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Abstract

The problem of mining for outliers in sequential datasets
is crucial to forward appropriate analysis of data. There-
fore, many approaches for the discovery of such anomalies
have been proposed. However, most of them use a sample
of known typical sequences to build the model. Besides,
they remain greedy in terms of memory usage. In this paper
we propose an extension of one such approach, based on a
Probabilistic Suffix Tree and on a measure of similarity. We
add a pruning criterion which reduces the size of the tree
while improving the model, and a sharp inequality for the
concentration of the measure of similarity, to better sort the
outliers. We prove the feasability of our approach through
a set of experiments over a protein database.

1 Introduction

Lately, mining for outliers in large sequential databases
has risen as an active domain of research. By outlier, we
mean "an observation that deviates so much from others
as to arouse suspicion that it was generated by a differ-
ent mechanism" [12]. Indeed, the potential applications of
anomaly detection are numerous and diverse, as this is a
matter of interest for areas such as knowledge discovery
(Web Usage Mining) and biostatistics (DNA mutations de-
tection). Even so, it remains a challenging problem as out-
liers are rare by definition [18]. Furthermore, they have
to be separated from noise which arises unavoidably in a
dataset: considering noise as an anomaly wrongly raises
suspicion. Within the last few years, detection of outliers
has been investigated for all kind of datasets. Among those
approaches, some were based on discordance tests under
assumptions of one probabilistic distribution of the obser-
vations, in the cases of univariate or multivariate data [4].
Others were based on a distance, allowing the detection of
anomaly when confronted to multidimensional data [14].

Meanwhile, bases of DNA or protein sequences have
been studied to understand biological mechanisms, for ex-
ample through the extraction of motifs in [10]. Those
datasets are challenging because of their structure and their
size, demanding appropriate model selection. Therefore, a
very efficient approach for mining for outliers in such bases
is proposed in [18]. However, some issues are problem-
atic: first, this method remains very memory-demanding,
and second, it involves some previous knowledge of typi-
cal sequences to build a model. Consequently, we propose
here to extend this approach to overcome both of those chal-
lenges: we use an information criterion to reduce the size
of the model, while making it more accurate. We also add
refined bounds for the similarities of the sequences. This
leads to a better detection of anomalies among the database.

The rest of the paper is organised as follows: in Sec-
tion 2 is presented an accurate method for the detection of
anomalies. Our improvements are proposed in Section 3,
resulting in an adequate and parsimonious method for min-
ing for outliers in sequential databases. The pertinence of
our approach is showed through experiments in Section 4,
followed by a detailed analysis of all our propositions. We
summarise our work and evocate potential further research
in Section 5.

2 The Basic Method

In this Section we recall an existing approach for the
extraction of outliers in sequential databases [18]. This
work of Sun et al. is based on a natural assumption for
sequences such as DNA or proteins: they have a property
of "short memory" [15], that is, a variable length Markov
condition: for a sequence s = s1...s`, if for 2 ≤ i ≤ `,
PT (si|s1...si−1) is the probability that si follows s1...si−1,
then there is an integer 1 ≤ K ≤ i− 1 such that

PT (si|s1...si−1) = PT (si|si−K ...si−1). (1)



Figure 1. An example of PST on the binary
alphabet.

It is a Markov property of order K. It is said to be vari-
able as K is not fixed. An usual representation of such a
model is a suffix tree,where each node has its greater suffix
as a parent. Each leaf represents a memory of the associ-
ated Markov chain. This model is for example used for the
classification of protein sequences in families [6]. Indeed,
it allows to estimate the probability of each sequence in the
set.

2.1 Probabilistic Suffix Tree (PST)

Let us consider a set S of sequences over a finite alphabet
Σ. The probability of a sequence s is denoted by PT (s). A
PST is a classic suffix tree, provided with conditional prob-
abilities for each node. More precisely each node contains
the count of its associated sequence s in the database and a
vector of length |Σ| of the conditional probabilities PT (σ|s)
for each σ ∈ Σ. As the size of the tree grows exponentially
with the length of the memory, it is pruned. To this end, a
maximum length L for the tree is fixed. And nodes with low
frequency, considered as negligible, are removed.

