences. This assumption, suggesting that a single
Markovian process of substitution may be applied for all sites
and at all times, implies that the equilibrium frequencies (i.e.,
the stationary probabilities) of the 20 amino acids are the
same at all points along the sequence and along the tree. It
thus implies that all taxa and all sites should display homo-
geneous state compositions, up to stochastic fluctuations. Yet,
biological sequences do not display that property.

First, it has been shown that taxa may display hetero-
geneous state compositions or compositional biases. This
concerns nucleotide (Jukes and Bhushan 1986; Montero
et al. 1990; Bernardi 1993) as well as amino acid (Foster
et al. 1997) sequence contents and goes against the stationary
assumption. It has furthermore been shown that under homo-
geneous models, unrelated sequences sharing similar compo-
sitions may attract each other, yielding erroneous clustering
in the phylogenies subsequently obtained (Lockhart et al.
1992; Lake 1994; Lockhart et al. 1994; Galtier and Gouy
1995; Yang and Roberts 1995; Foster and Hickey 1999;
Mooers and Holmes 2000; Foster 2004). To address this
problem, likelihood-based models assuming that changes
in the substitution process equilibrium frequencies may oc-
cur along lineages have been proposed (Yang and Roberts
1995; Galtier and Gouy 1998; Foster 2004; Blanquart and
Lartillot 2006; Boussau and Gouy 2006; Gowri-Shankar
and Rattray 2007). Relaxing the stationary assumption,
those models are denoted as nonstationary (although they
are also nonhomogeneous along time). Importantly, they
alleviate attraction artifacts due to similar compositional
biases.

Concerning the homogeneity assumption along the se-
quence, it is readily observed that a given site of a protein
alignment does not display all possible amino acids, but
only a particular subset, generally characterized by similar
biochemical properties (e.g., small hydrophobic and ali-
phatic amino acids I, V, and L, or polar and positively
charged ones, K and R). This was in a first step accounted
for using more general substitution processes than F81.
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Those more general processes allow for higher exchange
rates between biochemically equivalent amino acids, en-
coded using general time–reversible (GTR) matrices, either
set to empirical values, such as JTT (Jones et al. 1992) or
WAG (Whelan and Goldman 2001), or considered as free
parameters in the so-called GTR model (Lanave et al. 1984;
Tavaré 1986; Barry and Hartigan 1987; Rodriguez et al.
1990). They have been extensively used and were shown
efficient for improving model fitness and phylogenetic
accuracy. However, they appear not to be sufficient to ac-
curately catch the observed site-specific biochemical pref-
erences (Lartillot and Philippe 2004). In particular, they
were shown to inaccurately handle saturation effects due
to multiple substitutions among highly exchangeable amino
acids (Lartillot et al. 2007), which in certain cases may
be responsible for long branch attraction (LBA) artifacts
(Felsenstein 1978). In contrast, site-specific saturation ef-
fects were shown to be better handled by models explicitly
encoding the variations of the biochemical properties along
the sequences into the stationary probabilities of the amino
acid replacement process, using site-specific (Bruno 1996;
Halpern and Bruno 1998) or mixture (Dimmic et al. 2000;
Lartillot and Philippe 2004) models. Those kinds of models
encode the site-specific biochemical constraints more pre-
cisely and importantly were shown to alleviate LBA arti-
facts (Lartillot et al. 2007).

Altogether, those models outperform the standard
time- and sequence-homogeneous model and improve
the phylogenetic reconstruction accuracy. However, now
that it has been shown that proteins indeed display varia-
tions of their evolutionary behavior both across lineages
and along their sequence, it is also obvious that, in general,
they will display these 2 properties simultaneously. Yet, un-
til now, these 2 features have never been considered jointly
in the frame of 1 single time- and sequence-heterogeneous
model. As we had previously proposed 2 models, handling
site specificities (Lartillot and Philippe 2004) and nonstation-
ary sequence evolution (Blanquart and Lartillot 2006), respec-
tively, named CAT and BP, we now propose to combine
them into 1 single nonstationary mixture model which we
called CAT–BP.

In the CAT model, sites are clustered into K catego-
ries characterized by their own processes of amino acid
replacement. The K processes are simple F81 processes,
thus entirely defined by a vector of equilibrium frequen-
cies over the 20 amino acids. These processes are applied
along all branches of the tree and are therefore assumed to
be stationary and homogeneous. The resulting model may
consequently be affected by artifacts induced by similar
compositional biases shared between unrelated taxa. As
an illustration, let us consider the 2 positively charged
amino acids Lysine and Arginine, K and R, which are re-
spectively encoded in the standard genetic code by codons
K 5 {AAA, AAG} and R 5 {CGT, CGC, CGA, CGG,
AGA, AGG}. In case of a global drift of a genome towards
AT richness, a protein site functionally constrained to ac-
cept only K or R will more likely display a state K (Foster
et al. 1997; Singer and Hickey 2000). Whatever the GC-
content, on the other hand, such a site is likely to remain
under the same selective constraint throughout the tree, that
is, to always accept exclusively K or R. This suggests that

the site-specific substitution processes underlying the CAT
mixture model should be modulated along lineages, so as to
accommodate compositional shifts, while keeping a certain
biochemical identity over the whole tree. In addition, on
a given lineage, a global modulation of the amino acid con-
tent has to be applied simultaneously and in a coherent fash-
ion to all K substitution processes defined by the mixture.
More specifically, in the latter example of a globally in-
creasing content of K (and a concomitant decrease of R)
induced by AT richness, all categories of the mixture have
to adapt in a correlated way their stationary probabilities for
states K and R. Finally, compositional biases at the amino
acid level are not only driven by underlying nucleotidic
biases but also by more general environmental conditions,
such as temperature (Lobry and Chessel 2003; Singer and
Hickey 2003; Lobry and Necsulea 2006), halophily adap-
tation (Kennedy et al. 2001; Fukuchi et al. 2003), or even
more specific ecological life styles (Bogatyreva et al. 2006;
Das et al. 2006; Tekaia and Yeramian 2006). This suggests
that the most general kind of compositional shift along time
should be a priori considered and not only shifts induced by
nucleotide compositional variations.

The CAT–BP model introduced here achieves this us-
ing the compound stochastic process formalism, first de-
scribed by Huelsenbeck et al. (1999) and used in
a nonstationary context in the BP model (Blanquart and
Lartillot 2006). According to that formalism, N break points
randomly appear along the lineages according to a Poisson
process. Each break point introduces a discrete change in
the global composition of the sequence. It has here been
adapted so that each break point now causes a simultaneous
and coherent modulation of the stationary probabilities of
the K categories of the mixture. Thanks to this, the overall
model still allows for site-specific biochemical constraints,
although it is no more stationary.

In this paper, we introduce the model as well as the
details related to its MCMC implementation. We compare
the behavior of this model to that of GTR, CAT, and BP, on
a concatenation of mitochondrial proteins of 20 arthropods.
We show that all models infer a high level of saturation on
this data set and that GTR, CAT, and BP all produce
the same phylogenetic reconstruction artifact, positioning
2 hymenopterans (bees) among chelicerates, where they
are attracted by a tick. These 2 bees, as well as the tick,
are among the most AT rich and are furthermore the fastest
evolving among the 20 taxa represented in the alignment, sug-
gesting an artifact resulting from combined effects of fast evo-
lution, site saturation, and compositional biases. Interestingly,
only the CAT–BP combination is able to correctly place the
2 bees back within insects. Furthermore, using posterior pre-
dictive tests (Meng 1994; Gelman et al. 1996; Bollback 2002;
Nielsen and Huelsenbeck 2002; Lartillot and Philippe 2004),
we show that, unlike other investigated models, CAT–BP si-
multaneously accounts for the taxon- and site-specific distri-
butions of amino acids observed in this alignment.

Methods
Notation and Parameters

A set of aligned sequences is available in form of a
data matrix D of J sequences of I sites. Phylogenetic
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relationships between the J sequences are represented by
a rooted phylogenetic tree, denoted as s, whose internal no-
des represent speciation events. A length is associated to
each branch. Let t 5 (tj), where j 2 [1, . . ., 2J � 2] are
branch indices, denote the set of branch lengths. Addition-
ally, sites have their own rate of substitution, r 5 (ri),
where i 2 [1, . . ., I], distributed according to a Gamma dis-
tribution of variance 1

a, discretized into 4 categories.

