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Abstract. Sequential pattern mining is an active field in the domain of
knowledge discovery and has been widely studied for over a decade by
data mining researchers. More and more, with the constant progress in
hardware and software technologies, real-world applications like network
monitoring systems or sensor grids generate huge amount of streaming
data. This new data model, seen as a potentially infinite and unbounded
flow, calls for new real-time sequence mining algorithms that can han-
dle large volume of information with minimal scans. However, current
sequence mining approaches fail to take into account the inherent multi-
dimensionality of the streams and all algorithms merely mine correlations
between events among only one dimension. Therefore, in this paper, we
propose to take multidimensional framework into account in order to
detect high-level changes like trends. We show that multidimensional se-
quential pattern mining over data streams can help detecting interesting
high-level variations. We demonstrate with empirical results that our ap-
proach is able to extract multidimensional sequential patterns with an
approximate support guarantee over data streams.

1 Introduction

Sequential patterns have been studied for more than a decade [1], with substan-
tial research and industrial applications. Sequence pattern mining allows the
discovery of frequent sequences and helps identifying relations between item-
sets in transactional database. However, sequential pattern mining is a difficult
and challenging task as the search space for this problem is huge. To bypass
this problem, researchers have developed mining algorithms based on the Apri-
ori property [1] or pattern growth paradigm [10]. Lately, these approaches have
been extended to mine multidimensional sequential patterns [11, 12, 14]. They
aim at discovering more interesting patterns that take time into account and
involve several analysis dimensions. For instance, in [12], rules like “A customer
who bought a surfboard together with a bag in New York later bought a wetsuit
in San Francisco” are discovered.

With the constant evolutions in hardware and software technologies, it be-
comes very affordable for companies and organisations to generate and store
very large volume of information from various sources: network monitoring with
TCP/IP traffic, financial transactions such as credit card customers operations,
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medical records and a wide variety of sensor logs. This large amount of data calls
for the study of a new model called data streams, where the data appears as a
continuous, high-speed and unbounded flow. Compared to the classical mining
approaches from static transaction databases, the problem of mining sequences
over data streams is far more challenging. It is indeed often impossible to mine
patterns with classical algorithms requiring multiple scans over a database. Con-
sequently, new approaches were proposed to mine itemsets [4, 5, 7, 8]. But, few
works focused on sequential patterns extraction over data streams [2][9][13].
In this paper, we propose to consider the intrinsic multidimensionality of the
streams for the extraction of more interesting sequential patterns. These pat-
terns help detecting high-level changes like trends or outliers and are by far
more advantageous for analysts than low-level abstraction patterns. However,
the search space in multidimensional framework is huge. To overcome this dif-
ficulty, we only focus on the most specific abstraction level for items instead of
mining at all possible levels. Furthermore, we mine time-sensitive data streams
using a tilted-time frame approach that is more suitable for pattern mining. As
a matter of fact, other models, like the landmark or sliding-window models, are
often not appropriate since the set of frequent sequences is time-sensitive and
it is often more important to detect changes in the sequences than sequences
themselves.

The rest of this paper is organized as follows. Related work is described in
Section 2. Preliminary concepts, problem description and a motivating example
are introduced in Section 3. Section 4 presents our algorithm. The experiments
and their results are described and discussed in Section 5. In the last section we
give some conclusions and perspectives for future researches.

2 Related Work

Lately, sequential patterns have been extended to mine multidimensional se-
quential patterns in [11], [14] and [12]. [11] is the first paper dealing with several
dimensions in the framework of sequential patterns. The sequences found by this
approach do not contain multiple dimensions since the time dimension only con-
cerns products. In [14], the authors mine for sequential patterns in the framework
of Web Usage Mining considering three dimensions (pages, sessions, days), those
being very particular since they belong to a single hierarchized dimension.In
[12], rules combine several dimensions but also combine over time. In the rule A
customer who bought a surfboard together with a bag in NY later bought a wetsuit
in SF, NY appears before SF , and surfboard appears before wetsuit. In [13],
the authors propose a new approach, called Speed (Sequential Patterns Effi-
cient Extraction in Data streams), to identify maximal sequential patterns over
a data stream. It is the first approach defined for mining sequential patterns in
streaming data. The main originality of this mining method is that the authors
use a novel data structure to maintain frequent sequential patterns coupled with
a fast pruning strategy. At any time, users can issue requests for frequent se-
quences over an arbitrary time interval. Furthermore, this approach produces an
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approximate answer with an assurance that it will not bypass user-defined fre-
quency and temporal thresholds. In [9], the authors propose an algorithm based
on sequences alignment for mining approximate sequential patterns in Web us-
age data streams. In [6] is introduced an efficient stream data cubing algorithm
which computes only the layers along a popular path and leaves the other cuboids
for query driven, on-line computation. Moreover, a tilted-time window model is
also used to construct and maintain the cuboid incrementally.