Example 2.1 Figure 1 shows a PST on the alphabet {a, b}.
A maximum length L = 3 is fixed. 4 is the minimal fre-
quency for the sequences. The nodes aa, aab and bab have
been pruned because they are too rare.

Once the PST has been constructed, the conditional
probabilities associated to its nodes are used to estimate
the distribution of each sequence, as for any sequence s =
s1...s`:

PT (s1...s )̀ = PT (s`|s1...s`−1)...PT (s2|s1)×PT (s1) (2)

Example 2.2 Using the former PST,

PT (aabb) = PT (b|aab)×PT (b|aa)× PT (a|a)×PT (a)
= PT (b|ab)×PT (b|a)×PT (a|a)×PT (a)
= 0.5×0.8×0.2×0.35. (3)

Thus, the probability of each sequence is computed ac-
cording to the PST. Afterwards, a measure of similarity is
introduced, in order to discreminate between typical and
non-typical observations.

2.2 Measure of Similarity and Informa-
tion Theory

In [18], for each sequence s = s1...s`, the measure of
similarity is defined as:

SIMN (s) =
1
`

log PT (s1...s`). (4)

To allow the computation of any new sequence’s similar-
ity, the conditional probabilities of the PST are smoothed,
thus, infinity is avoided. The measure SIMN is normalised,
and therefore it is not biased by the length of the sequence.
Moreover, when under appropriate assumptions, it has an
interesting aymptotic property. First, the sequences are sup-
posed to be generated by an information source. This im-
plies that they take their values in a finite alphabet, and that
their distribution is stationary, i.e. it does not change over
time. Second, let us remind that the entropy of a random
variable is a measure of regularity [3]. This notion can eas-
ily be extended to two or more variables, through the con-
cept of joint and conditional distribution, leading to joint
and conditional entropies. The uncertainty of an informa-
tion source is then defined as the limit of the conditional
entropy.

Let us suppose that the sequences of the base S have
been generated by an unique ergodic information source,
then Shannon-McMillan theorem [16] states that −SIMN

is consistent towards the uncertainty of the source. A proof
of this result can be found in [3]. Therefore, when ` is
large, SIMN (s) should be close to minus the uncertainty
of the source, if s has indeed been generated by it. Other-
wise, SIMN (s) will lay far from the similarity of other se-
quences. Consequently, a concentration inequality such as
Chebyshev’s is used to determine bounds outside which se-
quences are likely to be anomalies. However, this inequality
is known to be ill-fitted for points far from the mean, which
actually are the potential outliers.

In [18], experiments on a protein database are led with
success. But they lay on the prior knowledge of which se-
quences are typical, as only those are used to build the PST.
Indeed, first, a model is built over the typical sequences, and
second, the authors determine whether new sequences are
anomalies with respect to the given model. But we wish to
directly extract the outliers from the set of sequences. For
all that, however well-fitted the method presented in this
section may be to point out structural differences between
families of proteins, it fails when one wishes to truly mine
for outliers. Moreover, though partially pruned, the tree re-
mains space-consuming. Therefore, the aim of the present



paper is the improvement of the approach proposed in [18].
We determine whether a sequence s is an outlier given a
base S and a threshold t. (Our approach may be easily ex-
tended to find the top-n outliers in S.)

3 Our Extension

In this section, we detail our approach. Namely, we in-
troduce:

• A further pruning of the tree, with an information crite-
rion, inducing systematic discovery of anomaly, thanks
to an adequate and reduced model.

• An exponential concentration inequality for the mea-
sure of similarity, leading to sharper bounds and there-
fore better discrimination of outliers.

We adopt the same hypotheses of short memory property
and stationarity, and also consider the case of a finite alpha-
bet Σ.

