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ABSTRACT
Even if they have proven to be relevant on traditional trans-
actional databases, data mining tools are still inefficient on
some kinds of databases. In particular, databases contain-
ing discrete values or having a value for each item, like gene
expression data, are especially challenging. On such data,
existing approaches either transform the data to classical
binary attributes, or use discretisation, including fuzzy par-
tition to deal with the data. However, binary mapping of
such databases drives to a loss of information and extracted
knowledge is not exploitable for end-users. Thus, power-
ful tools designed for this kind of data are needed. On the
other hand, existing fuzzy approaches hardly take gradual
notions into account, or are not scalable enougth to tackle
the problem.

In this paper, we thus propose a heuristic in order to ex-
tract tendencies, in the form of gradual association rules. A
gradual rule can be read as“The more X and the less Y, then
the more V and the less W ”. Instead of using fuzzy sets, we
apply our method directly on valued data and we propose
an efficient heuristic, thus reducing combinatorial complex-
ity and scalability. Experiments on synthetic datasets show
the interest of our method.

Categories and Subject Descriptors
H.2.8 [Data mining]: Miscellaneous

Keywords
Gradual Rules, Data Mining, Trends

1. INTRODUCTION
Data mining aims at helping users to extract frequent pat-

terns from large datasets. Many kinds of schemas have been
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proposed, such as the well known association rules [1], pro-
viding confidence and frequency information. Association
rules can be written as “X ⇒ Y ” (Freq%, Conf%) where X
and Y are disjoint sets of attributes. “Freq” measures the
number of occurrences of X ∪ Y in the entire database, and
“Conf ” is the probability to obtain Y when X occurs.

These first methods were originally designed to fit binary
attributes. However, with the evolution of storage tools,
most of the databases do not only contain binary attributes,
but rather discrete values, such as quantity values (in a su-
permarket, for example) or observation measures (for exam-
ple, sensor readings).

Thus, new challenges are raised: how to integrate this kind
of attributes? How can we represent them without loosing
information? Fuzzy logic plays an important role to resolve
quantity and uncertainty problems. As these methods are
successful in data mining, new works taking new structures
into account have raised. These last years, we have seen the
apparition of proposals dealing with the notion of “gradual
values”[4]. Most of them plug gradual approaches into data
mining algorithms, in order to extract “gradual association
rules” . We consider here gradual rules in the form“the more
/ the less”, such as “the higher the age, the higher the pay”
or “the older a subject, the less his memory”.

These powerful structures can be applied in a wide range
of domains. Among them are the marketing datasets (“the
more increase of champaign sales, the more increase of caviar
sales”), sensor readings, and medical databases (gene databases,
symptom databases, etc.) where attributes are often quan-
titative (as for gene expressions database).

In this paper, we are interested in automatically and ef-
ficiently extracting gradual association rules. We propose
an heuristic, based on local set optimization. The rest of
this paper is organized as follows: first, we describe existing
work on gradual association rule extraction. In Section 3,
we present our definition of gradual. Then Section 4 shows
some experiments. Finally, we conclude after a brief discus-
sion.

2. RELATED WORK
As mentioned previously, fuzzy logic plays an important

role in quantitative data mining. In set theory, an item
belongs to a given set or to its complement. Such a system
cannot deal with quantitative values, as we will only consider
a presence of an item for a given object.

In fuzzy logic, an item can gradually belong to several
sets, according to a membership function. Semantically, the



membership degree denotes the idea of “more or less”. For
example, instead of being only cheap or expensive, a product
can be considered as mainly cheap and a little bit expensive.
For instance, the object o2 of the second row from table 1 is
mainly considered as a cheap object, but its prize is a little
bit expensive. Thus, one can define fuzzy sets on the domain
of a given item. Continuing the prize example, we introduce
two fuzzy sets: in Figure 2, a product is considered as totally
cheap up to 30 Euro, and starting to be expensive above 30
Euro. From 40 Euro, we consider the prize as expensive.
Then, each item value of the database can be transformed
as a membership degree to each corresponding fuzzy set, as
shown in Table 1.

