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Abstract

In data mining, computing the similarity of objects is an
essential task, for example to identify regularities or to
build homogeneous clusters of objects. In the case of
sequential data seen in various fields of application (e.g.
series of customers purchases, Internet navigation) this
problem (i.e. comparing the similarity of sequences) is
very important. There are already some similarity mea-
sures as Edit distance and LCS suited to simple sequences,
but these measures are not relevant in the case of com-
plex sequences composed of sets of items, as is the case
of sequential patterns. In this paper, we propose a new
similarity measure taking the characteristics of sequential
patterns into account. S2M P is an adjustable measure
depending on the importance given to each characteristic
of sequential patterns according to context, which is not
the case of existing measures. We have experimented the
accuracy and quality of S?M P against Edit distance by
using them in a clustering of sequential patterns. The re-
sults show that the clusters obtained by S2M P are more
homogeneous. Moreover these cluster are more precise
and more complete according to the clusters obtained us-
ing Edit distance. The experiments show also that S? M P
is efficient in term of calculation time and size of used
memory.

Keywords: Data Mining, Sequential Patterns, Similarity
Measure, Clustering, Clustering of Sequential Patterns,
S2MP.

1 Introduction

In some areas, like biology, logs analysis, anomaly
detection, natural language processing and telecommu-
nications, data can be seen in the form of sequences.
Sequential patterns introduced by Agrawal & Srikant
(1995) represent a frequent diagrams often extracted
from sequential databases. Sequential patterns can be
considered as an extension of association rules on the di-
mension of time. Indeed, they highlight inter-transaction
associations.  For example, the frequent sequential
patterns extracted from a market basket data identify
common and frequent customers behaviour in terms of
purchased products. An example of sequential patterns is
((Chocolate, Soda)(cakes, chips)(leanness product))
which means: “customers buy chocolate and soda in the
same time, then in the next purchase, they buy cakes and
chips and then they come back later on to buy a slimming
product.”
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The extraction of frequent sequential patterns in these
areas provides important knowledge about frequent cor-
relations. However, these patterns do not always convey
enough information for the end-users. In order to get a
clear view of the data, the clustering of sequential patterns
is for instance a solution to group similar behaviours un-
covered by frequent sequential patterns. This facilitates
the interpretation of sequential patterns, allows to model
behaviours and also to seek for outliers in the data. For
clustering sequential patterns, the similarity of sequential
patterns needs to be computed. Note that comparing se-
quential patterns has many other applications than clus-
tering. For example, the extraction of sequential patterns
under similarity constraints is of great interest, as well as
sequential pattern visualization.

In this context, the definition of similarity may vary
depending on the type of resemblance that we look for.
The different similarity measures may reflect the differ-
ent faces of data and of their context. Two objects can be
seen very similar by one measure and very different by
another measure (Moen 2000). Moreover, we argue that
similarity has not to be always symmetrical, as pointed out
by Tversky (1977), with the famous example he provided
in his seminal paper: We say “Turks fight like tigers” and
not “Tigers fight like Turks”. In some applications, for
instance, the extraction of sequential patterns under simi-
larity constraints or querying a set of sequential patterns,
there is a reference pattern that we compare others with.
Indeed, we do a directional comparison. In these applica-
tions, a non-symmetric measure is well applicable.
Several approaches have been developed to compare the
similarity between two sequences in particular in bio-
informatics. However, the existing measures are not
adapted to the specific characteristics of sequential pat-
terns.

To compute the similarity of sequential patterns,
we define here a similarity measure (S2MP: Similarity
Measure for Sequential Patterns), which takes the char-
acteristics and the semantics of sequential patterns into
account. This measure compares two sequential patterns
both at the level of itemsets and their positions in the
sequences and also at the level of items in itemsets, thus
resulting from the combination of two scores:

1. the score given by the weight of itemsets mapping
(resemblance between the items of mapped itemsets),

2. the score given by the resemblance of corresponding
itemsets in terms of their positions in the two
sequences.

S2MP is a measure which is very well suited to the
contexts and the characteristics of sequential patterns.
Each score may vary according to the context. It make
hence S?2MP a modular measure. For example, according
to the definition of resemblance of the itemsets in a par-
ticular field, we can adapt the score given by the weights



of the mapping of the itemsets. We can also decide that
the order is more important than the resemblance of the
mapped itemsets and change the coefficients of the two
scores in the calculation of the final similarity. This makes
our measure flexible, which is not the case of the other
existing measures.

The paper is organized as below. Section 2 states the
problem. In Section 3 we describe the existing works on
the similarity measures for the sequential patterns. Our
similarity measure (S2MP) is presented in Section 4. The
results obtained by some experiments on S?MP are de-
tailed in Section 5.

2 Problem Statement

The volumes of data stored in databases are dramatically
increasing. In many applications like telecommunication,
bio-informatics, market basket data etc. the data are stored
in sequential form. In general, we can consider two major
types of sequences:

e sequence of items,
e sequence of itemsets.

The sequence of items, are the most simple kind of se-
quences. In such a sequence, the elements of sequence are
atomic. But, in many real application (e.g. market basket
data), the sequences have more complex elements. The se-
quences of itemsets are an example of complex sequence.
In Data Mining problems, we can note two kinds of item-
set sequences:

e Data sequences,
e Frequent Sequential Patterns.

We consider here a transactional database of market basket
data containing a set of transactions, where every transac-
tion is a set of items (attributes) usually referred to as an
itemset. A data sequence is defined as follow:

Definition 2.1. A data sequence consists of all transac-
tions of a customer when they are ordered chronologically.