3.1 Pruning the PST with Akaike’s Infor-
mation Criterion

We have seen in Section 2 that a PST is pruned in two
steps: a maximal length L is fixed. Any node deeper than L
is pruned. Any node with a lower frequency in the dataset
than a given threshold is pruned. In addition to the two
pruning procedures we have seen so far, in [15] a PST is
built as follows: a node is added only if it differs statis-
tically from its parent. To this end, a criterion based on
the Kullback-Leibler information is used. The Kullback-
Leibler information or distance is sometimes called relative
entropy, and denotes the information lost when a distribu-
tion is used to approximate another [8]. The statistic of error
for a letter σ and a sequence s, denoted by Err(σs, s), is
defined in [15] by the Kullback-Leibler distance between
the distributions PT (.|σs) and PT (.|s), pondered by the
probability of σs. If Err(σs, s) is less than a given thresh-
old, the node σs is pruned. Nodes corresponding to strings
which observation probabilities are weak are also pruned,
no matter how they differ from their parent: being rare, they
are considerated as negligible. In [18], only this last crite-
rion is applied. But there could be cases where the com-
pared distributions differ at a deeper level. Therefore, in
[15], all the potential descendants of each pruned node are
also tested.

Example 3.1 Let us consider again the binary suffix tree of
Figure 1. Suppose the threshold is 0.1.
Err(abb, bb) = 0.001, and Err(bbb, bb) = 0. Nodes abb
and bbb are thus pruned, because their vector of conditional

probabilities is similar to their parent’s: therefore no addi-
tional knowledge is gained using a memory of order 3 in-
stead of one of order 2.

This last pruning method is not used in [18]. For this
purpose, we recall a well-known criterion Akaike called An
Information Criterion (AIC) and introduced in [2]. It allows
to balance between the fit of a model and its complexity. Let
L be the likelihood function of a model, and k its number
of parameters. Then the AIC is:

AIC = 2k − 2 logL. (5)

The AIC is related to the Kullback-Leibler information.
It is based on the maximum likelihood estimate of the
model. The correcting term asymptotically unbiases the es-
timate. This criterion allows to compare the distance of two
possible models from the "true" unknown one, then choose
the closest (see [8] for details). Therefore, over a set of
candidate models, we should select the one with the low-
est AIC. In practice, the AIC may perform poorly when the
number of parameters is important with respect to the size
of the dataset. This problem was lifted in [17]. Therefore,
the Second-Order Information criterion was defined in [13]
by:

AICc = AIC +
2k(k + 1)
n− k − 1

, (6)

where n is the length of the data. The AICc performs well,
no matter how many parameters are in the model. For all
that, we always use this corrected version in our experi-
ments.

We apply this criterion in two steps. First, let us denote
by ML the markovian model of fixed order L. We select the
"best" global model among the set {ML, L ≥ 0}, according
to the criterion. Therefore, a maximal length for the tree
is fixed. In the second step, the same criterion is applied
locally at the parent-son level: let Mp be the model based
on a parent and Ms the model based on its sons, then,

∆AICc = AICc(Mp)−AICc(Ms) (7)

expresses the difference between the two models. We
add all its sons to a parent if ∆AICc is greater than 0.
Otherwise, we do not add any of the parent’s descendants.
Here the AIC differs from the Kullback-Leibler criterion, as
nodes are added one by one for the latter.

Thus, we obtain a variable order Markov model. We in-
troduce the corrected Akaike’s Criterion in the algorithm
proposed in [18]. Our experiments show that the size of the
tree reduces drastically with this new criterion, and that the
quality of the prediction is improved. In summary, besides



getting a statistical-based choice of model, we are able to
lower the number of nodes of the PST, in order to gain on
its size. Once the model has been selected, the conditional
probabilities of the PST are used to calculate SIMN (s) for
each sequence s in S.

3.2 Sharper Bounds for the Concentration
of SIMN

In the previous subsection, we have seen how similarity
measures are computed. Then, in order to find the outliers
among the base, an inequality of concentration is used in
[18]. Let E(SIMN ) and V(SIMN ) be the expectation and
the variance of the random variable SIMN . Then Cheby-
shev’s inequality states that

P {|SIMN − E(SIMN )| ≥ t} ≤ V(SIMN )
t2

. (8)

The outliers should be those which similarity lay far from
the mean, out of the bounds defined in (8). But, although
satisfying for points close to the mean, this inequality per-
forms poorly for observations far from it, i.e. potential out-
liers. For these points, exponential concentration inequali-
ties are known to be more accurate. Among them is Ben-
nett’s inequality [7]:

Theorem 3.1 Let X1, ..., X` be independant real-valued
random variables with zero mean, and assume that |Xi| ≤ c

with probability one. Let S` =
∑`

i=1 Xi and σ2 =
1
`

∑`
i=1 V(Xi). Then for any t > 0,

P {S` > t} ≤ exp
(
−`σ2

c2
h

(
ct

`σ2

))
, (9)

where the function h is defined by h(u) = (1 + u) log(1 +
u)− u for u ≥ 0.