Obj Pr. Ch. Exp.

o1 20 1 0
o2 33 0.75 0.25
o3 35 0.5 0.5
o4 60 0 1

Figure 1: Database Sample

0

1

30 40

Figure 2: Fuzzy Sets

In the general case, fuzzy association rule extraction is
done through an extension of classical rules extraction algo-
rithms. The main difference lies in the frequency definition:
the frequency of an itemset XY is defined on the logical con-
junction between X and Y , which can be expressed through
a t-norm operator. A t-norm expresses the membership de-
gree of X and Y together in a given fuzzy set. In a fuzzy
extraction rule process, minimum operator (min(X, Y )) and
Lukasievez operator (max(X+Y−1, 0)) are commonly used.
A fuzzy association rule is then of the form ([X, A]⇒ [Y, B]),
where A and B are fuzzy sets defined on X and Y domain
respectively. This rule can be read as “X is in A implies Y
is in B”.

Fuzzy sets are usually defined by the user. Thus, fuzzy
association rules are an interface between the user and the
database, as extracted knowledge will be based on user-
understandable fuzzy sets. Moreover, fuzzy rules have a
great expression power, as they give a linguistic sense to at-
tribute quantities. Therefore, fuzzy rule extraction has been
widely studied since these last years. But fuzzy theory does
not restrict itself to a membership degree meaning “X is in
A”. Indeed, fuzzy logic allows to integrate linguistic modi-
fiers, like “almost” or “more or less”. More recently, with the
apparition of performants algorithms, a particular attention
has been given to gradual expression extraction, using fuzzy
set.

According to Zadeh, the“transition from non-membership
to membership is gradual rather than abrupt”. Noticing that
gradualness is still missing part from fuzzy theory, [5] intro-
duces a formalization of the so-called “gradual element”. [5]
shows some possible applications of such elements, mainly in
fuzzy logic theory, like fuzzy cardinality or defuzzyfication.
However, gradual dependencies between fuzzy sets are not
really evoked in this paper.

Some works explore more deeply the notion of gradual
rules. Rescher-Gaines implication is employed in order to
measure gradualness (A(X) is the membership degree of X
in A):

X →RG Y =



1 if A(X) ≤ B(Y )
0 else

However, this kind of implication is too restrictive: value of
A(X) is ruled by B(Y ) value, giving thus 1 if B(Y ) increases.
By binarizing values, Rescher-Gaines does not really mea-
sure a variation of X value and Y value. Moreover, it is a
challenging issue to combine more than two items (see [8] for
a complete study) in the premise and the conclusion using a
Rescher-Gaines implication. To overcome this problem, [3]
proposes to mine rules having only one item in the conclu-
sion. The problem of managing several attributes is resolved
by using a t-norm operator in the premise of the implication.
This approach raises two kinds of problems. Firstly, a study
of extracted rules shows that not all the rules are coher-
ent on their semantic interpretation. For example, in some
case, two rules are contradictory. Secondly it is not possible
to combine increasing and decreasing variations (for exam-
ple “when age increases and performance decreases, then the
number of fired persons increases”).

[7] uses statistical analysis in order to extract gradual
rules. In the non fuzzy case, association can be represented
by the mean of contingency tables. [7] adapt these one to the
fuzzy context by the mean of a contingency diagram. Then,
linear regression is used in order to derive gradual rules. Af-
terwards, a quality measure keeps the more interesting rules.
This approach brings a new point of view, but cannot be di-
rectly adapted to a classical algorithm, as linear regression
could quickly become a bottleneck. [7] offers a good for-
malization and notices that an extraction of positive and
negative trends could result in a redundancy information.

Starting from this last observation, [2] formalizes four
kinds of gradual rules of the form “The more / less X is in
A, then the more / less Y is in B”, and proposes an Apriori-
based [1] algorithm to extract them. However, frequency is
computed from pairs of objects, increasing the complexity
of the algorithm. Despite a good theoretical study, the algo-
rithm is limited to the extraction of gradual rules of length
3.

Finally, [6] is the first to formalize gradual sequential pat-
terns. This extension of association rules allows for the
combination of gradual temporality (“the more quickly”) and
gradual list of itemsets. The extraction is done by the algo-
rithm GRaSP, based on generalized sequential patterns [9]
to extract gradual temporal correlations.

All these approaches extract gradual rules from quanti-
tative databases using fuzzy membership degree. In this
paper, we simply use order relation directly on the values
instead of membership degrees. Moreover, this method over-
comes the problem of Rescher-Gaines conjunction, and ex-
tracts more relevant rules, as premise of the rule will not
be restricted on the conclusion. Thus, we are able to plug
new definitions to classical algorithms in order to be scal-
able. Defining increasing and decreasing items, allows us to
combine two kinds of items, and to extract gradual rules of
length n.