Markovian Substitution Process

Substitutions (or amino acid replacements) at a given
site are modeled by a Markovian process operating on
a state space of size S (S 5 20 for protein sequences).
The most general Markovian substitution process is usually
denoted as GTR (Lanave et al. 1984; Tavaré 1986; Barry
and Hartigan 1987; Rodriguez et al. 1990). It involves a set
of S stationary probabilities p 5 (pl), where l 2 [1, . . ., S],
and a set of relative exchange rates q 5 (qlm), where l, m 2
[1, . . ., S]. The stochastic kernel (rate matrix) of the result-
ing substitution process, usually denoted as Q, is obtained
by combining p and q as follows:

Qlm5pmqlm; l 6¼ m; ð1Þ

Qll5�
X
l 6¼m

Qlm; ð2Þ

where we have defined qlm 5 qml for all l . m. Given Q,
one can compute the probability pl/mðtÞ of a substitution
from a state l to a state m after an evolutionary time of ritj
(along a branch of length tj and for a site of rate ri):

pl/m

�
ritj
�
5
�
eritjQ

�
lm
: ð3Þ

We also use in this work the F81 process (Felsenstein
1981), which is the particular case, where qlm 5 1 "l, m.
All relative exchange rates being equal, equation (3) sim-
plifies into

pl/m

�
ritj
�
5e�ritjdlm þ

�
1 � e�ritj

�
pm; ð4Þ

where dlm is the Kronecker operator (dlm 5 1, if l 5 m,
0 otherwise). Note that equation (4) is the uniformized ver-
sion of the F81 process (i.e., waiting times do not depend on
the current state, and virtual substitutions l/l are allowed).
In addition, we do not normalize the Q matrix (eq. 2). As
a result, branch lengths are no more measured in terms of
expected number of substitutions.

Site- and Time-Specific Nonparametric Devices

We model variations of the amino acid distributions,
across sites and along time, using the 2 nonparametric
devices initially implemented into 2 separate models,
CAT (Lartillot and Philippe 2004) and BP (Blanquart
and Lartillot 2006), respectively. In the following, super-
scripts c and b will be used as symbols denoting parameters
related to the CAT or the BP component.

First, as in the CAT model, we assume that a mixture
of K distinct categories, each defining its own Markovian

process of substitution, is distributed among the I sites.
Each category of the mixture, indexed by k 2 [1, . . ., K],
defines a normalized vector Pc

k; of size S, and with positive
entries, which will be called a ‘‘profile’’ in the following.
Let Pc5

�
Pc

k

�
; where k 2 [1, . . ., K], denotes the set of pro-

files. The category a site i is associated to is specified by an
allocation variable zi2 [1, . . .,K]. The vector z 5 (zi), where
i 2 [1, . . ., I], is called the allocation vector (fig. 1). Note
that in the original version of the CAT model, the mixture
of profiles is described as a Dirichlet process (DP, Ferguson
1973; Antoniak 1974), which is implemented following
the Neal’s (2000) incremental algorithm. This implies that
the number K of categories is a free parameter of the in-
ference. In this work however, for computational reasons,
we opt for a fixed number K. The present version of the
CAT component is therefore akin to a classical mixture
model.

Second, the model allows for variations along lineages
of the global amino acid composition. This is done using the
compound stochastic process formalism (Huelsenbeck et al.
1999; Blanquart and Lartillot 2006). The idea is to define
a piecewise constant stochastic process, running along the
branches of the tree, and taking values in the space of pos-
itive normalized vectors of size S. This stochastic process
emits events along the tree, each of which ‘‘modulates’’ the
K substitution processes defined by the CAT mixture.

Specifically, a random number N of discontinuities, or
break points, appear along the tree according to a Poisson
process of rate k. These break points define a partition of the
tree into N þ 1 distinct areas. A modulator, that is, a pos-
itive normalized vector Pb

n; of size S, is then specified in
each of the areas indexed by n (fig. 1). Let Pb5

�
Pb

n

�
;

where n 2 [0, . . ., N], denote the set of the N þ 1 modu-
lation vectors. By convention, we will give each modulator
the index of the break point n defining the lower boundary
(i.e., closer to the root) of its operating area, and we set Pb

0

to be the modulator active immediately after the root of the
tree. Two sets of parameters are used to describe break point
coordinates along the tree: the set y 5 (yn 2 [1, . . ., 2J �
2])n 2 [0, . . ., N] yields the indices of branches supporting the
N þ 1 break points and x 5 (xn 2 [0, . . ., 1])n2 [0, . . ., N]

denotes the break points’ relative coordinates on their re-
spective branches. Hence, the overall modulation process

FIG. 1.—A realization of the nonstationary mixture process. A site i
is allocated to category k, of profile Pc

k : One break point has been created,
splitting the tree into 2 areas under the influence of 2 distinct modulators,
Pb

0 (black area) and Pb
n (gray area, here n 5 1). Profile Pc

k and modulator
Pb

n are combined into a site- and lineage-specific set of stationary
probabilities pkn.
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can be described as the combination of a Poisson process
emitting events along the tree and at each event, a discrete
stochastic shift of the modulation vector, from its current
value Pb

n to a new value Pb
m: In particular, in the case where

k tends to 0, N also tends to 0 (i.e., no break point created
along the tree), and one obtains a single area along which
the default root modulator Pb

0 is applied. The model there-
fore reduces itself to a time homogeneous one.

We then have, on one hand, site-specific profiles that
are constant along the whole tree and on the other hand time
specific modulators that are applied for all sites. Profiles and
modulators now have to interact with each other in order to
define site- and lineage-specific stationary probabilities.
Specifically, the stationary probability vector pkn of the sub-
stitution process of the mixture category k, in the area n of
the tree, is obtained through a multiplicative combination of
the profile Pc

k with the modulator Pb
n (fig. 1)

pkns 5
1

Z
Pc

ksP
b
ns;"s 2 ½1; . . . ; S�; ð5Þ

where Z is a normalization factor

Z5
XS
s51

Pc
ksP

b
ns:

All the K profiles are therefore simultaneously modified by
a given modulator n. This combination yields a total of
K(N þ 1) vectors of stationary probabilities p5

�
pkn
�
;

where k 2 [1, . . ., K] and n 2 [0, . . ., N], which are then
used to compute the finite-time transition probabilities
(eq. 4), along the relevant areas and for the relevant sites.
The resulting model is thus heterogeneous both across sites
and along lineages. Note that, unlike in the original versions
of the CAT and BP models, the vectors associated to the
K categories and to the N þ 1 modulators, although posi-
tive and normalized over the S states, are not themselves the
stationary probabilities of any stochastic process.

The multiplicative rule used here (eq. 5) has several
advantages. First, it allows one to create K(N þ 1) pro-
cesses out of only K þ N þ 1 set of state frequencies, im-
plying 19(K þ N þ 1) free parameters. Second, a given
category of the mixture will modulate its stationary prob-
ability vector while keeping a certain biochemical identity
throughout the tree. And finally, upon traversing a break
point, all the categories change in a coherent fashion: Each
amino acid has its stationary probability either increased in
all categories or decreased in all of them.

As explained in Galtier and Gouy (1998), because the
stationary assumption does not hold, we can not assume
that the stationary probabilities from which to draw the se-
quence at the root of the tree (i.e., pkN, where N stands for
the infinite time elapsed before the root) should be equal to
those of the substitution process starting at this point of the
tree (i.e., pk0). Therefore, we should normally define an
additional modulator immediately upstream of the root,
which would be denoted as Pb

N; and combine it with
the profiles of the categories, so as to obtain the stationary
probabilities pkN from which to draw the root sequence. On
the other hand, the model, such as specified until now, is
invariant by some particular transformations of the vertical

Pc and the horizontal Pb components. Specifically, simul-
taneously multiplying the lth entry of the K profiles Pc

k by
a factor f, dividing the lth entry of theN þ 1 modulators Pb

n
by the same factor f, and renormalizing all profiles and
modulators, will leave the K(N þ 1) stationary probability
vectors totally invariant. To alleviate this problem, we can
fix one of the modulators to be ‘‘flat.’’ Our choice is to con-
sider Pb

N as the flat modulator, which amounts to directly
draw the sequence at the root from the profiles of the
categories:

pkN5Pc
k; "k 2

�
1::K

�
:

In summary, a realization of the model results into K
categories and N þ 1 modulators, their associated profiles
Pc and modulation vectors Pb; and their distribution, re-
spectively, across sites z and over lineages y and x.