Frequent sequential patterns introduced by Agrawal &
Srikant (1995) are a kind of schema extracted from data
sequences. Indeed, frequent sequential patterns are the
frequent subsequences of data sequences of a transactional
database. We define the sequential patterns as below:

Definition 2.2. A sequential pattern is a non-empty
ordered list of itemsets where an itemset is a set (non-
ordered) of items.

Although the data sequences and sequential patterns
are semantically different (sequential patterns are the
schemas extracted from data sequences), they share some
common characteristics. The main characteristics of item-
set sequences (e.g. sequential patterns and data sequences)
are:

1. itemsets as a set of items (non-ordered),

2. order of itemsets in sequence.

As described, in itemset sequence (e.g. data sequences,
sequential patterns), the elements of sequence (i.e.
itemsets) are composed of various items. Thus, the ways
that we treat the sequences of items are not necessarily
adapted to the sequences of itemsets like sequential
patterns. In this paper, we are specially interested to
compare the similarity between the sequential patterns.

Sequential patterns are very interesting kind of dia-
gram extracted from sequential data. They describe the

inter-transaction correlations. In order to find regulari-
ties from such data (itemset sequences), it is necessary
to describe how far from each other two data objects are.
This is the reason why similarity between objects is one
of the central concepts in data mining and knowledge dis-
covery (Moen 2000). According to the volumes of data,
we should consider also the scalability aspect of the simi-
larity measures.

A similarity measure for sequential patterns can be

used for clustering of sequential patterns. The principle
of such a clustering is to regroup the extracted sequential
patterns into several clusters. Each cluster represents a ho-
mogeneous kind of correlations. The clustered sequential
patterns can, for instance, be used to create the behaviour
profiles. For anomaly detection using data mining tech-
niques, for example, we can use the sequential patterns
extracted from normal connection logs to identify the gen-
eral behaviour of network users. Several kinds of extrac-
tion are conceivable. But in any case, the patterns should
be regrouped to achieve more abstract behaviour represen-
tation. The clustering of sequential patterns is a relevant
and scalable solution for behaviour modeling. (Sequeira
& Zaki 2002).
Besides, by clustering, outliers in data can be identified.
Sequential patterns which are not assigned to any cluster,
may be considered as anomalous. In market basket data,
for example, the clustering of sequential patterns may help
in customer segmentation or prediction in terms of their
purchasing behaviour.

The notion of similarity between sequential patterns
could also be used when extracting sequential patterns.
The extracted sequential patterns by apriori-like algo-
rithms (Agrawal & Srikant 1995) are usually very volumi-
nous. There are thus many works trying to integrate some
constraints like similarity constraint (Capelle et al. 2002)
to reduce the size of the output of the algorithms and to
better meet the end-user needs. Given a reference pattern,
the idea is to extract only the patterns that are similar to
the reference pattern.

The querying a set of sequences is another application
of similarity measure for sequential patterns. Given a
sequential pattern as a query, for example, we look for
the similar patterns. Querying sequences sets has real
application in bio-informatics and more generally in
sequential patterns visualisation.

As described, a similarity measure has many applica-
tions in sequence analysis especially when considering se-
quential patterns. A great deal of works has be done in the
field of item sequences. On the contrary, there are not so
many works in itemset sequences area. The existing mea-
sures, used for item sequences, are not necessarily adapted
to the itemsets sequences. Hence, we define a similar-
ity measure which takes the characteristics of itemset se-
quences into account. As domain knowledge about the
notion of similarity can vary according to different con-
texts, we define a similarity measure that is adaptable to
the context. That is the reason why we define a modu-
lar measure by combining two scores. The final similarity
degree is the weighted average of values of these scores.

3 Related Works

We report here the main approaches dealing with compar-
ing sequential data especially sequential patterns. The two
main similarity measures used for itemset sequences are
Edit distance and LCS. We explain the disadvantages of
these two measures for sequential patterns. Next, we cite
an approach based on the comparison of corresponding
itemsets.

The Edit distance (Levenshtein 1966) was used by
Capelle et al. (2002) for extracting sequential patterns un-
der similarity constraints. The authors define a sequen-



tial pattern as an ordered list of symbols belonging to >
where > is a finite set of alphabet. We show why this
measure 1s irrelevant for sequential patterns by taking an
example according to the given definition and representa-
tion of sequential patterns by Capelle et al. (2002):

Example 3.1. Given two sequential patterns M; =
{(ab)(c)} and My = {(a)(c)} represented as:
Mi{(ab)(c)} = X =Y | X = (ab), Y = (¢)

Ma{(a) ()} = Z - Y | Z=(a), Y = (o)

where X,Y,Z are symbols from 3

Since Edit distance’s operators are applied on the elements
of sequence ((i.e. itemsets)), the distance is the cost of re-
placing X and Z (repl(X, Z, 1)). In fact, in this work, an
itemset in a sequential pattern is reduced to an event type.
Hence, a sequential pattern is treated as an event type se-
quence'. In such a sequences, an event type is character-
ized by the values of some attributes. A list of event types
ordered according to the occurrence time of events is an
event type sequences (Mannila & Ronkainen 1997, Moen
2000). As described, in this work, an itemset is seen as an
event type when their items are considered as the values
of the event’s attributes. Hence, the itemsets (ab) and (a)
are treated as two symbols (event) completely different.
However, we argue that (ab) and (a) are not completely
different; but on the contrary, these are two similar be-
haviours.

Although a sequential pattern is sometimes seen as an
event sequence (like in this work), this interpretation of
itemset as an event is not always relevant. We explain this
issue in more details with Examples 3.2 and 3.3.