3. OUR APPROACH

3.1 Definitions
In this paper, we consider gradual rules like “when X

varies, then Y varies”. We consider a database DB con-
taining a set of objects O and a set of items I. Each row
represents a transaction t for a corresponding object, and
t[i] denotes the value associated to the item i. A sample
database is displayed on Table 1 with a set of eight persons



with their age, salary and number of cars. For example, the
person described by object o1 is 22 years old, earns 1,200
Euro a month, and has one car. From this kind of database,
we wish to extract rules like“The older the person, the higher
the salary”.

Our objective is to use a classical algorithm for associ-
ation rules extraction. There are two main paradigms to
extract association rules: pattern-growth approach, and gen-
erate and prune approach. Their efficiency is similar, even
if pattern-growth approach has been empirically proved to
be more efficient than generate and prune. In our case, this
approach can be used only if gradual items and gradual item-
sets are clearly defined. So, gradualness for a given item i
denotes two possible variations on its domain of values:

• The value increases. In this case, we have a gradual
item that can be interpreted by “the more i”. We note
it i+, and use the ≥ operator to extract it.

• The value decreases. In this case, we have a gradual
item that can be interpreted by “the less i”. We note
it i−, and use the ≤ operator to extract it.

Definition 1. (gradual item) Let i ∈ I be an item and
∗ ∈ {≥,≤} a comparison operator. Then a gradual item i∗

is defined as an item i associated to an operator ∗.

Definition 2. (gradual itemset) A gradual itemset is an
non-empty set of gradual items. A k-itemset is a gradual
itemset of length k, i.e. containing k gradual items.

Note that operators {≥,≤} are used, including the case
when two values are equal. Thus ordered values are directly
compared. In [2] a strict inequality is considered. In a clas-
sical way, frequency of an item is the number of transactions
containing this item. In a gradual context, we have to com-
pare each t[i] and to select the ones respecting an increasing
(or decreasing) variation. Thus, gradual mining automati-
cally leads to an object comparison. There are some ways to
achieve this, including a two-by-two comparison. Therefore,
to find objects supporting a gradual itemset, [2] projects
the database in a database of pairs. Thus, there is no loss
of information due to equality. For example, let us consider
the values for item “Car” in Table 1, and consider objects
o6, o7, o8. When looking for Car+, [2] will construct six
pairs: {(o6, o7), (o6, o8), (o7, o6), (o7, o8), (o8, o6), (o8, o7)}, and
will only keep {(o6, o7), (o6, o8)} as pairs respecting the in-
creasing variation.

However, projecting the database into a pair database
can be too memory consuming and will not allow for min-
ing large datasets, as it leads to handle a database with
|O|.(|O| − 1) objects. Consequently, we propose as an alter-
native the use of an ordered dataset.

Definition 3. Let (i∗1

1 i∗2

2 ...i∗n
n ) be a gradual itemset where

∗1...∗n ∈ {+,−}. Let GD be the transaction set ordered first
on i∗1

1 , then on i∗2

2 ... then on i∗n
n . A transaction t supports

(i∗1

1 i∗2

2 ...i∗n
n ) if:

∀tj , tk, j 6= k

8

<

:

tj [i1] ∗1 tk[i1] ∧ ...tj [in] ∗n tk[in] if tj > tk

tj [i1]¬ ∗1 tk[i1] ∧ ...tj [in]¬ ∗n tk[in] else

Definition 3 allows to extract transactions which are grad-
ual on an itemset. Note that we can construct more than
one GD.

