

- State of the Art
- E. Hüllermeier
- F. Berzal & al
- C. Fiot & al.
- Proposition
- Definitions
- Frequency Computin
- Join Operation
- Experiments
- Generating Rules
- Conclusion

Fast Extraction of Gradual Association Rules: A Heuristic Based Method

Lisa Di Jorio, Anne Laurent and Maguelonne Teisseire

LIRMM

1

October 29, 2008

E. Hüllermeier

- F. Berzal & al.
- C. Fiot & al.

Proposition

Definitions

Frequency Computing

Experiments

Generating Rules

Conclusion

State of the Art

Outline

- E. Hüllermeier
- F. Berzal & al.
- C. Fiot & al.

2 Proposition

- Definitions
- Frequency Computing
- Join Operation

- 4 Generating Rules
- 5 Conclusion

E. Hüllermeier

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

What is a Gradual Rule?

Gradualness

- Represents variation between elements
- "The more X is A, the more Y is B"
- Fuzzy domain
- No consensus definition

Example

- The more a truc weight is **medium**, the more the speed is **slow**
- The later we wake up, the higher **the certainty** to miss the train
- The higher the age, the higher the salary

Many applications, in various domains

< 3

F. Berzal & al.

C. Fiot & al.

Proposition

Join Operation

Generating Rules

Conclusion

State of the Art

Example

Example database

Objet	Age (A)	Salary (S)	Car (C)
<i>o</i> ₁	22	1200	1
<i>o</i> ₂	28	1850	1
03	24	1200	0
04	35	2200	1
<i>0</i> 5	38	2000	1
<i>o</i> ₆	44	3400	1
07	52	3400	2
<i>0</i> 8	41	5000	2

-Fast Extraction of Gradual Association Rules: A Heuristic Based Method-

4 4

E. Hüllermeier

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computin

Join Operation

Experiments

Generating Rules

Conclusion

Example: A^+S^+

Example database

Objet	Age (A)	Salary (S)
<i>o</i> ₁	22	1200
03	24	1200
<i>o</i> ₂	28	1850
04	35	2200
05	38	2000
06	44	3400
07	52	3400
08	41	5000

• We are working on **values** of items

• Comparisons are done between objects

- E. Hüllermeie
- F. Berzal & al.
- C. Fiot & al.
- Proposition
- Definitions
- Frequency Computing
- Experiments
- Generating Rules

Conclusion

State of the Art

- Eyke Hüllermeier : Association Rules for Expressing Gradual Dependencies. PKDD 2002
- Berzal & al. : An alternative approach to discover gradual dependencies. IJUFKS 2007
- Fiot & al.: Gradual trends in fuzzy sequential patterns. IPMU 2008

E. Hüllermeier

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Eyke Hüllermeier's proposal

Two kind of rules

- deviation rule: $(A \rightarrow^d B)$ important gap from the conditional means
- tendency rule: (A →^t B) gradual dependency between two items A and B

Principle

- Build the "contingency diagram"
- Ø Generate information about the diagram
- Generate association rules

E. Hüllermeier

- F. Berzal & al.
- C. Fiot & al.
- Proposition
- Definitions
- Frequency Computing
- Join Operation
- Experiments
- Generating Rules
- Conclusion

Contingency Diagram

Binary context...

	B(y) = 0	B(Y) = 1	
A(x)=0	n ₀₀	<i>n</i> ₀₁	$n_{0\bullet}$
A(x) = 1	<i>n</i> ₁₀	<i>n</i> ₁₁	$n_{1\bullet}$
	<i>n</i> •0	$n_{\bullet 1}$	n

...Fuzzy context

1.0

- Least squares method
- Quality measure R^2
- Deriving rule as $A \rightarrow^t B[\alpha, \beta]$

Limits

State of the Art

E. Hüllermeier

- F. Berzal & al
- C. Fiot & al.