Example 3.2. Let R = {Seny, Sens,...,Sen,,} be a
set of sensors in an automatic alarms system. An alarm
(event) occurs according to the values of sensors within a
specific time. Alarmy, for instance, is characterized by
the values of sensors:

A = (Sen; = 0,Seny = 1,Sensz = 0). If, for exam-
ple, the value of Sengs becomes 1, the system is in a new
situation and it sets off hence another alarm Alarmg =
(Sen; = 0,Seny = 1,Sens = 1). We see that de-
spite a small difference in the attributes (value of sensor
Seng), but according to the data and the context, Alarma
and Alarmy are two events (situation of the system) com-
pletely different.

Example 3.3. Let us now consider a sequential pattern:
M = {(chips, soda, breads)(pizza)(chips, soda, chocolate)
(flour))} extracted from market basket data. The two item-
sets (chips, soda, breads) and (chips, soda, chocolate)
differ by a single item, but in this context, we know that
these two items correspond to two very close behaviours
of a customer. Thus, we can not consider them as two
behaviours (events) being completely different.

The Edit distance measure is also used in ApproxMAP ap-
proach to cluster the sequences of itemsets. ApproxMAP
developed by Kum et al. (2003), identifies the consensus
sequences in large database in two phases : (1) clustering
of itemsets sequences (2) extraction of consensus patterns
directly from each cluster. In Phase 1, the authors used
Edit distance as a measure of similarity, but with a mod-
ification on the cost of ’replacement operator” to adjust
the measure to itemsets sequences. The normalized set
difference is adopted as the cost of replacement operator.
Although this modification overcomes the disadvantage of
Edit distance argued previously, the authors noted that the
normalized set difference emphasis the common elements.
This behaviour is appropriated if the commonalities are
more important than the differences.

In addition, as noted by (Moen 2000), the type of edit
operations and their costs have a remarkable effect on
what kind of sequences are considered to be similar or
not. She indicates that it is more natural to give more
weight to the insertion (remove) of rare itemsets that to

!Edit distance is also used for event sequences (Moen 2000)

insertion (remove) of frequent itemsets in the sequences.
With different choices, we obtain different results.

Edit distance is not adaptable (configurable) to the various
definitions of similarity. In sequential patterns extracted
from bio-informatics data (data from the analysis of DNA
chips), for example, to seek similar patterns, the content
of itemsets (i.e ifems) is more important than the order
of itemsets. It means that if we look for similar patterns,
we should consider the similarity of itemsets according
to theirs contents more important that the similarity of
itemset’s order. However, Edit distance does not take this
characteristic of data into account. Hence, Edit distance
is not sensible to the different definitions of similarity for
sequences.

According to these examples, for a relevant comparison,
it is necessary to compare two sequential patterns by
considering their itemsets and their positions in sequences
and importantly by considering the content of itemsets
(i.e. common and non-common items). We should pay
attention that the elements of a sequential patterns (i.e.
itemsets) are not the atomic elements. We should not
hence treat them without considering their content (items).
Also, it is necessary that a similarity measure be adaptable
to the different contexts and to the characteristics of data.
This allows us to capture different kind of similarity.

The LCS measure (Longest Common Subsequence)
is used for the comparison of sequences (Sequeira & Zaki
2002). The LC'S gives the length of the longest common
subsequence of two sequences. It is possible to use LC'S
to compare the similarity of sequential patterns (itemsets
sequences) without being optimal. We note three reasons
why the LCS is not a optimal measure for sequential
patterns (itemset sequences).

Firstly, LC'S does not take the position of itemsets (in or-
der of sequence) into account in the two sequences.

Example 3.4. Let us consider:
My = {(bc)(df)(e)}
My = {(abc)(mn)(de)(egh)(fg)}
Mz = {(e)(bc)(df) }-

LCS(My,M;) = 2 and LCS(M;,Ms) = 2 with
the longest common subsequence = {(bc)(d)}.
This subsequence ({(bc)(d)}) corresponds to the
consecutive itemsets in M; = {(bc)(df)(e)} and
Ms = {(e)(bc)(df)}. But, it is not appeared consecu-
tively in Ms = {(abc)(mn)(de)(egh)(fg)}. Obviously,
LCS does not take into account this fact. However,
semantically the emergence of the subsequence {(bc)(d)}
in M, and M3 is not similar to its appearance in M.

Secondly, LC'S does not consider the length of the part
which is not common.

Example 3.5. The non-common part in M, (ie
abc)(mn)(de)(egh)(fg)} ) is longer than Mj’s (i.e.
e)(bc)(df)}). This is because the value of LC'S is not

normalized by the number of items in the sequence.

Thirdly, the number of different items in itemsets (in
which the subsequence appears) does not affect the value
of LCS.

Example 3.6. In M,, the itemset (bc) of subsequence
is included in the itemset (abc) while in My and Ms, it
is included in the itemset (bc). LCS does not consider
that in the itemset (abc) of M3, there is another item
different from “bc”(i.e.  “a”). This problem is not
resolved with the normalization because it depends on
the number of items in sequence and not by the num-
ber of items in itemsets in which the subsequence appears.

A comparison of the similarity between two multidi-
mensional sequential patterns is done by Plantevit et al.



(2007) for outliers detection in a data cube. The distance
between two multidimensional sequences is defined as:
Let S; = {bi,bo,...,bx} and Sy = {by,by,...,b,}
be two multidimensional sequences, dist is a distance
measure and Op an aggregation operator. The distance
between S; and S5 is defined as follows:

d(s1,s2) = Op(dist(bj,b'j) for j = 1...k. Compari-
son is done between corresponding blocks?. It means that
we compare the block 7 in 57 with the bloc 7 in S5 . This
kind of comparison is not useful when, for example, there
is a shift in one of the sequence.