Object Age (A) Salary (S) Car (C)

o1 22 1200 1
o2 28 1850 1
o3 24 1200 0
o4 35 2200 1
o5 38 2000 1
o6 44 3400 1
o7 52 3400 2
o8 41 5000 2

Table 1: A database DB

O A S

o1 22 1200
o3 24 1200
o2 28 1850
o5 38 2000
o8 41 5000

Table 2: A+S+

O A S

o1 22 1200
o3 24 1200
o2 28 1850
o4 35 2200
o6 44 3400
o7 52 3400

Table 3: Other A+S+

For example, starting from the database shown on Table
1, we are looking for objects that support the gradual item-
set A+S+. Clearly, keeping o4 will not allow to keep o5 as
to4

[P ] > to5
[P ]. So, we can create two gradual sets: one con-

taining o4 and excluding o5, and one keeping o5. The same
kind of contradiction is found for o8. Among all possible
GD, some contain more objects than others. These ones are
thus considered as the more representative of the considered
gradual itemset. Then frequency is defined by:

Definition 4. Let s = (i∗1

1 i∗2

2 ...i∗n
n ) be a gradual itemset

and GD
s be the set of all possibles GD for s. The frequency

of s is given by:

Freq(s) =
max(|GiD

s |)

|O|

where GiD
s ⊂ GD

s .

As an illustration, let us calculate Freq(A+S+). Among
all the GD, one of the maximal is {o1, o2, o3, o5, o6, o7}. Then
Freq(A+S+) = 6

8
= 0.75. It can be read as “the more the

age increases, the more the salary increases”. Note that the
conclusion is not a consequence of the premise, i.e. an in-
creasing age will not induce an increasing salary. At this
stage, we are only talking about gradual itemsets, and not
about gradual rules including causality. A gradual associa-
tion rule is defined as follows:

Definition 5. Let s1 and s2 be two gradual itemsets such
as s1 ∩ s2 = ∅. A gradual association rule is of the form
R : s1 ⇒ s2 with two associated measures:

• frequency is the frequency of all the gradual items:
Freq(R) = Freq(s1 ∪ s2)

• confidence measures the probability to have s2 hav-

ing s1: Conf(R) = F req(s1∪s2)
F req(s1)

All measures associated to a gradual rule are computed
when considering the best way to organise and order the
data in the best GiD

s . This maximal set is the core of the



algorithm. Finding classical association rules is done by
growing the set of frequent itemsets. Our intuition is that
gradual itemsets extraction can be done in a similar way.
It is possible to use gradual k-itemsets to construct gradual
(k +1)-itemsets. To apply this, we need to handle two chal-
lenges. Fistly, we have to find the a maximal GD in order to
compute the more representative frequency. Secondly, the
join operation between two GD have to be formally defined.
However, this is not a trivial task: we have seen that we
have to choose which element will be discarded from the
original set. Which one is the best? In the following sec-
tion, a heuristic based on maximal sets is proposed as a first
solution.

3.2 Finding the Best Candidates
Our proposition is based on the following observation:

some elements are conflicting with others, and keeping them
leads to discard the others. So, we can easily make a list of
the ones discarding more other objects. Therefore, we pro-
pose to keep a list of conflicting set, and to base our choices
on this list. From it, we will be able to generate the maximal
local GD.

3.2.1 2-itemset case
For the sake of simplicity, we first explain our method for

gradual 2-itemsets, and then generalize it to n-itemsets. We
define a conflicting set for a 2-itemset as:

Definition 6. Let i∗1

1 i∗2

2 be a 2-itemset, and O a set of
objects from DB ordered on i1 according to ∗1 and then
on i2 according to ∗2. For an object oi ∈ O, we keep all
objects discarded in a conflicting set, called Ci. Namely,
∀oj ∈ Ci, toi

[i2]¬ ∗2 toj
[i2].

It is easy to see that an empty set Ci will mean that oi

can participate to the frequency of the associated gradual
2-itemset, as it does not contradict the operator ∗2. On the
opposite, the bigger a Ci is, the more objects we will have to
discard if we want to keep oi. In other words, the conserva-
tion of such an object brings us to discard |Ci| other objects.
In order to construct a representative set of objects associ-
ated to a gradual itemset, we first delete the ones having
the maximal Ci. Note that our structure is symmetric: if
oi ∈ Cj then oj ∈ Ci. In the rest of this paper, we call C the
set containing all the conflicting sets for a gradual n-itemset.

On a first step, we keep all the objects having an empty
conflict set: t0 = GD ← femp(C) (where femp returns all ob-
jects having an empty conflicting set). Then, we discard the
object having the biggest conflicting set using fmax function:
t1 = O\fmax(C). Deleting an object from the candidate set
will delete it from the conflicting sets it was in. Actually, due
to the symmetry of the structure, we only have to follow each
object contained in the deleted Ci. Thus, these two steps can
be summarized into t01 = GD ← femp(O \ fmax(C)). Then,
we repeat our process until obtaining only empty conflicting
sets. This leads to a recursive formula:

Proposition 1. The recursive function tn = GD ← tn−1

with t0 = GD ← femp(O \ fmax(C)) computes a maximal
local representative set.