We can denote that the approach defined in [2] is totally different from our
proposal even if some notations seem to be similar. Indeed, the authors pro-
pose to handle several data streams. However, they only consider one analysis
dimension over each data stream.

3 Problem Definition

In this section, we define the problem of mining multidimensional sequential
patterns in a database and over a data stream.

Let DB be a set of tuples defined on a set of n dimensions denoted by D. We
consider a partitioning of D into three sets: the set of the analysis dimensions
DA, the set of reference dimensions DR and the set of temporal dimensions Dt. A
multidimensional item a = (d1, . . . , dm) is a tuple such that for every i = 1 . . .m,
di ∈ Dom(Di) ∪ {∗}, Di ∈ DA. The symbol * stands for wild-card value that
can be interpreted by ALL.

A multidimensional itemset i = {a1, . . . , ak} is a non-empty set of mul-
tidimensional items such that for all distinct i, j in {1 . . . k}, ai and aj are
incomparable. A multidimensional sequence s = 〈i1, . . . , il〉 is an ordered list of
multidimensional itemsets. Given a table T , the projection over Dt ∪ DA of the
set of all tuples in T having the same restriction r over DR is called a block.
Thus, each block Br identifies a multidimensional data sequences.

A multidimensional data sequence identified by Br supports a multidimen-
sional sequence s = 〈i1, . . . , il〉 if for every item ai of every itemset ij, there
exists a tuple (t, a′

i) in Br such that a′
i ⊆ ai with respect to the ordered relation

(itemset i1 must be discovered before itemset i2, etc.). The support of a sequence
s is the number of blocks that support s. Given a user-defined minimum support
threshold minsup, a sequence is said to be frequent if its support is greater than
or equal to minsup.

Given a set of blocks BDB,DR on a table DB, the problem of mining mul-
tidimensional sequential patterns is to discover all multidimensional sequences
that have a support greater than or equal to the user specified minimum support
threshold minsup (denoted σ).

Because of wild card value, multidimensional items can be too general. Such
items do not describe the data source very well. In other words, they are too
general to be useful and meaningful to enhance the decision making process.
Moreover, these items combinatorially increase the search space. In this paper,
we thus focus on the most specific frequent items to generate the multidimen-
sional sequential patterns. For instance, if items (LA, ∗, M, ∗) and (∗, ∗, M, Wii)
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are frequent, we do not consider the frequent items (LA, ∗, ∗, ∗), (∗, ∗, M, ∗) and
(∗, ∗, M, Wii) which are more general than (LA, ∗, M, ∗) and (∗, ∗, M, Wii).

Let data stream DS = B0, B1, . . . , Bn, be an infinite sequence of batches,
where each batch is associated with a timestamp t, i.e. Bt, and n is the identifier
of the most recent batch Bn. A batch Bi is defined as a set of multidimensional
blocks appearing over the stream at the ith time unit, Bi = {B1,B2,B3, ...,Bk} .
Furthermore, the data model is fixed for the data stream: all batches are defined
over the same set of dimensions D. For each block Bk in Bi we are thus provided
with the corresponding list of itemsets. The length LDS of the data stream is
defined as LDS = |B0| + |B1| + . . . + |Bn| where |Bi| stands for the cardinal-
ity of the set Bi in terms of multidimensional blocks. In our current example,
LDS = |BOctober | + |BNovember | = 7, with |BOctober| = 3 (BC1 , BC2 and BC3)
and |BNovember | = 4 (BC4 , BC5,BC6 and BC7).