A proof of this result can be found in [9]. We consider the
random variables Xi = log PT (si|s1...si−1), 1 ≤ i ≤ `.
They are bounded as the conditional probabilities of the tree
are smoothed. The exponential type of Bennett’s inequality
assure that sharper concentration results are thus obtained.
Indeed, our experiments show that as far as outlier detec-
tion is concerned, bounds obtained with Bennett’s perform
better than those induced by Chebyshev’s inequality.

4 Experiments and Analysis

In order to prove the efficiency of our approach, we have
led some experiments on the Pfam database [5], which con-
tains about 9300 families of proteins, on the alphabet of
amino acids of size 20. Pfam is known to cover many
protein families [10]. We use the R software [19], and its

Table 1. AICc for Markov Models of order 0 to
3.

Model AICc

M0 10.2× 105

M1 6.4× 105

M2 1.6× 105

M3 3.2× 105

Bio3D package [11] to read data in the FASTA format. In
[18], it has been observed that a good similarity measure
should be able to detect the difference of structure between
two families. Therefore, it has been proposed to build a
PST over one family, then compute the similarities of each
sequence to obtain bounds. This tree has then be used to
calculate similarity measures of members of others families,
in order to know how many of them fall out of bounds. We
have led similar experiments, comparing results obtained
when pruning or not with the corrected Akaike’s Criterion,
and when using Bennett’s or Chebyshev’s inequality. All
methods have given similar satisfying results, suggesting
that all Markov models of reasonable order work well for
this purpose. However, our aim here is to detect what are
the outliers among a set of sequences, without knowledge
about which members are typical, and should thus be used
to build the tree.

Therefore, we consider the HCV_core family of the
Pfam database, containing over 3000 members, to which
we add a few sequences belonging to the NADHdh fam-
ily. In this paper, we present the results obtained for two
such datasets. The first one, denoted by D1, contains 30 se-
quences from the NADHdh family, that is, about 1% of out-
liers. The second set D2 contains 300 sequences from the
NADHdh family, representing 10% of the total. We build a
PST over those datasets, and check how well the similarity
measure picks out the members of the NADHdh family).

First, we select the global model (the maximal order
of the Markov chain) using the AICc. We consider four
Markov models of increasing order {ML, 0 ≤ L ≤ 3}. Ta-
ble 1 summarises the results obtained for D1. The criterion
select the model of a Markov chain of order 2 correspond-
ing to the lowest score. Let us consider the histograms of
similarities obtained with M0, M1, M2 and M3: Figure 2
shows an estimation of the distribution of the similarities of
both typical sequences and outliers, given one model. M2

discriminates best between the two groups of similarities, as
they are clearly separated, therefore an adequate inequality
of concentration should be able to pick up well the outliers
within the data, as it will be seen later. On the contrary,
the other models allow similarities for both groups to over-
lap on each other, making the distinction hard to figure out.
We see that the most complex model of the list is not ade-



Figure 2. Comparaison of Markov models of
order 0 to 3.

quate. A too simple model such as M0 is not good either.
The choice of the model should be grounded on an adequate
criterion.

Let us now proceed with the second step of our pruning
strategy. We have seen in Section 3 that once the maximal
depth for the tree has been found, one can also use the cri-
terion locally, for each node. We prune the PST according
to the AICc at the local father and child level, and obtain a
similar histogram. The tree has now 312 nodes instead of
368. The first histogram of Figure 3 shows a clear separa-
tion between the two groups. As the anomalies are detected
all the same, and the cost of calculation for the local crite-
rion is important (it is a sum on all the alphabet), we may
wonder if it is worth it. But when dealing with large al-
phabets, one might wish to select a variable length Markov
model level by level, without first having to fix a maximal
length, then build all the tree, and eventually prune nodes
that should be removed. Therefore, we build the PST on the
same base of sequences only using the local ∆AICc crite-
rion, that is, we do not fix a maximal depth for the tree. The
PST thus obtained has only 515 nodes for a maximal depth
of 3 and leads to comparable accurate results, as shown by
the second histogram of Figure 3. However, it is usually ad-
vised to first select a global model [8], so this last approach
must be employed with caution.