There are some approach developed to compare the
XML document (Lee et al. 2004). A XML structure can be
seen as a sequence of complex objects. But in this kind of
sequences the object are not ordered. It means that there is
not any order relation between objects. But in this paper,
we introduce a similarity measure for sequential patterns.
The order relation between the objects of a sequential pat-
tern (i.e itemsets) is a fundamental concept. Thus, we must
compare the sequential pattern according to their order.

The existing measures in the literature have some dis-
advantages in the case of sequential patterns or they are
just applicable for sequences of items. A similarity mea-
sure for sequential patterns must take into account the fact
that sequential patterns are sequences of ordered itemsets
and not items. The positions of itemsets in sequences (dis-
tance in order) must also be taken into account when cal-
culating the similarity. Moreover, the number of common
items and non-common items must be considered both at
the sequence level as well as at the level of corresponding
itemsets.

In this paper, we define a similarity measure (S2MP:
Similarity Measure for Sequential Patterns) which takes
these characteristics into account.

4 S?MP: Description

Our similarity measure (S2MP: Similarity Measure for
Sequential Patterns) results from the aggregation of two
scores:

1. The mapping score which measures the resemblance
of two sequences based on the links that can be es-
tablished between itemsets,

2. The order score which measures the resemblance of
the two sequences based on the order and positions
of itemsets in sequences.

As we consider the itemset proximity as very impor-
tant, we first build the best mapping of itemsets based on
the similarity of their contents (common and non-common
items) in step 1. The mapping score is calculated at the
end of this step by considering all the mappings and their
degree of mapping (weight of mapping).

In step 2, the goal is to give a score according to the
resemblance of two sequences in terms of their order
and position of mapped itemsets in two sequences. We
take the result of step 1 without any rearrangement of the
mappings. Then, we are firstly looking for the mappings,
which comply with the order of itemsets in two sequences
(cf. Figure 2). It means that we discard the mappings,
which associate the current itemset of a sequence to an
itemset before the last mapped itemset of other sequence.
This kinds of mapping are called cross-mappings (cf. Fig-
ure 2). Moreover, we also measure the resemblance of
the mapped itemsets according to their positions in two
sequences.

Finally, the order score is calculated based on the pro-
portion of the mappings complying with order to the all

2Here, a data block can be seen as an itemset

mappings in addition to the score measuring the similarity
of itemsets according to their positions.

Step 1: Mapping Score Calculation. Let us consider
Seq: and Seq as two sequential patterns to be compared
to. For each itemset 7 in 15! sequence Seq; (i), we are
looking for the most similar itemset j in the 2"¢ sequence
Seqa(j). Then we match these two itemsets and we give
each pair of mapping a weight which is the degree of sim-
ilarity between the two itemsets. We define below how the
weight of mapping is computed:

Definition 4.1. Weight(i, ) between the i itemset of
Seq; and the ;" itemset of Seqsy

|Seq1 (i)NSeqa (5)]
(ISeqr(i)[+[Seq2()])./2
For equal weights, we choose the itemset with the low-
est timeStamp (ts)°. It means the itemset located before
others regarding the order of sequence to comply with the
order of itemsets. Thus, the mapping is formalized as:

Weight(i,j) =

Mapping(Seqi (i), Seq2(j)) | Weight(i, j) =

max
z€[0,|Seqg

&& Weight(i,j) # 0

If Weight(i,j) = Weight(i, k) = ts(j) < ts(k)

Figure 1: Conflict of mapping.

Conflict of mapping. When computing the mappings,
an itemset selected from the 2" sequence to correspond
to an itemset of the 15¢ sequence may have already been
mapped with another itemset. This situation, called “con-
flict of mapping”, is illustrated in Figure 1. The itemset
Seqa(j) is proposed to map with Seq (k). But Seqa(j)
is already mapped with Seg;(i). To solve this prob-
lem, we must find another mapping candidate for one
of the itemsets in conflict. For this, we use a function
(SolveCon flict) to propose a new itemset as a new can-
didate for mapping.

In the SolveCon flict, for each itemset (in conflict) of se-
quence 1 (i.e. Seqy (i) and Seq; (k)), we are seeking two
other mapping candidates in the Segs (other than Seqs (),
the current candidate itemset):

e The 1% candidate is the itemset located before
Seqa(j) which also owns the maximum weight
among itemsets placed before Seqz(j). We name
them as: nextMazxBefor; as a candidate for
Seqy (i) and nextMax Be fory, for Seqy (k).

e The 27 candidate is selected the same way but it is
sought after Seqs(j): nextMaxAfter; for Seqy (i)
and nextMax Aftery, for Seq (k).

Next, we create all possible mapping pairs. We get at
the most four possible cases of mapping:

e < Seqi(i),Seqz2(j) >.< Seqi(k),nextMaxBeforey >,

o < Seqi(i).Seqa(j) >,< Seqi(k),nextMaxAftery >,

e < Seqi(k),Seqz2(j) >,< Seqi(i),nextMaxBefore; >,
o < Seqi(k),Seqa(j) >,< Seqi(i),nextMaxAftre; >.

| (Weight(i,
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Figure 2: Cross mapping and the order of itemsets.

We consider here two opposite kinds of mapping pairs,
namely mapping pairs that comply with the order and
mapping pairs, which violate the order (see Figure 2) re-
ferred to as cross-mappings.

More precisely, let us consider a pair of mappings: in
the first mapping the itemset at position ¢ on the first se-
quence is mapped with the itemset at position ¢’ in the sec-
ond sequence; in the second mapping the itemset at posi-
tion j (where ¢ < 7) on the first sequence is mapped with
the itemset at position j’ in the second sequence. Then
this mapping pair is said to be order compliant if i' < j'.
It is said to be cross-mapping is i’ > j'.