Therefore, given a user-defined minimal support σ, the problem of mining
multidimensional sequential patterns over data stream DS is to extract and
update frequent sequences S such that: support(S) ≥ σ.LDS .

However, and in order to respect the completeness of our sequential pattern
extraction, any data stream mining algorithm should take into account the evolu-
tion of sequential patterns support over time: infrequent sequences at an instant
t could become frequent later at t+1 and a frequent sequence could also not stay
such. If a sequence become frequent over time and we did not store its previous
support, it will be impossible to compute its correct overall support. Any mining
algorithm should thus store necessary informations for frequent sequences, but
also for candidate sub-frequent patterns that could become frequent [5]. A se-
quence S is called sub-frequent if: ε ≤ Support(S) ≤ σ, where ε is a user defined
support error threshold.

October

CID Date Customer Informations

C1 1 NY Educ. Middle CD

C1 1 NY Educ. Middle DV D

C1 2 LA Educ Middle CD

C2 1 SF Prof. Middle PS3

C2 2 SF Prof. Middle xbox

C3 1 DC Business Retired PS2

C3 1 LA Business Retired Game

November

CID Date Customer Informations

C4 1 NY Business Middle Wii

C4 2 NY Business Middle Game

C5 1 LA Prof. Middle Wii

C5 1 LA Prof. Middle iPod

C6 1 LA Educ. Y oung PSP

C6 2 LA Educ. Y oung iPod

C7 1 LA Business Y oung PS2

Fig. 1. Multidimensional tables

3.1 Motivating Example

In order to illustrate our previous definitions, we focus only on the two month
tables (also called batches) in Figure 1: October and November. More precisely,
these batches describe the customer purchases according to 6 attributes or di-
mensions: the Customers id, the purchase Date, the shipment City, the customer
social group Customer-group, the customer age group Age-group and the Prod-
uct as shown in Figure 1. Suppose that a company analyst wants to extract
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multidimensional sequences for the discovery of new marketing rules based on
customers purchasing evolutions from October to November.

The analysts would like to get all the sequences that are frequent in at least
50% of the customers in each batch. Note that each row for a customer contains
a transaction number and a multidimensional item. From the October batch, the
analyst extracts three different sequences: (i) The first sequence: 〈{(∗, ∗, M, ∗)}〉
is a single item sequence. This states that at least 2 customers out of 3 buying en-
tertainment products are middle aged. (ii) The second sequence: 〈{(LA, ∗, ∗, ∗)}
is also a single item one. The analyst can infer that at least 2 customers out of 3
asked for their purchases to be shipped in Los Angeles. (iii) The third sequence:
〈{(∗, ∗, M, ∗)}{(∗, ∗, M, ∗)}〉, is a 2-item sequence. This is an interesting knowl-
edge for the analyst as it means that 2 customers out of 3 are middle aged and
that they bought entertainment products twice in October. Then the analyst ex-
tracts sequences for November. He finds 9 sequences but 3 are really interesting:
(i) 〈{(LA, ∗, Y, ∗)}〉, this is an extremely valuable new knowledge as it informs
the analyst that 2 out of 4 customers that ask to be shipped in Los Angeles are
young people. This is also a specialization of the second sequence from October’s
batch. (ii) 〈{(LA, ∗, ∗, iPod)}〉, this informs the analyst that 2 out of 4 customers
that have asked to be shipped in Los Angeles bought the iPod product. Thus,
the analyst can use this knowledge to build, for instance, targeted customers of-
fers for the next month. Notice that this sequence is also a specialization of the
second sequence from the previous batch. (iii) 〈{(∗, ∗, M, Wii)}〉, this sequence
infers that 2 out of 4 customers are middle-aged and bought a brand new Wii
console in November. This is also a specialization of the first sequence of Octo-
ber’s batch. Plus, this sequence highlights the appearence of a new product on
the market: the Wii console.

4 The MDSDS Approach

In MDSDS, the extraction of multidimensional sequential patterns is the most
challenging step. In order to optimize it we divide the process into two different
steps:

1. MDSDS extracts the most specific multidimensional items. Most specific
items are a good alternative to the potential huge set of frequent multidimen-
sional items that can be usually extracted. Indeed, they allow to factorize
knowledge, as more general patterns can be inferred from them in a post-
processing step. Furthermore, mining most specific multidimensional items
allows the detection of generalization or specialization of items with wild-
card values appearing or disappearing in an item over time.