Proof. Let us say that |GD| = n. Suppose that there
is another representative set F such that |F| = m|m > n.
This means that there is an object oi in F and not in GD.
Then Ci = ∅. But, by construction, if Ci = ∅, then oi ∈ GD.
It is thus impossible that oi /∈ GD.

Let us illustrate Proposition 1 by calculating a representa-
tive GD for (A+S+). Ordering database from Table 1 on
A+ and then on S+ gives the database shown on Table 4.
We have calculated, for all the objects, the corresponding
conflicting set, which can be viewed on the third column.
For example, we can see that conserving o8 means delet-
ing o6 and o7, and symmetrically keeping o6 and o7 means
discarding o8.

Object A S Ci

o1 22 1200 ∅
o3 24 1200 ∅
o2 28 1850 ∅
o4 35 2200 {o5}
o5 38 2000 {o4}
o8 41 5000 {o6, o7}
o6 44 3400 {o8}
o7 52 3400 {o8}

Table 4: Sorted O on A+ then on S+

In this example, o8 is the object having the maximal con-
flicting set. During the first step, the operation GD ←
femp(O \ o8) ≡ GD ← {o1, o3, o2, o6, o7} is done. Table 5
shows this first operation: discarding o8 updates o6’s and
o7’s conflicting sets. These sets become empty and can be
added to the representative set.

Object A S O|i

o1 22 1200 ∅
o3 24 1200 ∅
o2 28 1850 ∅
o4 35 2200 {o5}
o5 38 2000 {o4}
o8 41 5000 {o6, o7}
o6 44 3400 {o8}= ∅
o7 52 3400 {o8}= ∅

Table 5: Operation t01

Note that on the following step, o4 or o5 can be equally
discarded as they are excluding each other. The final cardi-
nality of the representative set will be the same, but we will
discuss later about the consequences of this choice. Here, we
discard the first one, thus obtaining GD = {o1, o3, o2, o5, o6, o7}
as a result.

3.2.2 n-itemset case
Using a generate and prune algorithm, it is easy to extend

a gradual 2-itemset extraction to the general case. Actually,
in a such algorithm, itemsets are generated level by level by
the mean of an intersection between level n and level n− 1.
In our case, a simple intersection between two representa-
tive sets cannot be performed. It can lead to an incorrect
result, due to the gradual aspect of the method. However, a
level-wise method brings us a great advantage: we can order
objects starting from the second level, and keep this order
level by level. In other words, the order found for a gradual
n-itemset is the same for an (n + 1)-itemset. Thus, we gain
on the sort operation, which can be time-consuming.

Definition 7. Let i∗1

1 ...i∗n
n be a n-itemset, and O a set of

objects from DB ordered on i1 according to ∗1 and then on i2



according to ∗2... and then on in according to ∗n. For an ob-
ject oj ∈ O, we keep all objects discarded in two conflicting
sets: one concerning item in−1 called Cin−1

and one concern-

ing in called Cin . So, ∀ok ∈ C
in−1 , toj

[in−1]¬ ∗n−1 tok
[in−1]

and ∀ok ∈ Cin , toj
[in]¬ ∗n toj

[in].

The method is the same as before, except that we man-
age two conflicting sets to find objects having the maximal
one. Our joining algorithm is given by Algorithm 1. It im-
plements the recursive function given in proposition 1. The
“While” loop makes the recursion, and GD is constructed
into the “if” condition. Function fcnf : O → C associates a
conflict set to an object.

