Chedy Raïssi
email: raissi@lirmm.fr

Marc Plantevit
email: plantevi@lirmm.fr

Mining Multidimensional Sequential Patterns over Data Streams

Sequential pattern mining is an active field in the domain of knowledge discovery and has been widely studied for over a decade by data mining researchers. More and more, with the constant progress in hardware and software technologies, real-world applications like network monitoring systems or sensor grids generate huge amount of streaming data. This new data model, seen as a potentially infinite and unbounded flow, calls for new real-time sequence mining algorithms that can handle large volume of information with minimal scans. However, current sequence mining approaches fail to take into account the inherent multidimensionality of the streams and all algorithms merely mine correlations between events among only one dimension. Therefore, in this paper, we propose to take multidimensional framework into account in order to detect high-level changes like trends. We show that multidimensional sequential pattern mining over data streams can help detecting interesting high-level variations. We demonstrate with empirical results that our approach is able to extract multidimensional sequential patterns with an approximate support guarantee over data streams.

Introduction

Sequential patterns have been studied for more than a decade [START_REF] Agrawal | Mining sequential patterns[END_REF], with substantial research and industrial applications. Sequence pattern mining allows the discovery of frequent sequences and helps identifying relations between itemsets in transactional database. However, sequential pattern mining is a difficult and challenging task as the search space for this problem is huge. To bypass this problem, researchers have developed mining algorithms based on the Apriori property [START_REF] Agrawal | Mining sequential patterns[END_REF] or pattern growth paradigm [START_REF] Pei | Mining sequential patterns by pattern-growth: The prefixspan approach[END_REF]. Lately, these approaches have been extended to mine multidimensional sequential patterns [START_REF] Pinto | Multi-dimensional sequential pattern mining[END_REF][START_REF] Plantevit | M 2 SP: Mining sequential patterns among several dimensions[END_REF][START_REF] Yu | Mining sequential patterns from multidimensional sequence data[END_REF]. They aim at discovering more interesting patterns that take time into account and involve several analysis dimensions. For instance, in [START_REF] Plantevit | M 2 SP: Mining sequential patterns among several dimensions[END_REF], rules like "A customer who bought a surfboard together with a bag in New York later bought a wetsuit in San Francisco" are discovered.

With the constant evolutions in hardware and software technologies, it becomes very affordable for companies and organisations to generate and store very large volume of information from various sources: network monitoring with TCP/IP traffic, financial transactions such as credit card customers operations, medical records and a wide variety of sensor logs. This large amount of data calls for the study of a new model called data streams, where the data appears as a continuous, high-speed and unbounded flow. Compared to the classical mining approaches from static transaction databases, the problem of mining sequences over data streams is far more challenging. It is indeed often impossible to mine patterns with classical algorithms requiring multiple scans over a database. Consequently, new approaches were proposed to mine itemsets [START_REF] Chi | Moment: Maintaining closed frequent itemsets over a stream sliding window[END_REF][START_REF] Giannella | Mining frequent patterns in data streams at multiple time granularities[END_REF][START_REF] Li | An efficient algorithm for mining frequent itemsets over the entire history of data streams[END_REF][START_REF] Manku | Approximate frequency counts over data streams[END_REF]. But, few works focused on sequential patterns extraction over data streams [START_REF] Chen | Sequential pattern mining in multiple streams[END_REF][9] [START_REF] Raïssi | Need for speed: Mining sequential patterns in data streams[END_REF]. In this paper, we propose to consider the intrinsic multidimensionality of the streams for the extraction of more interesting sequential patterns. These patterns help detecting high-level changes like trends or outliers and are by far more advantageous for analysts than low-level abstraction patterns. However, the search space in multidimensional framework is huge. To overcome this difficulty, we only focus on the most specific abstraction level for items instead of mining at all possible levels. Furthermore, we mine time-sensitive data streams using a tilted-time frame approach that is more suitable for pattern mining. As a matter of fact, other models, like the landmark or sliding-window models, are often not appropriate since the set of frequent sequences is time-sensitive and it is often more important to detect changes in the sequences than sequences themselves.