2. Using the extracted most specific items, we mine sequences containing only
these items in a classical fashion using PrefixSpan algorithm[10]

When applying this strategy, frequent sequences with too general items are
not mined if there exist some more specific ones. However, this is not a disadvan-
tage since these sequences often represent too general knowledge which is useless
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and uninteresting for the analysts (e.g. decision maker). MDSDS uses a data
structure consisting of a prefix-tree containing items and tilted-time windows
tables embedded in each node of the tree to ensure the maintenance of support
information for frequent and sub-frequent sequences. We use tilted-time windows
table technique in our approach to store sequences supports for every processed
batch. Tilted-time windows notion was first introduced in [3] and is based on
the fact that people are often interested in recent changes at a fine granularity
but long term changes at a coarse one. By matching a tilted-time window for
each mined sequence of the stream, we build a history of the support of the se-
quence over time. The patterns in our approach are divided into three categories:
frequent patterns, sub-frequent patterns and infrequent patterns. Sub-frequent
patterns may become frequent later (in the next batches from the data stream),
thus MDSDS has to store and maintain their support count as for the frequent
ones. Only the infrequent patterns are not stored in the prefix-tree. The cardinal-
ity of the set of sub-frequent patterns that are maintained is decided by the user
and called support error threshold, denoted ε. The updating operations are done
after receiving a batch from the data stream: at the prefix-tree level (adding new
items and pruning) and at the tilted-time window table level (updating support
values). First, multidimensional sequential patterns are extracted from the batch
and projected in the prefix-tree structure. Second, the tilted-time windows table
for each multidimensional sequential pattern is updated by the support of the
sequence in the current batch. The pruning techniques relative to tilted-time
windows table are then applied. Generalization and specialization of sequences
are detected during the maintenance.

4.1 Algorithm

We now describe in more details the MDSDS algorithm. This algorithm is
divided in four steps :

1. As previously highlighted, mining most specific multidimensional items is
the starting point for our multidimensional sequence extraction. We use a
levelwise algorithm to build the frequent multidimensional items having the
smallest possible number of wild-card values. Each item on the different
analysis dimensions is associated with a unique integer value. We then mine
the most specific multidimensional items based on this new mapping.

For instance, let us consider October’s batch from Figure 1. Each value for
each analysis dimension will be mapped to an integer value: NY in the City
dimension will be mapped to 1, LA to 2 and so on until Game in Product
dimension which will be mapped to the value 15. With this new represen-
tation of the batch, the most specific frequent items extracted are: (2) and
(8), in multidimensional representation: (LA, ∗, ∗, ∗) and (∗, ∗, M, ∗). All the
multidimensional items are stored in a data structure called mapping array.
After this step, we can add an optional processing step in order to detect
the appearance of specialization or generalization according to the previous
processed batch. Indeed, a specific item which was frequent over the previ-
ous batches could become infrequent later. In this case, we consider some
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more general multidimensional items. In order to detect the specialization or
generalization, the subroutine compare (by inclusion) each multidimensional
item from the current batch with the multidimensional items in the previous
batch. Notice that in order to keep the process fast, the items are compared
only with the previous batch.

2. In order to have a consistant mining of frequent sequences we have to con-
sider subfrequent sequences which may become frequent in future batches.
Thus, the support is set to ε and we use the PrefixSpan algorithm [10] to
mine efficiently the multidimensional sequences. The new mined sequences
are added to the tree which maintain the set of frequent and subfrequent
sequences over the data stream.

3. Finally, a last scan into the pattern tree is done in order to check if each
node n was updated when batch Bi was mined. If not, we insert 0 into n’s
tilted-time window table. Eventually, some pruning is done on the tilted-time
window as defined in [5].