Proposition

- Definitions
- Frequency Computing
- Join Operation
- Experiments
- Generating Rules
- Conclusion

- Computation complexity: contingency diagram $+ R^2$
- Looking for rule which are only increasing (δ > 0), or only decreasing (δ < 0)
- Cannot combine the two variations

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Berzal & al. proposal

Gradual rule

- The more X is A, the more Y is B
- The less X is A, the more Y is B
- The more X is A, the less Y is B
- The less X is A, the less Y is B

Principle

- Adapting classical algorithms to the gradual extraction process
- Defining gradual items and consequently gradual itemsets
- Defining frequency (support) and confidence

Limits

State of the Art

E. Hüllermeie

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

• Memory complexity: maximum of 3-itemsets

Let X = {X₁, X₂, ..., X_m} be a set of attributes from D, and for each item X_i ∈ X the set of fuzzy restrictions n_i defined by fuzzy sets A_{i1}, ..., A_{ini}. Then |GI^D| = 2 × ∑_{i=0}^m n_i

E. Hüllermeier

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Fiot & al. proposal

Evolution Patterns

- A sequential pattern is a list of ordered itemsets.
- Measures variations from one time to another
- 2-step approach:
 - Transform the database into a "variation" database
 - Mine it by the means of generalised sequential pattens

Different problematic from ours.

E. Hüllermeier

- F. Berzal & al.
- C. Fiot & al.
- Proposition
- Definitions
- Frequency Computing
- Join Operation

Experiments

Generating Rules

Conclusion

Motivation

Gradualness

- "A variation of A comes along with a variation of B"
- Statistical approach: extract itemsets, but **no increasing and decreasing variation** combination
- Data mining approach: does not go beyond 3-itemsets

Our aim

- Adapt classical approaches
- No fuzzy theory: directly working on values
- Extract n-itemsets
- Be scalable

LIRMM		
State of the Art		
E. Hüllermeier		
F. Berzal & al.		
C. Fiot & al.		
Proposition		
Definitions		
Frequency Computing		
Join Operation	Proposition	
Experiments		
Generating Rules		
Conclusion		
	-Fast Extraction of Gradual Association Rules: A Heuristic Based Method-	14 ▶

- E. Hüllermeier
- F. Berzal & al.
- C. Fiot & al.

Proposition

- Definitions
- Frequency Computing
- Join Operation
- Experiments
- Generating Rules

Conclusion

Overview

Generate and Prune Principle

- Generate gradual 1-itemsets
 - Frequency counting
 - Prune
- Generate gradual n-itemsets
 - Joining on gradual (n-1)-itemsets
 - Frequency counting
 - Prune

We need to define:

- What gradual items and gradual itemsets are
- How to count the frequency of a gradual itemset
- How to build the join operation

ltem

State of the Art

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing Join Operation

Experiments

Generating Rules

Conclusion

Definition: gradual item

A gradual item is denoted i^* with $* \in \{+, -\}$, and dom(i) having a total order relation

- * = + means "value of i is increasing"
- * = means "value of i is decreasing"

What is variation?

- ullet + corresponds to \geq
- ${\ensuremath{\, \bullet }}$ corresponds to \leq
- As we are comparing objects, order is expressed as :
 - If $f(o_1, i) \ge f(o_2, i)$ then we write i + i
 - If $f(o_1, i) \leq f(o_2, i)$ then we write i-

E. Hüllermeier

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Experiments

Generating Rules

Conclusion

Gradual Itemset

Definition

A gradual itemset is a non-empty list of gradual items

Example database

Objet	Age (A)	Salary (S)
01	22	1200
03	24	1200
<i>o</i> ₂	28	1850
05	38	2000
06	44	3400
07	52	3400

TAB: (A^+S^+)