We calculate the relevance of the four possible cases
of mapping with localSim. The calculation of local Sim
depends on the type of mappings:

— when mappings comply with order, we consider:

Weight(i Weight(k,
localSim(i, Cany ) (k, Cang) = 1.c29ht(: Cam) + Weight(k, Cana)

2

— when we have cross mapping, as the order is half
respected in cross-mapping, we divide the localSim by
two. We thus consider:

localSim(k, Cany) (i, Cang) =

1 Weight(k,Cani)+Weight(i,Cang)
2 X 2

The mapping pair having the highest local Sim is then
selected as the output of the SolveCon flict function.
Note that at the end, the initial candidate (i.e. Seg2(j)) is
proposed as a candidate either for Seq; (¢), or for Seq; (k)
depending on the value of local Sim.

Conflict Loop. Mapping function handles the cases
when there is a conflict loop. The conflict loop is a
situation where the candidate itemset, which is pro-
posed to resolve a conflict of mapping (output of the
SolveConflict) is itself mapped to another itemset. In
the case of a conflict loop, we continue to call the function
SolveCon flict until its output (new proposed candidate)
is not already mapped. In each loop, we exclude the
proposed candidate which is already mapped. In the
situation where there is not any candidate for one of
the itemsets in conflict (i.e. Seq; (i) and Seq (k)), we
associate the initial candidate (Seqo(j)) with the itemset
owning the highest weight of mapping. The other itemset
remains without any corresponding itemset in the 2"¢
sequence (without mapping).

Output of Step 1. At the end of step 1, we have the final
mappings. We come up with the mappings associating
each itemset from sequence 1 with the more relevant (in
terms of common and non-common items) itemset from
sequence 2. These mappings are stored in a list named
mapOrder. The first element (resp. 27e  nth) in the
list is the timeStamp of the itemset from sequence 2

corresponding to the first itemset (resp. 2"¢,....n'") from

3The timeStamp in our context, corresponds to the position of itemsets in
the order of sequence. For example in the sequence (a)(ab)(c), ts(ab) = 2.

sequence 1. We thus have:

mapOrder = {t1,ta, ..., t;, ..., tn}

t; = the timeStamp of the itemset of the Sego mapped with it" itemset in Seqi.

At last, we calculate the mapping score by average of
weight of mappings (AveW eightScore).
We explain here why the content of itemsets, which have
cross-mappings, should be considered into the mapping
score. In fact, if we consider only the weight of itemsets,
which have ordered mappings, we loose some information
about the similarity of sequences. For instance, when
comparing (a)(b) with (b)(a) and (a)(b) with (b)(d), if we
take only the weight of itemsets with ordered mapping
(i.e. the weight of (b)— (b)), then (a)(b) and (b)(a) will be
treated as same as (a)(b) and (b)(d). But, by considering
the weight of all found mappings, we consider also the
weight of (a)—(a) (equal to 1) and the weight of (a)—(d)
(equal to 0).

We now go to Step 2, which aims at evaluating to what
extent the mappings found in Step 1 respect the order of
the sequences.

Step 2: Order Score Calculation This step is two-
folded:

e totalOrder,
e positionOrder.

Firstly, we aim at discarding cross-mappings (cf.

Figure 2) using totalOrder. mapOrder is a list of
integers representing the timeStamps of itemsets. In this
list, as while as the integers (timeStamps) are increasing,
the corresponding mappings are totally ordered (there are
not cross-mappings). We look hence for the maximum
increasing subsequences of mapOrder to find all the
possible series of mappings which comply with order. In
this way, we avoid the cross-mappings.
More precisely, totalOrder measures the percentage of
non-cross mappings (i.e. mappings respecting the order
of itemsets in the two sequences). The calculation of
totalOrder is formalized as follow:

__ nbOrderedItemSets
totalOrder = aveNbItemSets

nbOrderedItemSets = The number of itemsets in the increasing subsequence
aveNbItemSets = The average of the number of all itemsets in the two
sequences

<ViY2¥Y3Vyls >

(a) (b)

Figure 3: Distance between mappings according to posi-
tions of itemsets.

Secondly, we aim at considering the width between
the mapped itemsets using positionOrder. For instance,
Figure 3 shows that the itemsets can be mapped differ-
ently. Here, in part “a” of Figure 3, the itemsets are
mapped in a closer way compared to part “b”.

The timeStamps also allows us to check similarities
of mapped itemsets according to their positions in the
sequences.

positionOrder shows if the distance between two
successive mappings based on the positions of itemsets in



the sequence 1 is equal to that according to the positions
of itemsets in the sequence 2. Figure 3-a shows an
example where the distance between the successive
mappings according to the positions of itemsets in the
sequence 1 is equal to that according to the positions of
itemsets in the sequence 2. But in Figure 3-b, the distance
between two first mappings depending on the positions
of z; and z2 is not equal to the distance depending on
the positions of y; and yo. The positionOrder formula is:

positionOrder =

Z\sub| |sub(i)—sub(i—1)|—|mapOrder ™ (sub(s)) —mapOrder 1 (sub(i—1))|

aveNbItemSets

-th

sub(i) = The value of *" position in the subsequence

mapOrder ~! (z) = The position of itemset “z” in mapOrder
At last, for each increasing subsequence of
mapOrder, we calculate the multiplication of

totalOrder and positionOrder and we keep the
highest score as (orderScore):

orderScore = max{totalOrder(sub) x (1 — positionOrde(sub))}
sub € {mazimum increasing subsequences of mapOrder}

At the end of Step 2, the orderScore is calculated. The
final similarity degree can now be computed by an aggre-
gation between order score (orderScore) and the average
of weight of mappings (AveW eightScore) calculated at
the end of Step 1. This final degree is calculated in Step 3
as described below.