5 Performance

In this section, we present the experiments we conducted in order to evaluate
the feasability and the performances of the MDSDS approach. Throughout
the experiments, we answer the following questions inherent to scalability issues
: Does the algorithm mine and update its data structure before the arrival of
the next batch? Does the mining process over a data stream remain bounded
in term of memory ? The experiments were performed on a Core-Duo 2.16
Ghz MacBook Pro with 1GB of main memory, running Mac OS X 10.5.1. The
algorithm was written in C++ using a modified Apriori code1 to mine the most
specific multidimensional items and we modified PrefixSpan2 implementation
to enable multidimensional sequence mining. We performed several tests with
different real data sets that we gathered from TCP/IP network traffic at the
University of Montpellier. The size of the batches is limited to 20000 transactions
with an average of 5369 sequences per batch, the time to fill the batch varies
w.r.t to the data distribution over the TCP/IP network.

A TCP/IP network can be seen as a very dense multidimensional stream.
This is based on the following property: TCP and IP headers contain multiple
different informations encapsulated in different formats that can vary drastically
depending on the packet destination, its final application or the data it contains.
We claim that generalization or specialization of the packets on the network (or
even Denial of Services) can be detected by mining multidimensional sequential
patterns over a local area network.

DS1 is very dense data set composed of 13 analysis dimensions based on the
different TCP header options selected for their relevance by a network analyst
expert (source port, destination port, time-to-live etc...), the data stream is
divided into 204 batches for a total size of 1.58 GB. The results for the different
1 http://www.adrem.ua.ac.be/ goethals/software/
2 http://illimine.cs.uiuc.edu/
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Fig. 2. Experiments carried out on TCP/IP network data
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experimentations are listed in figures 2(a), 2(b), 2(c) and 2(d). The computation
time for a batch over DS1 do not exceed 25 seconds, our algorithm never goes
beyond this limit when extracting multidimensional sequences, leaving enough
time for the data gathering for the next batch. The experimentation total time is
2600 seconds. Figure 2(a) depicts the computation time needed for the batches
processing by our algorithm for a support value of σ = 0.15% and an error value
of ε = 0.1%. MDSDS is also bounded in term of memory constraint. Figure 2(c)
depicts the memory behavior of the algorithm on DS1. We see that the space
usage is bounded above and stable (less than 6 Mb) with spikes when extracting
the sequences and updating the tilted-time windows. The effective processing
rate is approximately 1400 transactions per second. Specializations (Figure 3(a))
and generalizations (Figure 3(b)) of the frequent multidimensional items vary
between batches but is bounded by a maximum of 41 specializations and 39
generalizations between two batches. From these results, the network analyst
expert can deduce some new knowledge on the state of the network traffic, for
example between batch 150 and batch 151, the multidimensional item (V ER :
4, IPLEN : 5, TOS : 0, PLEN > 21, IPID : [10K, 20K[, [AF ], DF : 1, PROT :
6, TCPHLEN : 5, SEQ NUM : +65K) which states that most of the packets
are based on the TCP protocol with some options on the version, packet length
etc gets specialized into (V ER : 4, IPLEN : 5, TOS : 0, PLEN > 21, IPID :
[10K, 20K[, [AF ], DF : 1, TTL : 128, PROT : 6, TCPHLEN : 5, SEQ NUM :
+65K). Notice the appearance of TTL : 128, which states that at batch 150
most of the packets had different time-to-live values but starting from batch
151, most of the packets now have a time-to-live to 128. From a network analysis
point of view, this means that all the packets are now topologically concentrated
in less than 128 hops from the source to the destination host. Several other
specializations or generalizations give some other insights on the traffic trends
and evolutions. For example, items that specialize with the value DSTP : [32K[,
means that the destination ports for the different applications are used for video
or music streaming (applications for multimedia streaming usually have their
ports number starting from 32771).

6 Conclusion

In this paper, we adress the problem of mining multidimensional sequential
patterns in streaming data and propose the first approach called MDSDS for
mining such patterns. By considering the most specific multidimensional items,
this approach efficiently detects trends. Experiments on real data gathered from
TCP/IP network traffic provide compelling evidence that it is possible to obtain
accurate and fast results for multidimensional sequential pattern mining. This
work can be extended following several directions. For example, we can take hier-
archies into account in order to enhance the trend detection and discover trends
like “In october, console sales are frequent whereas a specific console become fre-
quent in November (Wii)”. Besides, to fit to OLAP framework, we should take
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approximate values on quantitative dimensions into account with constrained
base multidimensional pattern mining.

Finally, our results shows the potential of further work on multidimensional
sequential pattern mining and specially in the new challenging data streams
model.
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