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Experiments

Generating Rules

Conclusion

Frequency of a Gradual Itemset

Definition : frequency

Let $\mathcal{O}' \subseteq \mathcal{O}$ be the **maximal** set of objects ordered on i_1 and then on i_2 ... and then on i_n such as $\forall o_j, o_k \in \mathcal{O}$ such as $j \neq k$ $\begin{cases} f(o_j, i_1) *_1 f(o_k, i_1) \land ... \land f(o_j, i_n) *_n f(o_k, i_n) if r(o_j) > r(o_k) \\ f(o_j, i_1) c(*_1) f(o_k, i_1) \land ... \land f(o_j, i_n) c(*_n) f(o_k, i_n) if r(o_j) < r(o_k) \end{cases}$

hen
$$Freq(i_1^{*1}i_2^{*2}...i_n^{*n}) = \frac{|\mathcal{O}'|}{|\mathcal{O}|}$$

Proposition

Т

It could exist more than one $\mathcal{O}_n \subseteq \mathcal{O}$ respecting this definition

How to find the maximal set $\mathcal O$ for a gradual itemset ?

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computin

Experiments

Generating Rules

Conclusion

Example

Example database

Objet	Age (A)	Salary (S)
01	22	1200
03	24	1200
<i>o</i> ₂	28	1850
04	35	2200
05	38	2000
06	44	3400
07	52	3400
08	41	5000

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Frequency Computing

Conflicting set : gradual 2-itemset case

Let $(i_1^{*_1}i_2^{*_2})$ be a gradual 2-itemset and \mathcal{O} the set of objects ordered on $i_1^{*_1}$ and then on $i_1^{*_2}$. The **conflicting set** $\mathcal{O}_{|i}$ associated to an object $o_i \in \mathcal{O}$

contains objects discarded if keeping o_i into the final set \mathcal{O}'

Why?

- If $\mathcal{O}_{|i} = \emptyset$, it respects the gradual itemset without any conflict
- Otherwise, $\forall o \in \mathcal{O}_{|i}$ will be deleted
- Delete objects o_i such that $|\mathcal{O}_{|i}|$ is maximal

E. Hüllermeie

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Conflicting Set Building

Example

Objet	Α	S	$\mathcal{O}_{ i }$
01	22	1200	
03	24	1200	
<i>o</i> ₂	28	1850	
04	35	2200	
<i>0</i> 5	38	2000	
08	41	5000	
<i>o</i> 6	44	3400	
07	52	3400	

E. Hüllermeie

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Conflicting Set Building

Example

Objet	Α	S	$\mathcal{O}_{ i }$
01	22	1200	Ø
03	24	1200	Ø
<i>o</i> ₂	28	1850	Ø
04	35	2200	
<i>0</i> 5	38	2000	
<i>0</i> 8	41	5000	
06	44	3400	
07	52	3400	

E. Hüllermeie

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Conflicting Set Building

Example

Objet	Α	S	$\mathcal{O}_{ i }$
01	22	1200	Ø
03	24	1200	Ø
<i>o</i> ₂	28	1850	Ø
04	35	2200	${o_5}$
<i>0</i> 5	38	2000	{ <i>o</i> ₄ }
<i>0</i> 8	41	5000	
<i>0</i> 6	44	3400	
07	52	3400	

E. Hüllermeie

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Conflicting Set Building

Example

Objet	Α	S	$\mathcal{O}_{ i }$
01	22	1200	Ø
03	24	1200	Ø
<i>o</i> ₂	28	1850	Ø
04	35	2200	${o_5}$
<i>0</i> 5	38	2000	{ <i>o</i> ₄ }
<i>0</i> 8	41	5000	$\{o_6, o_7\}$
06	44	3400	${o_8}$
07	52	3400	${o_8}$

E. Hüllermeie

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Discarding Conflicts

Example

Objet	Α	S	$\mathcal{O}_{ i }$
01	22	1200	Ø
03	24	1200	Ø
<i>o</i> ₂	28	1850	Ø
04	35	2200	$\{o_5\}$
<i>0</i> 5	38	2000	{ <i>o</i> ₄ }
0 8	41	5000	{0₆, 0₇}
06	44	3400	{<i>o</i>8} =∅
07	52	3400	{<i>o</i>8} =∅

E. Hüllermeie

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Discarding Conflicts

Example

Objet	Α	S	$\mathcal{O}_{ i }$
01	22	1200	Ø
<i>o</i> 3	24	1200	Ø
<i>o</i> ₂	28	1850	Ø
-04	35	2200	$\{o_5\}$
05	38	2000	{<i>0</i>4}
<i>0</i> 6	44	3400	Ø
07	52	3400	Ø