Once the model has been selected, we determine whether
an observation is an outlier with respect to a given thresh-
old. To this end, under the model M2, we compute the
bounds obtained with Bennett’s inequality with a thresh-
old correponding to the ratio of outliers introduced in the
datasets. Then we compare our results to those obtained us-

L = 2 L is not fixed

Figure 3. Histograms obtained when applying
the criterion locally.

Table 2. Percentages of true and false outliers
out of bounds.

Dataset Inequality Threshold True False
D1 Chebyshev 0.11 100.0 0.3
D1 Bennett 0.01 100.0 0.5
D2 Chebyshev 0.11 5.0 0.7
D2 Bennett 0.10 100.0 4.0

ing Chebyshev’s inequality with a threshold of 11% as it is
recommended in [18]. This is the same as setting the bound
at 3 standard-deviations from the mean. We get the results
presented in Table 2: it shows what percentages of true or
false outliers are extracted.

For the first dataset, both inequalities lead to comparable
accurate bounds. However, the threshold for Bennett’s in-
equality seems to make more sense, regarding the number
of outliers introduced. Generally, one can not know in ad-
vance how many outliers are in the dataset. But checking
the similarities on a histogram such as those presented in
Figure 2 gives an intuition. For the second dataset, Cheby-
shev’s inequality is clearly outperformed by Bennett’s.

Eventually, pruning the PST using the AICc leads to sat-
isfying results. But in [18], a pruning criterion solely based
on frequency was proposed. One may thus wonder whether
it would lead to similar detection. Table 3 summarises the
results of a such pruning for D1 and L = 4, using Ben-
nett’s inequality with a threshold of 1%. For thresholds
lower than 15, all outliers are not detected. For a threshold
greater than 15, all anomalies are out of bounds, but the tree
may be larger than our optimal result. Thus, this method
has comparable and sometimes even better results than our,
regarding the size of the tree. However, no indication about
the threshold is given, while it depends on the size of the
dataset, on the number of outliers, and on the very structure
of the sequences of the base. Indeed, for D2, when fixing
the minimal frequency at 15 and using Bennett’s inequality



Table 3. Results with a frequency-based cri-
terion for D1.

Thresholds Number of nodes Non-detected outliers
5 1318 0.37
10 782 0.03
15 603 0.0

Table 4. Table of Notations
PST Probabilistic Suffix Tree

SIMN Measure of similarity
Σ, σ Alphabet, letter of the alphabet

S, s = s1...s` Set of sequences, one sequence
PT (s) Probability of s
ML Markov Model of order L
H Entropy or Uncertainty

AIC Akaike’s Information Criterion
L Likelihood
k Number of parameters of the model

D1, D2 Datasets with 1%, 10% of outliers

at 10%, 66% of the outliers are not outlined. The qual-
ity of the detection may thus vary whereas pruning with an
information criterion allows to systematically identify the
outliers.

In this section, we have presented the results of our ap-
proach on bases of proteins. We also have led similar ex-
periments on other families in the Pfam database, leading to
the same accurate detection of outliers.

5 Conclusion and Further Work

In this paper, we have provided an approach for min-
ing for outliers in sets of sequences of data. It is an exten-
sion of the one proposed in [18]: namely, the building of a
PST from the dataset and the use of a measure of similarity.
However, both the important size of the tree and the exact
mining of outliers remained problematic issues. Therefore,
we have improved this method through a further pruning
of the PST, based on Akaike’s Information Criterion, in or-
der to reduce its size and to have an appropriate model, and
through the use of the exponential inequality of Bennett to
get more accurate bounds. Those additions have resulted
in a more efficient mining of outliers, as the quality of pre-
diction was improved while the size of the tree remained
small. We have confirmed our conjectures through a whole
set of experiments on a base of protein sequences. Future
work will consist in extending our method to more complex
structures of data, such as sequential patterns in sequences
of sets [1].
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