The probability of the data, given particular values of
the parameters mentioned previously (or likelihood), is
computed using the dynamic programming pruning algo-
rithm (Felsenstein 1981). This algorithm was adapted so
as to propagate vectors of partial (conditional) likelihoods
along each piecewise constant area of the tree, using the
relevant pkn probability vector (eq. 5).

Nonparametric Prior of the CAT Component

Profiles, and their mixture among sites, are drawn from
the following hierarchical prior distribution. First, profiles
Pc

k are drawn independently and identically distributed
(i.i.d.) from a base distribution Gc

0

��
; which is a generalized

Dirichlet parameterized by a center /c on the S-dimensional
simplex and a concentration lc around that center:

Pc
k;Dirichletlc/c

1;...;l
c/c

S

��
:

In practice, this is done by drawing independent gamma
variables and renormalizing them (Lartillot et al. 2007)

Ps;clc/c
s ;1
ðÞ; ð6Þ

Pc
k;s5

PsPS
s51 Ps

; ð7Þ

where clc/c
s ;1
ðÞ is a standard gamma distribution of shape

parameter lc/c
s : The prior density of a profile is then

pðPc
kjlc;/cÞ5

C
�PS

s51 l
c/c

s

�
PS

s51 Cðlc/c
sÞ
YS
s51

�
Pc

ks

�lc/c
s�1

; ð8Þ

where C() is the generalized factorial function.
Second, the allocations z 5 (zi)i 2 [1, . . ., I] of the sites

to the K profiles are drawn i.i.d. from a multinomial of
weight parameters w 5 (wk)k 2 [1, . . ., K]; the weights are
in turn considered as uniformly distributed:

zi;w

w;UniformðÞ: ð9Þ

Site- and Time-Heterogeneous Model of Evolution 845

D
ow

nloaded from
 https://academ

ic.oup.com
/m

be/article/25/5/842/1196978 by Bibliothèque U
niversitaire de m

édecine - N
îm

es user on 16 June 2021



In fact, the weight vector w can be integrated out analyti-
cally and the prior marginal probability of a particular al-
location z is then

p
�
z
�
5
R
w pðzjwÞpðwÞdw;

5ðK � 1Þ!
R
w

QK
k51

w
gk

k dw;

5
ðK�1Þ!

ðKþI�1Þ!
QK
k51

gk!;

ð10Þ

where gk is the number of sites the category k is allocated to�PK
k51 gk5I

�
:

Conversely, if needed, the weight vector w may be re-
covered, that is, resampled conditionally on a realization of
z, by drawing it from a Dirichlet distribution of parameters
gk þ 1 (eqs. 6 and 7). Conditional on this particular real-
ization of w, the likelihood at a given site can then be
summed over all possible values of z:

pðCijh;wÞ5
XK
k51

wkpðCijh; zi5kÞ; ð11Þ

where h collectively denotes all the ever mentioned param-
eters. Note that in practice, we never use equation (11), ex-
cept for computing the cross-validation scores (see below).

Nonparametric Prior of the BP Component

Each modulators Pb
n are drawn i.i.d. from a base dis-

tribution Gb
0

��
; which again is a generalized Dirichlet dis-

tribution (eq. 8), of concentration lb and center /b (distinct
from lc and /c). The joint prior of a break point configu-
ration is

pðN; x; yjeÞ5
�

e�eeN

N!

� 
N!

TN

Y2J�2

j51

t
Nj

j

!
;

where Nj denotes the number of break points on branch j, T
the total length of the tree, and e 5 kT the rescaled rate of
the Poisson process of break point creation (for details, see
Blanquart and Lartillot 2006). This consists in the product
of the prior probability of the number of modulator N (first
factor), and given N, of the prior density of their distribution
over the tree, as specified by x and y (second factor).

Priors on Parameters and Hyperparameters

All other model parameters and hyperparameters have
canonical priors. We use uniform priors over topologies (s)
as well as for hyperparameters /c and /b, truncated and
arbitrary bounded uniform priors for positive hyperpara-
meters lc, lb, and e, a hierarchical exponential prior of
mean 1

b for branch lengths (t) and an exponential prior of
mean 1 for hyperparameters a and b (respectively, the prior
inverse variance of the distribution of rates across sites and
the prior mean branch lengths).

Several alternative prior specifications to the one spec-
ified above were checked. All alternative priors on single
parameters (i.e., the priors on N, a, b, and e) yield results
similar to those obtained under the current implementation

(Supplementary Material online). In contrast, discarding hi-
erarchical priors on population of parameters, such as
branch lengths (hyperparameterized with b), or profiles
and modulators (hyperparameterized with l and /), and in-
stead describing each individuals by an uniform prior, has
much more impact on the model inferences. In particular,
discarding the 2 hierarchical nonparametric priors on Pc

and Pb leads to a model lacking flexibility and reducing
itself to homogeneous settings (i.e., all posterior probability
concentrated on N 5 0, for details, see Supplementary
Material online).

MCMC Sampling

Let h collectively denote the set of all the parameters
of the model. By Bayes theorem, the posterior probability
p(h | D, M) is proportional to the prior p(h | M) times the
likelihood p(D | h, M):

p
�
h
		D;M�5 pðDjh;MÞpðhjMÞ

pðDjMÞ ;

where D denotes the data, M a given model, and h a partic-
ular realization of its associated parameters.

In order to obtain a sample from the posterior distri-
bution of h, we use the MCMC sampling method, based on
the Metropolis–Hasting algorithm. We had previously im-
plemented the nonstationary model BP into the ‘‘Phylo-
Bayes’’ software (Lartillot and Philippe 2004, http://
www.lirmm.fr/mab/article.php3?id_article5329), which
already provides a MCMC implementation of the CAT
model. The MCMC kernels and Hastings ratios involved
in these 2 models have been described previously (Lartillot
and Philippe 2004; Blanquart and Lartillot 2006). The
CAT–BP model is obtained by simply merging the CAT
and the BP components. Essentially, we only need to mod-
ify our likelihood computation module, so as to use the sta-
tionary probability vectors defined by equation (5).
Otherwise, no other MCMC update mechanism, in addition
to those defined for either CAT or BP, is needed to sample
from CAT–BP.

In their original versions, both CAT and BP involve
transdimensional update mechanisms, allowing them to
adjust their dimensionality according to the data. In the
BP model, the number N of modulators is allowed to fluc-
tuate, through an update mechanism that either creates
a new modulator somewhere in the tree or deletes an al-
ready existing one. Likewise, the ‘‘Switch-Mode’’ update
mechanism of CAT allows reallocation of each site either
to one of the available categories of the mixture or to
a newly created category. It thus simultaneously updates
z and K.

In the CAT–BP combination introduced here, we keep
the reversible jump component of the BP model, but con-
cerning the mixture of the CAT component, we opt instead
for a fixed dimensionality. This requires to specify K a pri-
ori, but this alleviates some difficulties of the MCMC sam-
pling in variable-dimensional space. The CAT–BP model
will be made more general in a subsequent version. To de-
termine the value of K to be used in practice, we first run the
CAT model on the data set of interest, recover the estimated
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posterior mean number of components of the DP K̃, and fix
K to this estimated value.