Step 3: Final Similarity Degree Calculation. We cal-
culate the similarity degree SimDegree as an aggrega-
tion between the orderScore and the average weight of
mapping of itemsets AveW eightScore. The orderScore
compares the similarity of two sequences based on the po-
sitions of itemsets (likeness of order of itemsets) in se-
quences. By AveWeightScore, we compare the simi-
larity in terms of common items and non-common items
in itemsets. The aggregation can be a weighted average
while we can define the coefficient for each score. By
defining the coefficient for each score, we choose to con-
sider the order as more (or less or as) important than the
content according to the application context. Our measure
is thus a very flexible measure.

SimDegree =

(orderScore x Co1) + (AveWeightScore x Co2)
Co1 + Coo

The calculation of the similarity is explained in the
following example. We tried to treat most cases and also
the conflicts of mapping in the illustration.

Example 4.1. Let us take M; = {(bc)(df)(e)} and
My = {(abc)(mn)(de)(egh)(fg)} that we used to show
disadvantages of LC'S as the two sequential patterns.

Step 1: Mapping Score Calculation. For each itemset
M, (i) in the first sequence, we are looking for the most
similar itemset M5 (7) in the 2" sequence. This is done
by the weight of mapping calculations.

Weight (M1(1), M2(1)) = Weight ((bc), (abc)) = L =0.8
Weight (M1(1), M2(2)) = Weight ((bc), (mn)) = ; =0
Weight (M (1), Ma(3)) = Weight((be), ((de)) = 2% =0
Weight (M1(1), M2(4)) = Weight((bc), ((egh)) = ZL =0
Weight (M1(1), M2(5)) = Weight((bc), ((fg)) = é =0

We choose the case with the highest
MappedItemSets.put(Mi (1), Ma(1)).
We continue by the following itemset M7 (2)

weight:

Weight (M1 (2), M2(1)) = Weight((df), (abc)) =

)
Weight (M1(2), M2(2)) = Weight((df),

Weight (M1(2), M2(4)) = Weight((df), ((egh

(M1(2), M2(1)) (
(M1(2), M2(2)) (
Weight (M1 (2), M2(3)) = Weight((df), ((de)
(M1(2), M2(4)) (
(M1(2), M2(5)) = Weight((df), ((fg)

Weight (M1(2), M2(5

The Weight((df), (de)) and the Weight((df),(fg))
are equal, so we select the itemset with lower timeStamp
(i.e. (de)) to map with the itemset (df). We have thus:

M appedItemSets.put(M;(2), M2(3)).

We do the same for the 37 itemset M (3):

Weight (M1 (3), Ma(1)) => Weight((e), (abc)) = 525 =

(M1(3), M2(1)) ((e), ( 31z =0
Weight (M1(3), M2(2)) = Weight((e), (mn)) = :?2 =0
Weight (M1(3), M2(3)) = Weight((e), ((de)) = 0
Weight (M1(3), M2(4)) ((e) ((egh))=

(M1(3), M2(5)) ((e), ((f

9)) =5tz =0

2

= Weight((e),

Weight (M1(3), M2(5)) = Weight((e),

According to the calculation, we select the itemset
M>5(3) (i.e. (de)). But this itemset (de) has already been
associated with the itemset (df ) of M;. Therefore, we use
the function of conflict resolving.

We look for new candidates in M5 for itemsets in conflict
((df) and (e)) before and after the current candidate item-
set (de). We get the following candidates:

o for the itemset (df):
nextMaxBefores =0

nextMaxAfterry = Ma(5) = (fg)
o for the itemset (e):

nextMaxBeforey = (

nextMaxAftery = My(4) = (egh)

e Possible pairs of mappings:

(((df), (de)), ((e), (egh)))
(((e), (de)), ((df), (f9)))-

Using the weight of mapping and considering case of
cross-mapping ({((¢), (de)), ((df), (£9)))). we get:

local Sim(((df), (de)). ((¢), (egh))) = 25425 = 0.5
localSim(((e), (de)), ((df), (fg))) = } x 505 —

0.27

We select the pair having the highest localSim:
(((df), (de)), ((e), (egh))). The itemset (df) is thus
mapped with (de) and the itemset (e) with (egh):
MappedItemSets.put(Mq(2), Mo(3
MappedItemSets.put(My(3 ,M224 .

Final mappings are:

(Mi (1) = (abe), Ma(1) = (ab))
(M:(2) = (df), M2(3) (de))
(Mi(3) = (e), M2(4) = (egh))

We create now the mapOrder list. We put at the 5"
place in mapOrder the timeStamp of itemset mapped to




i*" itemset Seq(1)(i) of the first sequence. Hence, the
15¢ place in mapOrder is taken with “1” according to
the timeStamp of the itemset M(1) mapped with the 15¢
itemset M (1) of the first sequence. For the 2"? place,
the timeStamp of the itemset Sego(3) mapped with the
274 jtemset M, (2) of the first sequence (i.e. “3”) and
in the same manner we put “4” in the 3" place in the
mapOrder. Therefore the mapOrder is:

mapOrder = {1,3,4} ‘

At last, we calculate the mapping score by averaging the
weight of mappings (AveW eightScore).

AveWeightScore =
Weight((bc),(abc))+Weight((df),(de))+Weight((e),(egh)) _
3

08+05+0.5
: -

0.6

AveWeightScore = 0.6

Step 2: Order Score Calculation. In this step the aim is
to compare the order of itemsets in the two sequences.
We seek all maximum increasing subsequences of
mapOrder (output of step 1). In this Example, there is
only one maximum increasing subsequence.