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Example : Frequency

Example

Objet	Α	S
<i>o</i> 1	22	1200
<i>0</i> 3	24	1200
<i>o</i> ₂	28	1850
<i>0</i> 5	38	2000
<i>0</i> 6	44	3400
07	52	3400

Frequency computing

$$Freq(A^+S^+) = \frac{6}{8} = 0.75 (75\%)$$

E. Hüllermeier

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Frequency : Levels 1 and 2

Level 1

For a 1-item, total order does not have any conflict *Frea*(*i**) = 100%

Definition

Let $s_1 = (i_1^{*_1} \dots i_n^{*_n})$ and $s_2 = (i_j^{*_j} \dots i_k^{*_k}) = s_2$ be two gradual itemsets such as $s_1 \cap s_2 = \emptyset$. Then the gradual rule $s_1 \Rightarrow s_2$ has a frequency $Freq(s_1 \cup s_2)$ and a confidence :

$$\mathcal{C}onf(s_1 \Rightarrow s_2) = rac{\mathit{Freq}(s_1 \cup s_2)}{\mathit{Freq}(s_1)}$$

Level 2 confidence

We have $Conf(i_1^{*1} \Rightarrow i_2^{*2}) = Conf(i_2^{*2} \Rightarrow i_1^{*1}) = F(i_1^{*1}i_2^{*2})$

E. Hüllermeier

- F. Berzal & al.
- C. Fiot & al.

Proposition

- Definitions
- Frequency Computing
- Join Operation
- Experiments
- Generating Rules
- Conclusion

Generation Process

Problem

- Classically: levels k are generated from (k-1) ones
- Objets respecting an itemset: intersection
- Levelwise algorithm by the mean of a prefix tree

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Generation Process

SC

Problem

- Classically: levels k are generated from (k-1) ones
- Objets respecting an itemset: intersection
- Levelwise algorithm by the mean of a prefix tree

E. Hüllermeier

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Generation Process

Problem **Problem**

- Classically: levels k are generated from (k-1) ones
- Objets respecting an itemset: intersection
- Levelwise algorithm by the mean of a prefix tree

Example

• $AS = \{o_1, o_2\}$

•
$$AC = \{o_2, o_3\}$$

•
$$SC = \{o_2\}$$

•
$$AS \cap AC = \{o_2\}$$

Intersection impossible in our context: how to generate level *k* candidates?

E. Hüllermeier

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Generation Process

Problem **Problem**

- Classically: levels k are generated from (k-1) ones
- Objets respecting an itemset: intersection
- Levelwise algorithm by the mean of a prefix tree

Example

• $AS = \{o_1, o_2\}$

•
$$AC = \{o_2, o_3\}$$

•
$$SC = \{o_2\}$$

•
$$AS \cap AC = \{o_2\}$$

Intersection impossible in our context: how to generate level *k* candidates?

Generation Process

State of the Art

E. Hüllermeier

F. Berzal & a

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Solution

- Generate i^+ and i^-
- Union of sets associated to gradual k-1-itemsets
- Adapt conflicting sets to two items

Property

- $c(\geq) = \leq$ and $c(\leq) = \geq$
- Let S be a sequence, then Freq(c(S)) = Freq(S)

- E. Hüllermeier
- F. Berzal & al
- C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Conflicting Sets Having Two Dimensions

Joining with conflicting sets

- $Join((i_1^{*1}...i_{n-1}^{*_{n-1}}i_n^{*_n}),(i_1^{*_1}...i_{n-1}^{*_{n-1}}i_k^{*_k})) = (i_1^{*_1}...i_{n-1}^{*_{n-1}}i_n^{*_n}i_k^{*_k})$
- Objects ordered during the generation

Conflicting set

- Keep two conflicting sets: one for $i_n^{*_n}$ and one for $i_k^{*_k}$
- Discarding object having the more conflict number
- Conflicting sets are updated together