Accordingly, we have to simplify the original version
of the Switch-Mode update mechanism, so as to keep K
fixed and update the allocation vector z only. This is still
done using a Gibbs sampler but, following equation (10)
(and upon simplification of common factors), the distribu-
tion from which the allocation variable is drawn is now:

z#i;
�
gk þ 1

�
p
�
Cijh; zi5k; pk�

�
; "k51; . . . ;K;

where gk is the occupation number of category k (the site
being reallocated has first to be excluded from the mix-
ture, thus,

PK
k51 gk5I � 1, and not I), and pk* stands

for all the N þ 1 modulations along the tree of the profile
indexed by k.

Otherwise, Dirichlet resampling mechanisms, as de-
scribed in Larget and Simon (1999), are used to update
the shapes of all normalized vectors of parameters (Pc,
Pb, /c and /b). The hyperparameters e, lc, and lb are
updated using multiplicative update mechanisms. Three dif-
ferent topological update mechanisms keeping track of the
break point distribution were introduced (Blanquart and
Lartillot 2006), a global SPR move, a local node-sliding
move, and a move of the root position. All other parameters
(i.e., branch lengths [t] and its associated hyperparameter b,
and the shape parameter a of the Gamma-distributed rates
across sites) were updated as in Lartillot and Philippe (2004).

MCMC Settings

Chains were run for 5, 000 cycles, each cycle resulting
in a saved sample, the first 3,000 samples were discarded as
the ‘‘burn-in.’’ A cycle is defined by several calls to all avail-
able update mechanisms, with tuning parameters empirically
chosen such as to reach acceptance ratios from 30% to 90%.
Each experiment was run twice in order to check MCMC
convergence (see Supplementary Material online, part 2).

Cross-Validations

We compared the fit of alternative models by k-fold
cross-validation (CV, Smyth 2000; Lartillot et al. 2007).
The method consists in estimating the predictive power
of a model M on part of the data, Dtest, after having learnt
the parameters on the other part Dlearn, where Dlearn and
Dtest result from a random split of the data set D. By def-
inition, in k-fold CV, Dtest amounts to a fraction of 1/k of the
total number of aligned positions.

Formally, the predictive power is expressed as the
probability of the test set Dtest given the learning set Dlearn:

pðDtestjDlearn;MÞ5
Z

h
pðDtestjh;MÞpðhjDlearn;MÞdh:

This marginal probability is thus the expectation of the like-
lihood conditional on Dtest, over the posterior under Dlearn.
In the following, we will call it the cross-validation likeli-
hood. This expectation can be approximated by MCMC:

one first getsA samples (h(a))a 6¼ in [1, . . ., A] from the posterior
distribution underDlearn,h(a); p(h |Dlearn,M) and then aver-
ages the likelihood p(Dtest | h(a), M) over the A samples.

In our implementation, the likelihood of a column i is
conditional on its allocation variable zi. However, we have
no prior knowledge about the allocation status of the sites of
the test set Dtest. Thus, the cross-validation likelihood needs
to be integrated over z. This in turn requires that, for each of
the A samples, we draw a value for the prior weights of the K
categories from a Dirichlet distribution of parametersgk þ 1
(eqs. 6 and 7). Given the weights w 5 (wk)k e [1, . . ., K],
the cross-validation likelihood at column Ci of the test set
Dtest is given by equation (11). Taking the product over
all sites of the test set, and averaging over the A samples,
yields an estimate of the cross-validation likelihood score.

For a given random split, we then take as the CV score
of a given model M the difference in cross-validation log
likelihood between model M and a model of reference M0:

CVðM;Dtest;DlearnjM0Þ5ln pðDtestjDlearn;MÞ
�lnpðDtestjDlearn;M0Þ:

Ideally, we want the expectation of this score over all pos-
sible random splits. In practice, the procedure is repeated on
a series of N such random splits (here N 5 10) and the
score is averaged over these N replicates.

Posterior Predictive Tests

The posterior predictive method (Meng 1994; Gelman
et al. 1996) allows one to investigate the ability of the mod-
els under study to capture some potentially important fea-
tures of the observed data. Given a test statistic x, the
method consists in comparing the observed value xo 5
x(D) to the distribution xs 5 x(Ds) of x under replicates
Ds simulated from the posterior predictive distribution:

Ds;pðDsjD;MÞ;

or equivalently

Ds;pðDsjhÞ;

where h ; p(h | D, M) is a sample from the posterior dis-
tribution under model M, given the true data D. Following
the MCMC paradigm, the posterior predictive distribution
may be simulated by first drawing a set of A samples
(h(a))a e [1, . . ., A] from the posterior distribution and then
use each sample h(a) to simulate a replicate, Ds

a:
The posterior predictive distribution of xs plays the

role of the null distribution: If the observed value xo 5
x(D) falls within it, this means that the observed data do
not reject the model. On the opposite, if the observed value
is too extreme compared with the null distribution, the
model is rejected. Posterior predictive testing depends on
the chosen test statistic. The interpretation is that neither
is the model able to reproduce the observed statistic x
nor will it correctly anticipate the impact that the features
captured by x may have on the inference.

The deviation of the observed value xo to the null dis-
tribution can be assessed by evaluating the P value (i.e., the
number of replicatesDs leading to a valuex(Ds) more extreme
than xo). However, in practice, P values obtained by MCMC
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simulation have a low dynamical range and do not allow one
to discriminate between strongly rejected models. As an alter-
native, the discrepancy between the observed valuexo and the
null distribution can also be expressed by a Z score Zx, a score
of 1 representing a distance equal to the null distribution’s
standard deviation. As a rule of thumb, assuming the null dis-
tribution is normal, a Z score of 1.65 would correspond to
a P value of 0.05 and a Z score of 3 to a P value of 0.001.

We used 4 different statistics. First, we devised 2 test
statistics, respectively, accounting for site-specific bio-
chemically restricted diversity (xd) and taxon-specific com-
positional biases (xb). The diversity at site i, denoted as ni,
is defined as the number of distinct observed amino acids.
Averaging ni over all sites yields the mean site diversity xd

xd5
1

I

XI
i51

ni: ð12Þ

Concerning compositional biases, let FðDÞ and F
�
Dj

�
de-

note the empirical amino acid distributions measured, re-
spectively, over the whole data set and for a given taxon
j. An estimate of the compositional bias of taxon j can
be obtained by summing the square of the differences be-
tween FðDÞ and F

�
Dj

�
. Then, taking the maximum differ-

ence over all taxa yields the global bias xb

xb5MAXj2½1::J�

 XS
s51

�
F
�
Dj

�
s
�FðDÞs

�2

!
: ð13Þ

The 2 other test statistics depend on the sequences at
some internal nodes of the tree, and thus cannot be directly
deduced from observed data or replicates thereof but require
first that we reconstruct a full substitutional historyN along the
tree, which we did using stochastic mapping (Nielsen 2002).
Specifically, given a parameter value h drawn from the pos-
terior distribution, h ; p(h | D), stochastic substitution map-
pings can be simulated conditional on the observed data D:

No;pðNjh;DÞ:

The distribution of the statistic of interest over such simulated
values of No will yield the so-called ‘‘observed’’ distribution
(strictly speaking, it is inferred, but based on the observed
data). Alternatively, the algorithm can be run unconstrained,
without trying to fit the data observed at the leaves, in which
case the mapping is simulated conditional on the parameter
value only:

Ns;pðNjhÞ:

The distribution of the statistic over unconstrained map-
pings Ns will yield the null (posterior predictive) distribu-
tion. In practice, given each of the sampled parameter value
h, one constrained No and one unconstrained Ns mappings
were drawn.

The 2 test statistics based on mappings are conditional
on a prespecified topology and focus on some clades of
interest. They are defined as the number of homoplasies
(convergences) and the number of synapomorphies (shared
derived characters). Specifically, let A, B, C, and D denote
4 internal branches, each defining a ‘‘clade’’ (in the un-

rooted sense of the term). Under the specified topology,
clade A clusters with B, and C with D. In this context,
for a given site i, if the states rA and rB inferred by the
substitution mapping N at the base of clades A and B
are equal to some state X, and the states rC and rD at
the base of clades C and D are equal to some state Y different
from X, this defines an apparent synapomorphy (fig. 2A):

S5ððrA5rBÞ 6¼ ðrC5rDÞÞ: ð14Þ

Conversely, if A and C (or A and D) have a matching state
X, and B and D (or B and C) a same state Y, this defines
a homoplasy (fig. 2B):

H5ððrA5rCÞ 6¼ ðrB5rDÞÞ: ð15Þ

Given 4 clades of interest, the test statistics xs and xh, re-
spectively, represent the overall number of apparent syna-
pomorphies S and homoplasies H obtained over all sites
under a given mapping.