The only maximum increasing subsequence of mapOrder:
o subseq = {1,3,4}

According to the formula of totalOrder, of positionOrder and of
orderScore:

o totalOrder(1,3.4) = ;373773 = 0.75

e positionOrder((1,3,4)) =
[(3=1)—(2—1)] [(4=3)—(8=2)| _
(3¥5)/2 + (3+5)/2 =025

e orderScore = 0.75 X (1 — 0.25) = 0.56

Step 3: Similarity Degree Calculation. With the multi-
plication of orderScore and the AveWeightScore, we
get the degree of similarity between the two sequential
patterns:

SimDegree = 0.56 X 0.6 = 33 % \

5 Experiments

In this paper, we introduce a measure of similarity for se-
quential patterns. In this section, we report the experi-
ments led to show the accuracy, the relevance and the scal-
ability of our approach. A measure of similarity must cap-
ture the similarity of compared items. Such a measure is
usually used within another algorithm like as clustering
or extraction of sequential patterns under similarity con-
straint. It must be efficient and scalable. We consider two
main directions :

e the accuracy of the similarity degree obtained by
S2MP,

o the efficiency of the S?M P algorithm at execution
time and size of used memory.

Accuracy of S2M P. We experiment S?M P to assess
its quality (accuracy) and compare the results obtained
by S?M P and Edit distance. We apply two clusterings
of sequential patterns: one with S2M P and one with
Edit Distance. In both cases we use the same dataset. To
compare clusters obtained by each measure, we calculate

the entropy of each cluster.

The dataset consists of 100 sequential patterns. We

manually create 10 categories of sequential patterns. In
each category, we put the similar patterns. These cate-
gories will be used as references. The sequential patterns
have different sizes. Among these 10 reference categories,
4 categories contains different patterns and 6 categories
contain patterns similar to the patterns of at least one other
category. This allows us to assess the accuracy of each
measure when it comes to distinguish clusters with a small
inter-cluster distance.
We adopted the K-means clustering for sequential pat-
terns. We cluster the patterns at first by using S?M P and
then by using Edit distance. For each clustering, we cal-
culate the entropy of obtained clusters. We compare also
the clusters with reference categories for calculating the
precision and recall of each clustering. These experiments
show that the cluster obtained with S?M P are more ho-
mogeneous (according to entropy of clusters) than those
obtained with Edit distance. Moreover, the clusters ob-
tained by S2M P are more accurate (according to preci-
sion of clusters) and more complete (according to recall
of clusters).

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

SZMP 0.98 0 0.99 0.86 0.95 0 0.97 0.95 0.65 0
Edit dist 0.97 0 0.99 1.20 0.89 0 0.98 0.98 0.70 0.99

Table 1: Entropy of clusters obtained by S2M P and Edit
distance.

The table 1 shows the entropy of clusters obtained with
each measure. More entropy of a cluster is small, more
cluster is homogeneous and it contains more informations.
The average entropy for clustering with S2M P is 0.63
and using Edit distance is 0.77. The precision and recall
of clusters obtained by each measure is illustrated in ta-
ble 2. The precision and recall are calculated based on the
reference categories.

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10
Precision (S2 M P) 0,57 1 0,53 0,71 0,65 1 0,5 0,6 0,68 1
Recall (S2 M P) 0.4 1 0,7 1 1 0,5 0,5 0.4 1 0,4

Precision (Edit) 0,6 1 0,53 0,58 0.68 1 0.4 0,62 0,83 0,57

Recall (Edit) 0,3 1 0,6 1 0.9 0.8 0,2 0,5 1 0,4

Table 2: Precision and recall of clusters using S2M P and
using Edit distance.

We also experiment S?M P and Edit distance on their
ability to identify similar sequential patterns in different
contexts. We consider the bioinformatics domain and
more precisely the characteristics of sequential patterns
extracted from DNA chips. In this area, according to
experts, the contents of itemsets (i.e. ifems) are more
important than the order of itemsets. For example, the
two sequential patterns Mi=< (G1,G2)(G3)(G4) >,
Ms=< (G3)(G1,G2)(G4) > are so similar because the
content of itemsets are similar however their order are not.
To experiment S? M P in this situation, we manually cre-
ate 10 categories each one contains 10 similar sequential
patterns according to the content of their itemsets, which
are ordered so differently in different sequences (i.e. each
category contains 10 sequential patterns, which are sim-
ilar based in the content of itemsets but order of itemsets
differs). We also consider the categories, which contain
the patterns rather similar.

We do a clustering on the data set with S2M P by giv-
ing to the score of mapping a weight two times more than
the weight of order score (i.e. we configure S> M P in the
way that the content of itemsets is more important that the
order of itemsets). Then, we do other clustering on this



dataset with Edit distance. The results with S2M P show
that we can capture similar patterns according to the par-
ticular definition of similarity in this context. This shows
that S2M P is well parametrizable and is adaptable to dif-
ferent definition of similarity for sequential patterns. Re-
sults obtained with Edit distance in this context, are not
satisfactory.

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10

SZMP 0.99 0,52 0,99 0,99 0,99 0 0 0,99 0 0,98
Edit dist 1,2 1,2 1,3 1,3 1,3 1,2 1,4 0,95 0.4 1,7

Table 3: Entropy of clusters obtained by S?M P and Edit
distance when the contents of itemsets are more important
than the order of itemsets — (e.g. patterns extracted from
the DNA chips data)

Table 3 shows the relevance of S2M P in this context
and its adaptability to different definition of similarity for
sequential patterns. On this dataset, the average entropy
of clustering using S? M P is 0.64 and using Edit distance
is 1.19. We demonstrate the precision and recall of clus-
ters for each clustering in the table 4. The precision and
recall of clusters are calculated according to the reference
categories.