The rest of this paper is organized as follows. Related work is described in Section 2. Preliminary concepts, problem description and a motivating example are introduced in Section 3. Section 4 presents our algorithm. The experiments and their results are described and discussed in Section 5. In the last section we give some conclusions and perspectives for future researches.

Related Work

Lately, sequential patterns have been extended to mine multidimensional sequential patterns in [START_REF] Pinto | Multi-dimensional sequential pattern mining[END_REF], [START_REF] Yu | Mining sequential patterns from multidimensional sequence data[END_REF] and [START_REF] Plantevit | M 2 SP: Mining sequential patterns among several dimensions[END_REF]. [START_REF] Pinto | Multi-dimensional sequential pattern mining[END_REF] is the first paper dealing with several dimensions in the framework of sequential patterns. The sequences found by this approach do not contain multiple dimensions since the time dimension only concerns products. In [START_REF] Yu | Mining sequential patterns from multidimensional sequence data[END_REF], the authors mine for sequential patterns in the framework of Web Usage Mining considering three dimensions (pages, sessions, days), those being very particular since they belong to a single hierarchized dimension.In [START_REF] Plantevit | M 2 SP: Mining sequential patterns among several dimensions[END_REF], rules combine several dimensions but also combine over time. In the rule A customer who bought a surfboard together with a bag in NY later bought a wetsuit in SF, N Y appears before SF , and surf board appears before wetsuit. In [START_REF] Raïssi | Need for speed: Mining sequential patterns in data streams[END_REF], the authors propose a new approach, called Speed (Sequential Patterns Efficient Extraction in Data streams), to identify maximal sequential patterns over a data stream. It is the first approach defined for mining sequential patterns in streaming data. The main originality of this mining method is that the authors use a novel data structure to maintain frequent sequential patterns coupled with a fast pruning strategy. At any time, users can issue requests for frequent sequences over an arbitrary time interval. Furthermore, this approach produces an approximate answer with an assurance that it will not bypass user-defined frequency and temporal thresholds. In [START_REF] Marascu | Mining sequential patterns from data streams: a centroid approach[END_REF], the authors propose an algorithm based on sequences alignment for mining approximate sequential patterns in Web usage data streams. In [START_REF] Han | Stream cube: An architecture for multi-dimensional analysis of data streams[END_REF] is introduced an efficient stream data cubing algorithm which computes only the layers along a popular path and leaves the other cuboids for query driven, on-line computation. Moreover, a tilted-time window model is also used to construct and maintain the cuboid incrementally.

We can denote that the approach defined in [START_REF] Chen | Sequential pattern mining in multiple streams[END_REF] is totally different from our proposal even if some notations seem to be similar. Indeed, the authors propose to handle several data streams. However, they only consider one analysis dimension over each data stream.

Problem Definition

In this section, we define the problem of mining multidimensional sequential patterns in a database and over a data stream.

Let DB be a set of tuples defined on a set of n dimensions denoted by D. We consider a partitioning of D into three sets: the set of the analysis dimensions D A , the set of reference dimensions D R and the set of temporal dimensions

D t . A multidimensional item a = (d 1 , . . . , d m) is a tuple such that for every i = 1 . . . m, d i ∈ Dom(D i) ∪ { * }, D i ∈ D A .
The symbol * stands for wild-card value that can be interpreted by ALL.

A multidimensional itemset i = {a 1 , . . . , a k } is a non-empty set of multidimensional items such that for all distinct i, j in {1 . . . k}, a i and a j are incomparable. A multidimensional sequence s = i 1 , . . . , i l is an ordered list of multidimensional itemsets. Given a table T , the projection over D t ∪ D A of the set of all tuples in T having the same restriction r over D R is called a block. Thus, each block B r identifies a multidimensional data sequences.