Posterior Estimates Based on Substitution Mappings

Two additional estimations are extracted from poste-
rior stochastic mappings. First, the stochastic Q matrices of
the Markovian processes of substitution being obtained as
described in equation (2), they are unnormalized and con-
sequently branch lengths are not directly measured in ex-
pected number of substitution per site. In this situation,
effective branch lengths are obtained a posteriori, using sto-
chastic mappings sampled from the posterior distribution,
simply by averaging over sites the number of substitutions
Hij mapped on branch j at site i:

tj5
1

I

XI
i51

Hij:

Second, substitution mappings allow us to compute
the saturation inferred by each model on the data set being
investigated. Saturation can be defined as the number of

FIG. 2.—Illustration of synapomorphic (fig. 2A) and homoplasic
(fig. 2B) site patterns. (A) A single substitution can explain the data
observed at the leaves, which defines an apparent synapomorphy. (B) Two
independent substitutions are needed to explain the site-pattern, which
results in an unambiguous homoplasy.
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independent substitution events toward the same amino
acid at a given site (thus, convergences or reversions). It
can be visualized by plotting, for each position, the number
ni of distinct amino acid observed at site i as a function of
the total number of inferred substitutions Hi5

P2J�2
j51 Hij:

Specifically, for site i, the number of substitution Hi inferred
under a model is averaged over stochastic mappings drawn
from the posterior distribution.

Material

We used a data set introduced in a previous work (Delsuc
et al. 2005), consisting in an alignment of 4 mitochondrial
proteins, COXI, COXII, COXIII, and CYTB, for 20 arthropod
species (9 hexapods, 4 crustaceans, 2 myriapods, and 5 cheli-
cerates).The speciesnames, followedbythemitochondrialge-
nomesaccessionnumbersare:Hexapoda:(Diptera)Anopheles
gambiae [NC_002084], Drosophila yakuba [NC_001322],
Chrysomyachloropyga [NC_002697], (Lepidoptera)Ostrinia
furnacalis [NC_003368], Bombyx mandarina [NC_003395],
(Coleoptera) Crioceris duodecimpunctata [NC_003372],
Triboliumcastaneum[NC_003081],(Hymenoptera)Apismel-
lifera [NC_001566], and Melipona bicolor [NC_004529];
Crustacea: Pagurus longicarpus [NC_003058], Penaeus
monodon [NC_002184], Daphnia pulex [NC_000844], and
Triops cancriformis [NC_004465]; Myriapoda: Narceus an-
nularus [NC_003343] and Thyropygus sp. [NC_003344];
Chelicerata:Limulus polyphemus [NC_003057], Ixodes hexa-
gonus [NC_002010], Ornithodoros moubata [NC_004357],
Rhipicephalussanguineus [NC_002074],andVarroadestruc-
tor [NC_004454]. This data set was translated, yielding 1,243
alignedaminoacidpositions.Data,softwares,and‘‘makingof’’
are available on our Web site http://www.lirmm.fr/mab/
article.php3?id_article5313.

Results
Free Topology Analyses

Phylogenetic analyses of arthropod complete mito-
chondrial genomes have yielded surprising results (Nardi
et al. 2003), subsequently argued to be likely artifactual
(Delsuc et al. 2003, 2005). In the 35 arthropod species phy-
logeny displayed in the original paper (Nardi et al. 2003),
obtained by a ML analysis using a fairly simple model (uni-
form rates across sites), not only were the hexapods (insects
and collembolans) found polyphyletic but also 2 species of
bees, A. mellifera and Heterodoxus macropus, clustered
with ticks, among chelicerates. In their subsequent reanal-
ysis, Delsuc et al. (2003) investigated the phylogenetic re-
lationships of the same arthropod species, but this time
using a nucleotidic data set gathering the 4 most conserved
mitochondrial genes COXI, COXII, COXIII, and CYTB.
The first and third codon positions were RY coded (Woese
et al. 1991), and the data set was analyzed with a partitioned
model, attributing 3 independent substitution models to
each codon positions, and accounting for varying rates
across sites. This analysis succeeded to recover both in-
sect and chelicerate monophyly. Similar results were

later obtained by Delsuc et al. (2005) on the same 4 mi-
tochondrial genes, with a reduced taxon resampling of
20 arthropod species. Investigating this second data
set, Delsuc et al. (2005) showed that the ML phylogenetic
reconstruction clusters 4 chelicerates among insects, on
the branch leading to hymenopterans A. mellifera and
M. bicolor, while the ML analysis of the RY-coded data
set succeeds in recovering both insect and chelicerate
monophyly.

We focused our experiments on the latter 20 species
data set, translated into amino acid sequences (1,243
aligned positions). We first performed phylogenetic analy-
ses of this data set using 4 alternative models: GTR (with
both the MrBayes and PhyloBayes implementations), BP,
CAT, and CAT–BP. Among them, GTR is time and se-
quence homogeneous, BP accounts for variations of the sta-
tionary probabilities along time, CAT for variations along
the sequences, and CAT–BP for both.

The GTR topology reconstructed by MrBayes, as well
as other parameter estimates, are identical to the ones ob-
tained by our implementation. As expected, considering pre-
vious results (Delsuc et al. 2003; Nardi et al. 2003; Delsuc
et al. 2005), the topology estimated by GTR displays an
artifactual attraction between chelicerates and hymenopter-
ans. More specifically, GTR produces an erroneous and
strongly supported clustering (posterior support of 1) of
the 2 bees Apis and Melipona with the tick Varroa destruc-
tor (fig. 3A). As suggested previously (Delsuc et al. 2005),
this result may be attributed to the significantly faster evo-
lution and the similar compositional biases of the artifactu-
ally clustered sequences.

The first observation consistent with this is that the 2
branches leading to the bees Apis and Melipona and to Var-
roa are the longest ones in the estimated tree: respectively
0.63 and 0.39, for a total tree length of 5.48. The second
observation bears on the nucleotidic content of the 3 spe-
cies, measured on the nucleotidic data set to be the most AT
rich: 81% AT for Melipona, 79% AT for Apis, and 75% AT
for Varroa. The AT richness of Apis was shown to induce
a bias also at the amino acid level (Foster et al. 1997), which
in turn was suggested to have an impact on the phylogenetic
estimation accuracy (Foster and Hickey 1999). One may
thus expect the GTR reconstruction artifact to be due to
a combination of saturation and compositional biases.

However, the BP model also produced the artifact
(fig. 3B), even though it has been specifically designed to
deal with, and shown efficient against, the negative impact
of compositional biases on phylogenetic reconstructions
(Blanquart and Lartillot 2006). At first, this suggests that
the similar compositional biases displayed by the 3 species
is not a sufficient stand-alone explanation of the observed
artifact.

Similarly, the CAT model, although designed in order
to accurately handle site saturation and able to avoid LBA
in some cases (Lartillot et al. 2007) also produced the ar-
tifactual clade, albeit with a slightly lower posterior prob-
ability support of 0.99 (fig. 3C). Topological analyses under
models CAT and BP thus suggest that the artifactual attrac-
tion of bees and ticks cannot be overcome by exclusively
accounting for either site-specific features or independent
evolution toward similar compositional biases.
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We run the CAT–BP model on this data set, setting
K 5 50, which is approximately the posterior mean num-
ber of categories found under the CAT model (i.e.,
K̃560:1±6:4). The dimensionality of the modulation pro-
cess is free and is determined by a trade-off between the
prior and the data. In the present case, the number of break
points converged to Ñ56:92±0:14 (Supplementary Mate-
rial online, table 1).