Algorithm 1: n-SupportCount

Data: A g-itemset s = (i∗1

1 ...i∗n
n ),

Set of objects O sorted according n− 1 items,
Conflictual sets Cn and Cn−1

Result: Representative GD for s

GD ←− ∅
while O 6= ∅ do

o = fmax(Cin , Cin−1)
O ←− O \ {o}
foreach oj ∈ O do

fcnf (oj , C
in)←− fcnf (oj , C

in) \ {o}
fcnf (oj , Cin−1)←− fcnf (oj , C

in−1) \ {o}
if fcnf (oj , Cin) = ∅ and fcnf (oj , C

in−1) = ∅ then
GD ←− GD + {oj}
O ←− O \ oj

end

end

end
return OR

3.3 Interesting Properties
Our proposition raises some interesting properties dis-

cussed in this section. First of all, we found a common prop-
erty with [2] concerning the negation of an itemset. Order
relations such as {≥,≤} have a negation (or complementary)
defined as c. Here c(≥) =≤ and c(≤) =≥. So, the negation
of an itemset will be defined as follow:

Definition 8. Let s = (i∗1

1 ...i∗n
n ) be an itemset. Then the

negation of s, noted c(s), is (i
c(∗1)
1 ...i

c(∗n)
n ).

We thus have:

Proposition 2. (negative g-itemset) Let s = (i∗1

1 ...i∗n
n ) be

a g-itemset. If a set of objects GD respects this g-itemset,

then it respects c(s) = (i
c(∗1)
1 ...i

c(∗n)
n ).

Proof. ∀o, p ∈ O, o ∗ p ⇔ p c(∗) o. This implies imme-
diately that every object from GD respects its complemen-
tary.

Corollary 1. Freq(s) = Freq(c(s))

This means that only half of the gradual itemsets can be
generated, as all the other part will be deduced from them.
This leads to an important time and memory optimization.

In our proposition, gradualness is expressed through a
total order relation. Thus, whatever the 1-g-itemset con-
sidered, every object of the database will participate to its

representative set, as every object is comparable. So, the
frequency of a 1-g-itemset will always be 1 (100%). A 1-g-
itemset does not bring a great expressive power (having only
that “A increases” for 100% of the database is not useful: we
know that every person age’s can be ordered). Moreover, as
our proposition is based on an object-to-object compari-
son, there is no semantic explanation of a 1-g-itemset. So,
we will start the generation of representative sets from the
second level (i.e., from 2-g-itemsets).

The confidence is based on frequencies of g-itemsets. We
know that ∀i ∈ I, F req(i+) = Freq(i−) = 1. However, for
a rule deduced from a 2-g-itemset:

• Conf(i∗1

1 ⇒ i∗2

2 ) =
F req(i

∗1

1
i
∗2

2
)

F req(i
∗1

1
)

• Conf(i∗2

2 ⇒ i∗1

1 ) =
F req(i

∗1

1
i
∗2

2
)

F req(i
∗2

2
)

As Freq(i∗1

1 ) = Freq(i∗2

2 ), we obtain Conf(i∗1

1 ⇒ i∗2

2 ) =
Conf(i∗2

2 ⇒ i∗1

1 ) = Freq(i∗1

1 i∗2

2 ). Thus, it is impossible
to establish the most significant implication of the rule for
a rule of length 2. We start the gradual association rule
generation from the third level.

4. EXPERIMENTS
Our approach has been implemented in C++ as C++

allows a deep memory management.
We ran our algorithm on synthetic datasets, in order to

measure memory and execution performances. We used the
IBM Synthetic Data Generation Code for Associations and
Sequential Patterns1 in order to generate synthetic datasets.
However, IBM Generator was designed for association rules,
and therefore generates datasets in a presence or absence
form. So, we used a simple random in order to assign a
numerical value to a given item. Zero values mean “this
item is not present in this transaction”. As we use equality,
zero values can participate in the frequency computation.
However, as we consider them as abscence values, they are
thus ignored by the program.

IBM Generator allows to choose a good number of impor-
tant parameters, among them the number of transactions
and their average size. Intuitively, as g-itemset calculation
is based on the value from one transaction to another for the
same itemset, if we want to generate some gradual rules, we
need to generate databases with transaction having most of
the set I of items. This kind of bases can be clearly com-
pared to gene expression databases.
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Figure 3: 1000 transaction and 100 items performances

Tests are very promising: for databases containing about
1,000 large transactions, the execution takes some seconds,
1www.almaden.ibm.com/software/projects/hdb/resources.shtml



and has a good reaction to a very low support (0.005%) as
show Figures 3a and 3b.