A multidimensional data sequence identified by B r supports a multidimensional sequence s = i 1 , . . . , i l if for every item a i of every itemset i j , there exists a tuple (t, a i) in B r such that a i ⊆ a i with respect to the ordered relation (itemset i 1 must be discovered before itemset i 2 , etc.). The support of a sequence s is the number of blocks that support s. Given a user-defined minimum support threshold minsup, a sequence is said to be frequent if its support is greater than or equal to minsup.

Given a set of blocks B DB,DR on a table DB, the problem of mining multidimensional sequential patterns is to discover all multidimensional sequences that have a support greater than or equal to the user specified minimum support threshold minsup (denoted σ).

Because of wild card value, multidimensional items can be too general. Such items do not describe the data source very well. In other words, they are too general to be useful and meaningful to enhance the decision making process. Moreover, these items combinatorially increase the search space. In this paper, we thus focus on the most specific frequent items to generate the multidimensional sequential patterns. For instance, if items (LA, * , M, *) and (* , * , M, W ii) are frequent, we do not consider the frequent items (LA, * , * , *), (* , * , M, *) and (* , * , M, W ii) which are more general than (LA, * , M, *) and (* , * , M, W ii).

Let data stream DS = B 0 , B 1 , . . . , B n , be an infinite sequence of batches, where each batch is associated with a timestamp t, i.e. B t , and n is the identifier of the most recent batch B n . A batch B i is defined as a set of multidimensional blocks appearing over the stream at the i th time unit,

B i = {B 1 , B 2 , B 3 , ..., B k } .
Furthermore, the data model is fixed for the data stream: all batches are defined over the same set of dimensions D. For each block B k in B i we are thus provided with the corresponding list of itemsets. The length L DS of the data stream is defined as Therefore, given a user-defined minimal support σ, the problem of mining multidimensional sequential patterns over data stream DS is to extract and update frequent sequences S such that: support(S) ≥ σ.L DS .

L DS = |B 0 | + |B 1 | + . . . + |B n |
However, and in order to respect the completeness of our sequential pattern extraction, any data stream mining algorithm should take into account the evolution of sequential patterns support over time: infrequent sequences at an instant t could become frequent later at t+1 and a frequent sequence could also not stay such. If a sequence become frequent over time and we did not store its previous support, it will be impossible to compute its correct overall support. Any mining algorithm should thus store necessary informations for frequent sequences, but also for candidate sub-frequent patterns that could become frequent [START_REF] Giannella | Mining frequent patterns in data streams at multiple time granularities[END_REF]. A sequence S is called sub-frequent if: ≤ Support(S) ≤ σ, where is a user defined support error threshold.

Motivating Example

In order to illustrate our previous definitions, we focus only on the two month tables (also called batches) in Figure 1: October and November. More precisely, these batches describe the customer purchases according to 6 attributes or dimensions: the Customers id, the purchase Date, the shipment City, the customer social group Customer-group, the customer age group Age-group and the Product as shown in Figure 1. Suppose that a company analyst wants to extract multidimensional sequences for the discovery of new marketing rules based on customers purchasing evolutions from October to November. The analysts would like to get all the sequences that are frequent in at least 50% of the customers in each batch. Note that each row for a customer contains a transaction number and a multidimensional item. From the October batch, the analyst extracts three different sequences: (i) The first sequence: {(* , * , M, *)} is a single item sequence. This states that at least 2 customers out of 3 buying entertainment products are middle aged. (ii) The second sequence: {(LA, * , * , *)} is also a single item one. The analyst can infer that at least 2 customers out of 3 asked for their purchases to be shipped in Los Angeles. (iii) The third sequence:

{(* , * , M, *)}{(* , * , M, *)} , is a 2-item sequence. This is an interesting knowledge for the analyst as it means that 2 customers out of 3 are middle aged and that they bought entertainment products twice in October. Then the analyst extracts sequences for November. He finds 9 sequences but 3 are really interesting: (i) {(LA, * , Y, *)} , this is an extremely valuable new knowledge as it informs the analyst that 2 out of 4 customers that ask to be shipped in Los Angeles are young people. This is also a specialization of the second sequence from October's batch. (ii) {(LA, * , * , iP od)} , this informs the analyst that 2 out of 4 customers that have asked to be shipped in Los Angeles bought the iPod product. Thus, the analyst can use this knowledge to build, for instance, targeted customers offers for the next month. Notice that this sequence is also a specialization of the second sequence from the previous batch. (iii) {(* , * , M, W ii)} , this sequence infers that 2 out of 4 customers are middle-aged and bought a brand new Wii console in November. This is also a specialization of the first sequence of October's batch. Plus, this sequence highlights the appearence of a new product on the market: the Wii console.

The M DSDS Approach

In M DSDS, the extraction of multidimensional sequential patterns is the most challenging step. In order to optimize it we divide the process into two different steps:

1. M DSDS extracts the most specific multidimensional items. Most specific items are a good alternative to the potential huge set of frequent multidimensional items that can be usually extracted. Indeed, they allow to factorize knowledge, as more general patterns can be inferred from them in a postprocessing step. Furthermore, mining most specific multidimensional items allows the detection of generalization or specialization of items with wildcard values appearing or disappearing in an item over time. 2. Using the extracted most specific items, we mine sequences containing only these items in a classical fashion using PrefixSpan algorithm [START_REF] Pei | Mining sequential patterns by pattern-growth: The prefixspan approach[END_REF] When applying this strategy, frequent sequences with too general items are not mined if there exist some more specific ones. However, this is not a disadvantage since these sequences often represent too general knowledge which is useless and uninteresting for the analysts (e.g. decision maker). M DSDS uses a data structure consisting of a prefix-tree containing items and tilted-time windows tables embedded in each node of the tree to ensure the maintenance of support information for frequent and sub-frequent sequences. We use tilted-time windows table technique in our approach to store sequences supports for every processed batch. Tilted-time windows notion was first introduced in [START_REF] Chen | Multi-dimensional regression analysis of time-series data streams[END_REF] and is based on the fact that people are often interested in recent changes at a fine granularity but long term changes at a coarse one. By matching a tilted-time window for each mined sequence of the stream, we build a history of the support of the sequence over time. The patterns in our approach are divided into three categories: frequent patterns, sub-frequent patterns and infrequent patterns. Sub-frequent patterns may become frequent later (in the next batches from the data stream), thus M DSDS has to store and maintain their support count as for the frequent ones. Only the infrequent patterns are not stored in the prefix-tree. The cardinality of the set of sub-frequent patterns that are maintained is decided by the user and called support error threshold, denoted . The updating operations are done after receiving a batch from the data stream: at the prefix-tree level (adding new items and pruning) and at the tilted-time window table level (updating support values). First, multidimensional sequential patterns are extracted from the batch and projected in the prefix-tree structure. Second, the tilted-time windows table for each multidimensional sequential pattern is updated by the support of the sequence in the current batch. The pruning techniques relative to tilted-time windows table are then applied. Generalization and specialization of sequences are detected during the maintenance.

Algorithm

We now describe in more details the M DSDS algorithm. This algorithm is divided in four steps :

1. As previously highlighted, mining most specific multidimensional items is the starting point for our multidimensional sequence extraction. We use a levelwise algorithm to build the frequent multidimensional items having the smallest possible number of wild-card values. Each item on the different analysis dimensions is associated with a unique integer value. We then mine the most specific multidimensional items based on this new mapping.