In contrast to the other 3 models, CAT–BP converged
to a much more reasonable phylogenetic tree (fig. 3D), re-
covering the monophyly of insects by clustering the bees
with lepidopterans (posterior probability, pp 5 1), and
the monophyly of ticks (pp 5 1). Note that the tree found
by Delsuc et al. (2005) slightly differed from ours, in that
hymenopterans were found sister group of coleopterans,
rather than of lepidopterans, as we found here. Hence,
by combining together the respective features of the
CAT and the BP models, CAT–BP appears to be able to
overcome an artifact that is not correctly detected by either
CAT or BP.

Interestingly, the lengths of the 2 branches leading to
bees and to Varroa, as well as the total tree length, increase
as one goes from GTR to BP, CAT, and CAT–BP (table 1),
indicating a progressively better detection of saturation.
This is confirmed by the saturation graphs (see Methods):

GTR yields the largest, and CAT–BP the smallest amount
of saturation with BP and CAT in-between (fig. 4). Impor-
tantly, compared with GTR, one observes that CAT infers
a much higher saturation than BP and also that the increase
in saturation observed between GTR and CAT–BP is higher
than the sum of the net increases observed between GTR
and CAT and between GTR and BP. The latter point sug-
gests a synergistic behavior in the anticipation of saturation
resulting from the coupling between CAT and BP.

FIG. 3.—Posterior consensus trees obtained under GTR (A), BP (B), CAT (C), and CAT–BP (D) (only posterior supports ,1 are indicated).

Table 1
Lengths in Posterior Number of Substitutions per Sites
Inferred on the GTR (upper quadrant) and the CAT–BP
(lower quadrant) Topologies

Apis mellifera,
Melipona bicolor Varroa destructor Tree length

GTR 0.59 0.37 5.09
BP 0.60 0.47 5.38
CAT 1.62 0.71 9.93
CAT–BP 2.05 1.23 10.49
GTR 0.82 0.54 5.40
BP 0.78 0.57 5.41
CAT 2.07 1.13 9.40
CAT–BP 2.23 1.34 11.03
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Posterior Predictive Assessment of Site- and Taxon-
Specific Amino Acid Distributions

The arthropod data set investigated here thus confronts
the models with highly saturated sequences and 2 clades
(bees and Varroa) evolving fast and toward strong and sim-
ilar compositional biases. The phylogenetic signal present
in the sequences may thus be significantly blurred by noise,
which the 4 models do not seem to handle in the same way.

In order to understand why they behave differently
when confronted to saturated sequences, the 4 models were
checked for their ability to account for the site- and taxon-
specific distributions of amino acids observed in the data.
We used the posterior predictive method, with 2 test statis-
tics, respectively, denoted as xd, for site diversity, and xb,
for compositional biases (see Methods, eqs. 12 and 13). The
posterior predictive experiments were performed on the
fixed topologies found by CAT–BP and GTR. The results
are quite similar, whichever topology is used, and we thus
focus in the following on results obtained on the CAT–BP
topology.

A protein site usually does not display all the 20 pos-
sible amino acids, but rather a small subset generally char-
acterized by similar biochemical properties (Hasegawa and
Fitch 1996; Crooks and Brenner 2005). Standard empirical

matrices, such as used in the GTR or the BP models, try to
implicitly capture site-specific selective effects through the
relative exchange rates qlm of the substitution process: The
exchange rates between biochemically similar amino acids
are higher than between unrelated amino acids. However,
upon repeated amino acid replacements, the process en-
coded by the 20 � 20 matrix rapidly reaches the stationary
equilibrium, which in particular implies that saturated sites
should display a relatively wide spectrum (high diversity)
of amino acids.

In contrast, mixture models such as CAT or CAT–BP
explicitly account for site-specific biochemical constraints
through a set of K F81 processes, each of which is supposed
to represent a particular biochemical environment. Impor-
tantly, unlike standard models based on one single empir-
ical matrix, this way of encoding the biochemical constraint
implies that sites may be saturated and still display very few
amino acids, namely, those that have a significant weight
according to the relevant profile of the mixture. If the pro-
files are sparse, which they are most of the time, the site-
specific substitution processes are in effect operating over
small subsets of the full amino acid alphabet (Lartillot et al.
2007).

Thus, in practice, the 4 models investigated in this
work lead to different predictions concerning the mean
site-specific amino acid diversity likely to be observed.
In particular, on saturated data, CAT and CAT–BP would
tend to predict a lower diversity than GTR and BP. Thanks
to the posterior predictive formalism, it is possible to check
which of these 4 models better predicts the diversity actu-
ally observed.

On the arthropod mitochondrial data, the observed
mean diversity xo

d is of 2.74 distinct amino acids per site.
Upon posterior predictive simulations, the GTR and BP
models produce a mean diversity of, respectively, 3.35
and 3.42, which corresponds to Z scores Zd of 6.8 and
7.4, respectively. Thus, GTR and BP are strongly rejected
by the data concerning their ability to correctly anticipate
the observed site-specific biochemical restrictions. In con-
trast, CAT and CAT–BP both simulate a mean diversity of
2.72, which is very close to the observed statistic xo

d52:74:
The Z scores are of 0.3 and 0.2, respectively, and the P values
(0.3 and 0.4) indicate that CAT and CAT–BP are not rejected
(fig. 5). Thus, among the 4 models, CAT and CAT–BP
provide a better explanation of the observed site-specific
amino acid distributions.

We next checked the aptitude of the models to account
for the amino acid compositional variations between taxa.
The most compositionally diverged sequence, compared
with the overall data set empirical distribution, is Melipona,
which displays an observed bias statistic xo

b of 0.007. The
models CAT and GTR involve stationary Markovian pro-
cesses of substitution assumed to be at equilibrium all along
the tree. The probability of observing a given state any-
where in the tree is thus equal to its stationary probability,
and those models are therefore expected to simulate homo-
geneous sequence compositions. Consistent with this, un-
der CAT and GTR, the posterior predictive distribution of
the test statistic xs

b displays a mean of respectively 0.0006
and 0.0005, which is about 10 times lower than the ob-
served value. The Z scores (39.6 and 44.0, respectively)

FIG. 4.—Saturation graph obtained under GTR (A), BP (B), CAT
(C), and CAT–BP (D). For each site, the diversity (i.e., the number of
distinct states observed at the corresponding column) is plotted against the
posterior mean number of substitution inferred under each model.
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indicate that both stationary models are strongly rejected
concerning their ability to anticipate the compositional
biases observed in the data (fig. 6).

In contrast, BP and CAT–BP are explicitly nonstation-
ary and nonhomogeneous. They account for lineages-
specific compositional shifts, which allows them to simulate
much more heterogeneous sequence compositions compared

with stationary models. Accordingly, BP and CAT–BP
predict a mean value of 0.005 and 0.004 for the bias statistic,
thus much closer to the observed value 0.007. However,
the Z scores of 2.2 and 3.6 still indicate that BP
and CAT–BP are also rejected at the 0.05 level
(Zx . 1.65, see Methods), albeit far less strongly than are
CAT and GTR.

FIG. 5.—Observed value (xo
d52:74; arrow) and posterior predictive distribution of the diversity test statistic xd under GTR (A), BP (B), CAT (C),

and CAT–BP (D).

FIG. 6.—Observed value (xo
b50:007; arrow) and posterior predictive distribution of the compositional test statistic xb under GTR (A), BP (B),

CAT (C), and CAT–BP (D).
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Altogether, our posterior predictive experiments indi-
cate that a mixture of substitution processes is needed in
order to anticipate the observed site-specific biochemical
restrictions and, concomitantly, that nonstationarity and
nonhomogeneity is required to better anticipate the ob-
served compositional biases. Among the 4 models investi-
gated here, CAT–BP is the only one simultaneously
implementing those 2 requirements.

Probability of Homoplasies

The arthropod data set presumably displays conflicting
convergent signals between hymenopterans and the cheli-
cerate Varroa, which are apparently strong enough to com-
pete with the true phylogenetic signal. In such a context,
models that do not correctly anticipate how frequent homo-
plasies (i.e., convergences and reversions) can be may fail
at detecting them and may instead misinterpret them as syn-
apomorphies (i.e., shared derived characters). This could be
the reason why GTR, BP, and CAT artifactually cluster
bees with ticks. In contrast, the ability of CAT–BP to cor-
rectly cluster bees within insects may reflect its better an-
ticipation of the level of homoplasy in the data set.