Efficiency of S2M P. Despite the complex appearance
of our measure’s algorithm, we show that our method is
very efficient in terms of runtime and size of memory
used, by studying how it performs depending on three fac-
tors, as detailed below. We test execution time and size
of memory used by our similarity measure in three direc-
tions: (1) depending on the number of itemsets in sequen-
tial patterns(2) depending on the number of items in se-
quential patterns and finally (3) depending on the number
of sequential patterns that we want to calculate their simi-
larities.

We create a matrix of similarity with (n X n) dimensions
where n represents the number of sequential patterns. Our
measure of similarity is not symmetrical, we calculate thus
all the matrix instead of a diagonal calculation. The time
for calculating the similarity matrix is the time necessary
to make n x n comparisons of similarity. Our results show
that our measure of similarity is calculated very quickly
even when there are many conflict loops at the mapping
phase.

The experiments are performed on a machine with a 2GHz
Intel CPU with 2GB of RAM under the ubuntu Linux op-
erating system. Our algorithm is implemented using Java

Data set. We carry out experiments on two different
types of itemset sequences:

1. frequent sequential patterns,

2. data sequences.

The frequent sequential patterns are extracted from
synthetic data generated by the generator IBM quest*.
In the second stage of our experimentation, we decided to
make a test on data sequences because in such sequences,
we are more likely to have conflicts of mapping. This al-
lows us to study the impact of conflict on runtimes.
In the tests depending on the number of itemsets and
items, data sets are made up of 1000 sequential patterns
(or data sequences). At each stage, we calculate the sim-
ilarity matrix, (i.e. we realize 1,000,000 comparisons of
similarity).

4www.almadenjbm.com/cs/projecls/iis/hdb/l’rojects/

data-mining/datasets/syndata.html

Cl C2 C3 C4 C5 C6 C7 C8 C9 CI10

Precision (52 M P) 0,55 0,71 0,54 0,54 0,55 1 1 0,53 1 0,57
Recall (S2 M P) 0,5 1 0,6 0,6 0,5 0,6 1 0,7 1 0,4
Precision (Edit) 0,52 0,61 0,46 0,60 0,50 0,5 0,5 0,37 0,9 0,16
Recall (Edit) 0,9 0,6 0,6 0,3 0,5 0,6 0,7 0,3 0,9 0,2

Table 4: Precision and recall of clusters using S2M P and
using Edit distance when the contents of itemsets are more
important than the order of itemsets — (e.g. patterns ex-
tracted from the DNA chips data)
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Figure 4: Calculation time and memory size depending on
the number of itemsets.

Results. Figures 4 and 5 represent the evolution of the
running time of 1,000,000 comparisons and the size of
memory used according to the number of itemsets and
items per sequence. According to the curves, the size
of memory used does not change significantly when the
number of itemsets (or items) per sequence increases.
The time for calculating the similarity matrix (1,000,000
comparisons) when there are 10 itemsets per sequence
is satisfactory (116 sec). This means that the time for
calculating similarity between two sequential patterns,
each one with 10 itemsets is equal to 116y sec. Our
experiments show that the number of items per sequence
does not affect the runtime as much as the number of
itemsets per sequence.

We show the time of calculating similarity matrix on
the Figure 6 and the size of memory used on Figure 7
when the number of sequences increases. In each case,
there is n X n similarity comparisons where n is the
number of sequences in the data set. We run this test on
three types of sequences: the sequences with 5 itemsets,
with 7 itemsets and sequences with 9 itemsets. In cases
where there are 5000 sequences (i.e. 25,000,000 similar-
ity comparisons), and each sequence contains 9 itemsets,
the execution time is only 1974 sec.

Figure 8 shows the results of experimentation on data
sequences. For each case, we noted the number of re-
solved conflicts when calculating the similarity matrix.
The X-axis represents the different data sets. For each,
the number of itemsets and the average number of items
per sequence are marked. There are 1000 sequences in
each data set (thus 1,000,000 similarity comparisons). The
curves represent the running time of the calculating simi-
larity matrix for each case and the size of used memory.
For example, where there are 20 itemsets and on aver-
age 109 items per sequence and 103437 solved conflicts,
the calculating time of 1,000,000 similarity comparisons
is equal to 961 sec. We note that the size of memory used
is almost constant.

With these experiments, we have shown that our mea-
sure is efficient in term of runtime and size of memory for
data sequences and frequent sequential patterns.
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Figure 5: Calculation time and memory size depending on
the number of items.
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Figure 6: Time for calculating the similarity matrix based
on the number of sequences.

6 Conclusion

In this paper, we have defined a similarity measure
(S2MP) adapted to sequential patterns taking into account
all the characteristics of sequential patterns and in partic-
ular their semantics. The degree of similarity is the result
of the aggregation of two scores. These scores measure
the similarity of sequential patterns in terms of itemsets
and their positions in the sequences (orderScore) but also
in terms of items contained in the corresponding itemsets
(aveWetghtScore). The combination of two indepen-
dent scores allows a modular measurement. It is there-
fore adaptable and parametrizable depending on the con-
text, different definition of similarity and the meaning of
itemset in the application domain. S2MP overcomes the
disadvantages of LC'S and Edit distance in the case of
sequential patterns.

Experiments show that S2MP is more accurate than Edit
distance. The clusters obtained by S?MP are more pre-
cise and more complete than the clusters obtained by Edit
distance. The experiments show also that S?MP can be
calculated very quickly even when we compare many se-
quences with several itemsets.

Several areas and methods as the clustering of sequential
patterns, outliers detection, extraction of sequential pat-
terns under similarity constraint, compression of sequen-
tial patterns, visualisation and querying the sequential pat-
terns, etc are possible applications of S>MP.
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