For instance, let us consider October's batch from Figure 1. Each value for each analysis dimension will be mapped to an integer value: N Y in the City dimension will be mapped to 1, LA to 2 and so on until Game in P roduct dimension which will be mapped to the value 15. With this new representation of the batch, the most specific frequent items extracted are: (2) and (8), in multidimensional representation: (LA, * , * , *) and (* , * , M, *). All the multidimensional items are stored in a data structure called mapping array. After this step, we can add an optional processing step in order to detect the appearance of specialization or generalization according to the previous processed batch. Indeed, a specific item which was frequent over the previous batches could become infrequent later. In this case, we consider some more general multidimensional items. In order to detect the specialization or generalization, the subroutine compare (by inclusion) each multidimensional item from the current batch with the multidimensional items in the previous batch. Notice that in order to keep the process fast, the items are compared only with the previous batch. 2. In order to have a consistant mining of frequent sequences we have to consider subfrequent sequences which may become frequent in future batches. Thus, the support is set to and we use the PrefixSpan algorithm [START_REF] Pei | Mining sequential patterns by pattern-growth: The prefixspan approach[END_REF] to mine efficiently the multidimensional sequences. The new mined sequences are added to the tree which maintain the set of frequent and subfrequent sequences over the data stream. 3. Finally, a last scan into the pattern tree is done in order to check if each node n was updated when batch B i was mined. If not, we insert 0 into n's tilted-time window table. Eventually, some pruning is done on the tilted-time window as defined in [START_REF] Giannella | Mining frequent patterns in data streams at multiple time granularities[END_REF].

Performance

In this section, we present the experiments we conducted in order to evaluate the feasability and the performances of the M DSDS approach. Throughout the experiments, we answer the following questions inherent to scalability issues : Does the algorithm mine and update its data structure before the arrival of the next batch? Does the mining process over a data stream remain bounded in term of memory ? The experiments were performed on a Core-Duo 2.16 Ghz MacBook Pro with 1GB of main memory, running Mac OS X 10.5.1. The algorithm was written in C++ using a modified Apriori code1 to mine the most specific multidimensional items and we modified PrefixSpan2 implementation to enable multidimensional sequence mining. We performed several tests with different real data sets that we gathered from TCP/IP network traffic at the University of Montpellier. The size of the batches is limited to 20000 transactions with an average of 5369 sequences per batch, the time to fill the batch varies w.r.t to the data distribution over the TCP/IP network.

A TCP/IP network can be seen as a very dense multidimensional stream. This is based on the following property: TCP and IP headers contain multiple different informations encapsulated in different formats that can vary drastically depending on the packet destination, its final application or the data it contains. We claim that generalization or specialization of the packets on the network (or even Denial of Services) can be detected by mining multidimensional sequential patterns over a local area network.

DS1 is very dense data set composed of 13 analysis dimensions based on the different TCP header options selected for their relevance by a network analyst expert (source port, destination port, time-to-live etc...), the data stream is divided into 204 batches for a total size of 1.58 GB. The results for the different

Conclusion

In this paper, we adress the problem of mining multidimensional sequential patterns in streaming data and propose the first approach called M DSDS for mining such patterns. By considering the most specific multidimensional items, this approach efficiently detects trends. Experiments on real data gathered from TCP/IP network traffic provide compelling evidence that it is possible to obtain accurate and fast results for multidimensional sequential pattern mining. This work can be extended following several directions. For example, we can take hierarchies into account in order to enhance the trend detection and discover trends like "In october, console sales are frequent whereas a specific console become frequent in November (Wii)". Besides, to fit to OLAP framework, we should take approximate values on quantitative dimensions into account with constrained base multidimensional pattern mining. Finally, our results shows the potential of further work on multidimensional sequential pattern mining and specially in the new challenging data streams model.

 where |B i | stands for the cardinality of the set B i in terms of multidimensional blocks. In our current example, L DS = |B October | + |B November | = 7, with |B October | = 3 (B C1 , B C2 and B C3) and |B November | = 4 (B C4 , B C5 ,B C6 and B C7).

Fig. 1 .

 1 Fig. 1. Multidimensional tables

Fig. 2 .Fig. 3 .

 23 Fig. 2. Experiments carried out on TCP/IP network data

http://www.adrem.ua.ac.be/ goethals/software/

http://illimine.cs.uiuc.edu/