To investigate this in more detail, we performed a
posterior predictive analysis, using as the test statistic the
number of convergences between the ancestor of hyme-
nopterans and Varroa. Specifically, we constrained the
monophyly of insects, by assuming the topology found
by CAT–BP and defined the 4 clades (A) hymenopterans,
(B) lepidopterans, (C) Varroa, and (D) other chelicerates
(Ixodes, Ornithodoros, and Rhipicephalus). Under these
settings, we simulated substitution mappings, either condi-
tional on the data at the leaves (observed) or not (posterior
predictive), and in each case, we recorded the number of
substitution mappings for which the states at the base of
the 4 clades A, B, C, and D correspond to a convergent pat-
tern between the bees and Varroa (xh, eq. 15). For a model
to predict significantly less convergences than what is ac-
tually observed means that it does not offer any good ex-
planation for these observed convergences and is therefore
biased in favor of the artifact.

The observed distribution of the statistic xo
h; obtained

from mappings constrained by the observed data is very sim-
ilar across the 4 models, with a mean of approximately 30
convergences (fig. 7A). In contrast, the posterior predictive
distribution xs

h differs significantly between the models. In
all 4 cases, it is shifted toward lower values compared with
the observed distribution, indicating that the 4 models antic-
ipate less homoplasies in favor of the artifact than they are
forced to infer on the true data. Among the 4 models, GTR
displays the strongest under-anticipation ðxs

h512:42
�
: Com-

pared with GTR, the BP model performs slightly better
ðxs

h515:13
�
: The anticipation of the CAT model are much

better ðxs
h527:53

�
: In fact, CAT anticipates nearly twice as

many homoplasies than does either GTR or BP, suggesting
that the predominant model violation is caused by the non-
consideration of site-specific effects, rather than by compo-
sitional effects. Finally, among the 4 models, CAT–BP
displays the best anticipation of the occurrence of convergen-
ces ðxs

h528:40
�
; which is consistent with the fact that it re-

covers a more reasonable topology.

Note that the observed and predictive distributions of
xh are not only significantly different under CAT–BP but
also under CAT. Yet, compared with CAT–BP, CAT still
obtains the artifact, although with a lesser support (pp 5
0.99) compared with BP and GTR (pp 5 1). In this re-

spect, it should be stressed that the present experiment is
just meant for illustrative purposes and does certainly
not capture all possible sources of signals in favor of the
artifact. Other site patterns apart from those that we have
considered here probably have an influence on the phylo-
genetic estimates obtained under each model.

A similar experiment using as a test statistic, not the
number of homoplasies xh, but the number of apparent syn-
apomorphies xs (equation 14), yields an inverted picture:
the expected number of synapomorphies under the posterior
predictive distribution, successively under GTR, BP, CAT,
and CAT–BP, forms a decreasing series, consistent with the
fact that models anticipating more noisy data will expect not
only more homoplasies but also less synapomorphies
(fig. 7B). However, in contrast to what is observed in the
case of the number of homoplasies xh, even CAT and
CAT–BP are rejected for the xs statistic, as the posterior
predictive mean number of synapomorphies are signifi-
cantly higher than the observed means. In other words,
all models observe much less phylogenetic signal in favor
of the correct phylogenetic relationships than what they

FIG. 7.—Observed and predictive number of homoplasies (A) and of
apparent synapomorphies (B) under GTR, BP, CAT, and CAT–BP.
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would have expected, which is in itself a good indicator of
remaining model violations.

Cross-Validations

Finally, the fits of the 4 models were compared by
cross-validation (see Methods). The cross-validation
scores under each model, and using either the CAT–BP
or the GTR topology, were evaluated on 10 random repli-
cated splits of the data set. The GTR model was used as a
reference.

The best fit is obtained by the BP model, followed by
CAT–BP, GTR, and finally CAT (table 2). The fact that BP
is better than GTR, and similarly, that CAT–BP is better
than CAT, indicates an improvement brought by the addi-
tion of nonstationarity. On the other hand, the worse fit of
CAT compared with GTR, and similarly, of CAT–BP com-

pared with BP, seems to indicate that the mixture of Poisson
processes is not adequate for this data set. A reason could be
that the data set is too small for CAT to be able to infer
statistically robust categories. Note also that the order be-
tween the 4 models was not stable across the 10 replicates.
For instance, BP was found less good than GTR on 1 rep-
licate, CAT better than GTR on 2, and CAT–BP better than
BP on 2 out of the 10 replicates. This further indicates that
the data set is too small to draw definitive conclusions about
the relative merits of the models investigated here.

In conclusion, more experiments on various data sets are
needed in order to determine whether or not the CAT–BP
model yields a good fit in general, as suggested by all other
results obtained in the present study.

Discussion
The Importance of Combining Model Features

We have introduced a new model for protein sequence
evolution, which gathers the advantages of both mixture and
nonstationary approaches. Models behaviors were investi-
gated using posterior predictive tests, based on 2 statistics,
meant to measure how the models account for site- or
taxon-specific amino acid distributions. Importantly, the
GTR, BP, and CAT models were all rejected by either
one or both of these 2 statistics. Concomitantly, all 3 models
produced a phylogenetic reconstruction artifact, clustering
the most AT biased and fastest evolving species in our ar-
thropod case study. In contrast, the CAT–BP combination
performed much better for the 2 posterior predictive tests. It
was also the only model able to avoid the phylogenetic ar-
tifact. The more sensible phylogenetic tree estimated by
CAT–BP, as well as its more accurate anticipations of het-
erogeneities along time and along the sequence, suggest
that simultaneously accounting for site-specific and compo-
sitional effects results in a synergistic improvement of the
phylogenetic inference.

Interestingly, this synergistic effect implies that, in it-
self, a phylogenetic artifact cannot be unequivocally attrib-
uted to the violation of a particular assumption of the model.
For instance, in the present case, it is difficult to say that the
attraction of bees and ticks is ‘‘caused by’’ the similar com-
positional biases of these 2 taxa or that it is ‘‘due to’’ the
high level of convergence mechanically implied by the fact
that the effective amino acid alphabet at each site is very
small.

A more satisfactory interpretation of this problem, as
indicated by our posterior predictive experiments, is that
CAT and BP tend to produce the same artifact because they
both fail at correctly explaining why so many sites support
a sister group relationship between bees and ticks; yet, this

FIG. 8.—Mean stationary probabilities inferred under GTR (A) and
CAT (C), BP (B), and CAT–BP (D), along the branches leading to the
hymenopteran clade (1) and to Varroa destructor (2).

Table 2
Cross-Validation Scores Using GTR as the Reference under
the Fixed CAT–BP and GTR Topologies

CAT–BP topology GTR topology

BP 28.6 ± 10.6 25.7 ± 9.3
CAT –8.8 ± 14.7 –8.5 ± 16.5
CAT–BP 15.8 ± 17.1 17.6 ± 17.2
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failure has a different cause in each case. CAT does not un-
derstand that similar compositional biases may cause spu-
rious convergences, whereas BP does not understand that
selective restrictions of the amino acid alphabet at a given
site imply higher levels of convergent substitution toward
the same amino acid at that site. Conversely, this means that
both problems have to be correctly dealt with in the frame of
one and the same model, if one wants to recover a reason-
able phylogeny.