5. DISCUSSION
One of the drawbacks of the proposed here approach is

that, as we use a heuristic, it could be the case that some
rules are not extracted. In fact, each time we have more
than one maximal conflicting set, we choose one of them.
There are several manners to do this choice (choosing the
first one, choosing by random, etc.). However, whatever
this choice, the frequency returned is always lower or equal
to the real one, due to the level-wise aspect of our algo-
rithm. For example, considering the database from Table
6, constructing g-itemset (A+B+) will discard {ox, oy , oz},
as they are contradictory with all the others. However, for
(A+B+C+D+E+), {ox, oy, oz} is the best set. Our method
will choose the other solution and find in the end {o1, o4}.

A B C D E

o1 3 1 3 3 1
o2 4 2 1 4 2
o3 5 3 4 1 3
o4 6 4 3 5 4
o5 7 1 5 2 5
o6 8 1 6 6 1
ox 1 20 10 15 10
oy 2 30 20 40 20
oz 2.5 40 30 50 30

Table 6: A Problematic Database

However, in such case, how to choose the one to discard?
It is important to highlight that if discarding oi instead of
oj seems to be best to improve the frequency of (i1, ...in),
it may be the worst solution for (i1, ...in+3)’s. But while
generating in−1, we cannot predict the best decision for the
in+x level. Thus, exhaustive extraction of gradual itemset
is a challenging task.

In another hand as we are using total order relation, it
is possible to use restriction properties. Indeed, equality
does not directly determine wether an object participates
to s1 = (i+1 i+2 ) or to s2 = (i+1 i−2 ), but restricted order can
clearly identify to which g-itemset this object belongs. Thus,
it is possible to adapt the inclusion-exclusion principle and
build at the same time representative object sets for s1 and
s2.

Integrating the equality relation could make some g-itemset
“non-gradual”. A typical example is (A+C+) from Table 1
which will generate the following representative set: {o1, o2,
o4, o5, o6}. However, to1

[C] = ... = to6
[C], meaning that

even if the age increases, the number of cars does not evolve.
To overcome this problem, we could introduce a quality mea-
sure. The simplest one would be the percentage of common
values for an item. Statistical “measures” such as covariance
or entropy could be used too. However, it will be necessary
to adapt the former to a multi-variable context. Note that
these “measures”do not have an anti-monotonicity property,
due to the introduction of a mean. Thus, we will not be able
to use them as a prune constraint. At this time, we have
not done tests on this point. This is let as a future work.

6. CONCLUSION AND FUTURE WORK
In this paper, we address the problem of mining for grad-

ual rules, including rules combining different kinds of varia-
tion (increasing and decreasing). This kind of rules is useful
and can be applied in many domains, such as bioinformat-
ics, medecine or marketing... However, it requires intensive
calculation as many combinations have to be checked. We
propose here to use a heuristic-based approach to tackle this
challenging problem. Experiments reported here empirically
show that our approach is time efficient and scalable.

However, by using a heuristic, we may loose frequent grad-
ual rules as the frequency given by the algorithm may be too
low compared to the real value. We are thus currently work-
ing on a new complete approach extracting all the rules. We
are planning to compare the two approaches in term of time
performance, and to study how many gradual rules are dis-
carded when using the proposed here heuristic, compared to
the complete extraction. Besides, we will test our approach
on real databases, particularly on gene expression databases.

Eventually, our approach will be extended to sequential
patterns.

7. REFERENCES
[1] R. Agrawal and R. Srikant. Fast Algorithms for Mining

Association Rules. In 20th International Conference on
Very Large Data Bases, (VLDB’94), pages 487–499,
1994.

[2] F. Berzal, J. Cubero, D. Sanchez, M. Vila, and
J. Serrano. An alternative approach to discover gradual
dependencies. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems (IJUFKS),
15(5):559–570, Oct. 2007.

[3] P. Bosc, O. Pivert, and L. Ughetto. On data summaries
based on gradual rules. In Proceedings of the 6th
International Conference on Computational
Intelligence, Theory and Applications, pages 512–521,
London, UK, 1999. Springer-Verlag.

[4] D. Dubois and H. Prade. Gradual inference rules in
approximate reasoning. Inf. Sci., 61(1-2):103–122, 1992.

[5] D. Dubois and H. Prade. Gradual elements in a fuzzy
set. Soft Comput., 12(2):165–175, 2008.

[6] C. Fiot, F. Masseglia, A. Laurent, and M. Teisseire.
Gradual trends in fuzzy sequential patterns. In 12th
International Conference on Information Processing
and Management of Uncertainty in Knowledge-based
Systems, 2008.
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