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Example

Example

Objet	Α	S	$\mathcal{O}_{ i }$	С	$\mathcal{O}_{ i }$
<i>o</i> ₁	22	1200	Ø	1	{ <i>0</i> ₃ <i>0</i> ₇ }
<i>o</i> 3	24	1200	Ø	0	${o_1o_7}$
<i>o</i> ₂	28	1850	Ø	1	{ <i>o</i> ₇ }
04	35	2200	${o_5}$	1	{ <i>o</i> ₇ }
05	38	2000	${0_4}$	1	{ <i>o</i> ₇ }
06	44	3400	Ø	1	{ <i>o</i> ₇ }
07	52	3400	Ø	2	$\{o_1 o_2 o_4 o_5 o_6\}$

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Example

Example

Objet	Α	S	$\mathcal{O}_{ i }$	С	$\mathcal{O}_{ i }$
01	22	1200	Ø	1	{ <i>o</i> ₃ }
03	24	1200	Ø	0	${o_1}$
<i>o</i> ₂	28	1850	Ø	1	Ø
04	35	2200	${o_5}$	1	Ø
05	38	2000	${o_4}$	1	Ø
06	44	3400	Ø	1	Ø

E. Hüllermeier

F. Berzal & al.

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Example

Example

Objet	Α	S	$\mathcal{O}_{ i }$	С	$\mathcal{O}_{ i }$
0 1	22	1200	Ø	1	{<i>0</i>3}
03	24	1200	Ø	0	{01}
<i>o</i> ₂	28	1850	Ø	1	Ø
04	35	2200	${o_5}$	1	Ø
05	38	2000	${o_4}$	1	Ø
06	44	3400	Ø	1	Ø

Example

Example

- E. Hüllermeier
- F. Berzal & al
- C. Fiot & al.

Proposition

- Definitions
- Frequency Computing
- Join Operation
- Experiments
- Generating Rules
- Conclusion

Objet $\overline{\mathcal{O}}_{|i|}$ Α S $\mathcal{O}_{|i|}$ С Ø Ø 24 1200 0 03 Ø Ø 28 1850 1 *o*₂ Ø 35 2200 $\{0_5\}$ 1 04 38 2000 $\{o_4\}$ 1 Ø 05 Ø 3400 1 44 Ø 06

- E. Hüllermeier
- F. Berzal & al.
- C. Fiot & al.

Proposition

- Definitions
- Frequency Computing
- Join Operation
- Experiments
- Generating Rules
- Conclusion

Conflicting Set

Limits...

- More than one maximal possible conflicting set
- Each choice leads to the potential loss of a candidate at the following level
- Frequency is inexact
- Rebuilding conflicting set: loss of time

Conclusion

Experiments

Experiments

- \bullet Implemented in C++
- Adaptation of IBM Generator
- Variation of number of items / number of objects

E. Hüllermeier

- F. Berzal & al
- C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

From Gradual Itemsets to Gradual Rules

Post generation

• Need to mesure the variation strength

Example

Obj	A^+	<i>C</i> ⁻
<i>o</i> ₁	22	1
<i>o</i> ₂	28	1
04	35	1
<i>0</i> 5	38	1
<i>0</i> 6	44	1

Measuring strength

- Number of common objects
- Variance or co-variance
- Entropy

E. Hüllermeier

F. Berzal & al

C. Fiot & al.

Proposition

Definitions

Frequency Computing

Join Operation

Experiments

Generating Rules

Conclusion

Conclusion

A new approach...

- Generating gradual n-itemset
- No statistical methods
- Many kinds of gradualness (increasing and decreasing)
- Scalable

Future work

- Use of order relation restrictions
- Extention to sequential patterns

LIRMM		
State of the Art		
E. Hüllermeier		
F. Berzal & al.		
C. Fiot & al.		
Proposition Definitions		
Frequency Computing	Thank you for your attention	
Join Operation	Questions	
	-Questions-	
Experiments		
Generating Rules		
Conclusion		
	-Fast Extraction of Gradual Association Rules: A Heuristic Based Method-	₫ 42 🕨