To illustrate more clearly how this synergy works, we
focused on the particularly striking case of the columns dis-
playing only K and R. We roughly estimated how each
model evaluates the probability of convergent evolution
at those columns, in the context of the present artifact.
The stationary probabilities of the substitution process in-
ferred by each model, averaged over all K/R sites of the
alignment, and on the 2 branches leading to bees and Varroa
are shown on figure 8. Compared with the global equilib-
rium frequency profiles estimated by GTR (fig. 8A), the
profiles estimated by BP along the 2 branches of interest
(fig. 8B) are enriched in amino acids such as Isoleucine
(I) and Methionine (M), and depleted in Alanine (A) and
Glycine (G), which is consistent with the hypothesis that
biases at the amino acid level are essentially driven by
the GC bias in the present case (Foster et al. 1997). On
the other hand, the overall shape of the profile is not fun-
damentally different between these 2 models, and more im-
portantly, both profiles are flat. In contrast, high stationary
probabilities for states K and R are inferred under the mix-
ture models CAT and CAT–BP (fig. 8C and D), thus ac-
commodating for the underlying selective constraints at
those K/R sites. Interestingly, whereas the overall fre-
quency of K over lineages is globally smaller than R, as
displayed under CAT, the relation between them is inverted
on the 2 branches leading to the AT-rich clades bees and
Varroa, as displayed specifically under CAT–BP. This is
consistent with the fact that K, but not R, is encoded with
AT-rich codons. Yet, such an inversion in the relative sta-
tionary probability of the 2 amino acids is not observed
when comparing the profiles under GTR and GTR-BP
(fig. 8A and B).

From these profiles, one can get a crude estimate of
how each model estimates the probability for a K/R site
to undergo convergent evolution toward K along the 2 lin-
eages, simply by the square of the stationary probability of
K (Lartillot et al. 2007). This amounts to assuming that the 2
branches are infinitely long and that processes are at equi-
librium. The resulting probability is about only 0.0004 under
GTR, 0.001 under BP, and goes up to 0.03 under CAT, to
reach more than 0.1 under CAT–BP. Seen from CAT–BP,
this clearly illustrates why only the combination works:
If one does not account for nonstationarity, one under-
evaluates how likely convergent evolution toward K will
be by a factor 3 (comparing CAT–BP and CAT). And if
one does not model heterogeneities along the sequence,
one misses the point by a factor 100 (comparing CAT–BP
and BP). In both cases, although for different reasons,
the 2 models cannot ‘‘understand’’ why there should be
so many convergences toward state K between bees and
ticks, which leads them to take this apparent signal as a true
signal, and thus, to produce the same artifact.

More generally, in asymmetrical situations such as
the present one, which is a typical case of LBA, the ap-
parent signal in favor of the artifactual clustering of the 2
long branches is often stronger in the absolute than the
true phylogenetic signal (authentic synapomorphies). In
such situations, and provided that the data set is big
enough, any under-anticipation of the probability of ho-
moplasies, for whichever reason, will cause the same
systematic artifact, where the 2 long branches will be
put together. In practice, this implies that models jointly
combining all the essential features leading to a better
anticipation of phylogenetic noise will be the only one
able to correctly deal with such challenging phylogenetic
problems.

Comments on the Reconstructed Phylogeny

As already mentioned, RY recoding had been thus far
the only method able to recover the monophyly of insects
using the nucleotidic version of the data set investigated
here (Delsuc et al. 2003, 2005). This may be due to the
fact that the RY recoding may jointly alleviate AT bias ef-
fects, by recoding purines A and G into the state R and
pyrimidine C and T into Y, and the overall saturation,
by only considering transversions, whereas eliminating
the much more frequent transitions. The resulting effects
would then be similar to those described for CAT–BP.
In this direction, we tried several recoding schemes at
the level of the amino acid alphabet (Rodriguez-Ezpeleta
et al. 2007). However, we still obtained the artifactual tree
in all cases (not shown). Amino acid recoding thus seems
inefficient here. More generally, the divide between phy-
logenetic noise and phylogenetic signal may be more sub-
tle than what is assumed by amino acid recoding schemes,
which may therefore be either inefficient or result in a too
extreme loss of phylogenetic information. Accordingly,
one should probably prefer the use of CAT–BP, or more
elaborate models in the same spirit, entailing the possibility
of much more refined interpretations of the data in terms of
noise and signal.

Although the phylogeny of Hexapoda remains contro-
versial, the 9 insect species investigated here are thought to
group monophyletically into the so-called Holometabola
phylum. Within this phylum, many studies have argued
for the monophyly of Mecopterida, including Diptera
and Lepidoptera to the exclusion of Hymenoptera and
Coleoptera (Wheeler et al. 2001; Whiting 2002; Castro
and Dowton 2005; Delsuc et al. 2005; Savard et al.
2006). Concerning the placement of hymenopterans within
Holometabola, no clear consensus has emerged yet. They
may be found first emerging species (Castro and Dowton
2005; Savard et al. 2006), sister group of Mecopterida
(Wheeler et al. 2001; Whiting 2002; Castro and Dowton
2005) or of Coleoptera (Delsuc et al. 2003, 2005). We in-
deed recover Diptera, Lepidoptera, Hymenoptera, and Co-
leoptera as strongly supported monophyletic clades.
However, our topology displays very low supports for
the positions of those 4 clades among Holometabola and
further breaks the assumed Mecopterida monophyly. It
should thus be considered with caution.
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Future Directions

Intuitively, one would like to interpret the posterior
distribution of the modulators along the tree in historical
terms. However, the patterns found in the present analysis
(see supplementary fig. S1, Supplementary Material online)
do not lend themselves to an easy cladistic interpretation, as
what was found previously on a simpler case (Blanquart
and Lartillot 2006). This observation suggests that, at least
under the present version of the model, the break point dis-
tribution is more an ad hoc device providing the model with
some nonparametric flexibility with respect to composi-
tional heterogeneities than a reliable account of the history
of events of compositional drifts along the lineages. Note,
however, that this does not prevent the posterior mean mod-
ulators along each branch to provide potentially good esti-
mates of the average compositional propensities along the
corresponding lineages.

Apart from that, both our posterior predictive experi-
ments and cross-validations show that the CAT–BP model
has still quite a few weaknesses. For instance, although BP
and CAT–BP have been specifically devised to account for
compositional biases, both are slightly rejected by the com-
positional test (P , 0.05), indicating that the stochastic
process we have proposed to describe the modulations of
the stationary probabilities over time is not sufficiently so-
phisticated to accurately catch the dynamics of composi-
tional shifts along lineages. Several of its features can be
improved. First, modulators are drawn i.i.d. from the Gb

0

distribution. As proposed previously (Blanquart and
Lartillot 2006), it would be interesting to test first order
Markov processes instead, which would allow more fre-
quent but less dramatic changes along with time. The over-
all dimensionality/granularity of the process could be tuned
through the hyperparameters controlling the amplitude of
the discrete shifts or the rate of break point creation. In an-
other direction, the Dirichlet prior on modulators itself is
questionable and could also be a limiting factor for describ-
ing modulator shapes and likely transformations along
time. As an alternative parameterization, one could rely
on modulators defined in a log-scale, and endowed with
a multivariate Gaussian prior. Compared with a Dirichlet,
a multivariate Gaussian can be hyperparameterized with
much more flexibility (200 degrees of freedom [df] avail-
able, compared with the 20 df of the Dirichlet). Finally, in-
stead of using a piecewise constant process, one could use
a continuous autocorrelated diffusion process, similar to
those used for clock relaxation, but transposed in a multivar-
iate framework. All those alternative specifications are cur-
rently under investigation.

We also note that, in spite of its good performances in
the homoplasy test (xh), the CAT–BP model is rejected by
the test measuring the number of apparent synapomorphies
(xs). More experiments on various data sets are obviously
required to confirm this tendency, but this suggests remain-
ing model violations that are likely to have a significant im-
pact on the phylogenetic accuracy, as they directly bear on
the model’s anticipations concerning the intensity and the
structure of primary phylogenetic signal. Many candidate
misspecifications can be suggested, which could be respon-
sible for this weakness, among which the possible insuffi-

ciencies of the modulation process mentioned above, but
also of the mixture model across sites, or to yet other features,
like heterotachy, or even variations with time of the site-
specific biochemical preferences. The latter 2 phenomena
can be modeled using Markov modulated models (Galtier
2001; Holmes and Rubin 2002). Importantly, as was illus-
trated by this study, such model improvements, all of which
have already been proposed in the recent phylogenetic liter-
ature, should now be tested in combination with each other,
rather than separately, so as to take advantage of potential
synergistic effects such as the one observed here between
CAT and BP.

Supplementary Material

Supplementary material, figures S1–S11, and tables
1–5 are available at Molecular Biology and Evolution
online (http://www.mbe.oxfordjournals.org/).
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