
HAL Id: lirmm-00324551
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00324551

Submitted on 8 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithmic Generation of Graphs of Branch-width ≤ k
Christophe Paul, Andrzej Proskurowski, Jan Arne Telle

To cite this version:
Christophe Paul, Andrzej Proskurowski, Jan Arne Telle. Algorithmic Generation of Graphs of Branch-
width ≤ k. WG 2006 - 32nd International Workshop on Graph-Theoretic Concepts in Computer
Science, Jun 2006, Bergen, Norway. pp.206-216, �10.1007/11917496_19�. �lirmm-00324551�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00324551
https://hal.archives-ouvertes.fr

Algorithmic generation of graphs of
branchwidth 6 k

C. Paul A. Proskurowski J.A. Telle

Juin 2005

Rapport de Recherche LIRMM RR-05047

161, rue Ada - F. 34394 Montpellier cedex 5 - Tél. 33 (0) 4 67 41 85 85 - Fax. 33 (0) 4 67 41 85 00 - www.lirmm.fr

Abstract

Branchwidth is a connectivity parameter of graphs closely related to treewidth. Graphs of
treewidth at most k can be generated algorithmically as the subgraphs of k-trees: starting with
Kk+1 one repeatedly chooses a k-clique C and adds a new vertex adjacent to vertices in C. In
this paper we give an analogous algorithm for generating the graphs of branchwidth at most k.
To this end we first investigate the family of edge-maximal graphs of branchwidth k, that we call
k-branches. The k-branches are, just as the k-trees, a subclass of the chordal graphs where all
minimal separators have size k. However, a striking difference arises when considering subgraph-
minimal members of the family. Whereas Kk+1 is the only minimal k-tree, we show that for any
k ≥ 7 a minimal k-branch having q maximal cliques exists for any value of q 6∈ {3, 5}, except for
k = 8, q = 2. We give a precise characterization of minimal k-branches for all values of k. Our
investigation culminates in a non-deterministic generation algorithm, that adds one or two new
maximal cliques in each step, yielding as output exactly the k-branches.

Résumé

La largeur de branche est un paramètre qui, comme la largeur arborescente, mesure la connec-
tivité d’un graphe. Les graphes de largeur arborescente au plus k sont les sous-graphes des k-arbres.
Ils peuvent être générés de la manière suivante: à partir du Kk+1, on choisit successivement une
clique C de taille k et ajoute un nouveau sommet adjacent à C. Nous étudions les graphes de largeur
de branche au plus k dans cette même perspective. Pour cela, nous considérons les k-branches, les
graphes arêtes-maximaux de largeur de branche k. Les k-branches, comme les k-arbres, sont une
sous-famille des graphes triangulés. Alors que Kk+1 est le seul k-arbre minimal, nous montrons que
pour tout k > 7, il existe une k-branche minimale ayant q cliques maximales avec q 6∈ {3, 5}, sauf
pour k = 8, q = 2. Nous caractérisons les k-branches minimales pour chaque valeur de k. Notre
étude conclu par un algorithme de génération non-déterministe des k-branches.

C. Paul
CNRS - LIRMM

Montpellier, France
paul@lirmm.fr

Andrzej Proskurowski
CIS Department

University of Oregon, USA
andrzej@cs.uoregon.edu

Jan Arne Telle1

Department of Informatics
University of Bergen, Norway

telle@ii.uib.no

1This work was done while sabatical at LIRMM 2004-2005

2

1 Introduction

Branchwidth and treewidth are connectivity parameters of graphs and whenever one of these param-
eters is bounded by some fixed constant on a class of graphs, then so is the other [15]. Since many
graph problems that are in general NP-hard can be solved in linear time on such classes of graphs
both treewidth and branchwidth have played a large role in many investigations in algorithmic
graph theory. Tree-decompositions have traditionally been the choice when solving NP-hard graph
problems by dynamic programming to give FPT algorithms when parameterized by treewidth, see
e.g. [2, 14] for overviews. Tree-decompositions are in fact moving into the computer science cur-
riculum, e.g. twenty pages of a new undergraduate textbook on Algorithm Design [11] is devoted
to this topic. Recently it is the branchwidth parameter that has been in the focus of several algo-
rithmic research results. For example, several papers [7, 5, 8, 9, 6] show that for graphs of bounded
genus the base of the exponent in the running time of these FPT algorithms could be improved
by instead doing the dynamic programming along a branch-decomposition of optimal branchwidth.
Also, a strong heuristic algorithm for the travelling salesman problem [4] has been developed based
on branch-decompositions. Very recently, an exact (exponential-time) algorithm has been given
to compute branchwidth [10]. Given these recent developments in favor of branchwidth one may
wonder why treewidth has historically been preferred over branchwidth? Mainly, this is because of
the equivalent definition of ’G has treewidth ≤ k’ by ’G is subgraph of a k-tree’. This alternative
definition is intuitively appealing since the k-trees are the graphs generated by the following very
simple non-deterministic algorithm: ’Start with Kk+1; Repeatedly choose a k-clique C and add a
new vertex adjacent to vertices in C ’. Can we define branchwidth in an analogous algorithmic way?
This is the question that has inspired our research and in this paper we give an affirmative answer.

Our results lead to a better understanding of the branchwidth parameter. We believe this un-
derstanding will help in the design of algorithms computing branch-decompositions of small branch-
width and possibly also to improve the runtime of dynamic programming on branch-decompositions.
These are crucial issues in all the applications of branchwidth mentioned above, ones that can make
or break those applications. We start by investigating the family of edge-maximal graphs of branch-
width k, that we call k-branches. In Section 2 we report on related work [12] where we have given
a characterization of k-branches as a subclass of the chordal graphs where every minimal separator
has size k. In Section 3 we consider subgraph-minimal k-branches. They form the starting graphs
of our algorithm generating k-branches, just as the minimal k-trees are the starting graphs Kk+1

of the generation algorithm for k-trees. For k ≤ 4 branchwidth behaves similarly to treewidth
and the graph Kk+1 is the single minimal k-branch. However, for larger values of k the minimal
k-branches are more complicated and for k ≥ 7 we find that there is a minimal k-branch on q
maximal cliques for any q 6∈ {3, 5}, except for the pathological case k = 8, q = 2. We show that the
minimal k-branches have clique trees that are caterpillars and we give a precise characterization
of the family of minimal k-branches for all values of k. Our investigation culminates in Section 4
with a non-deterministic generation algorithm, that adds one or two new maximal cliques in each
step, yielding as output exactly the graphs that are k-branches, and whose subgraphs are therefore
exactly the graphs of branchwidth at most k.

3

2 Definitions and earlier results

A branch-decomposition (T, µ) of a graph G is a tree T with nodes of degree one and three only,
together with a bijection µ from the edge-set of G to the set of degree-one nodes (leaves) of T .
For an edge e of T let T1 and T2 be the two subtrees resulting from T \ {e}, let G1 and G2 be
the graphs induced by the edges of G mapped by µ to leaves of T1 and T2 respectively, and let
mid(e) = V (G1) ∩ V (G2). The width of (T, µ) is the size of the largest mid(e) thus defined. For a
graph G its branchwidth bw(G) is the smallest width of any branch-decomposition of G. 2

A tree-decomposition (T,X) of a graph G is an arrangement of the vertex subsets X of G,
called bags, as nodes of the tree T such that for any two adjacent vertices in G there is some bag
containing them both, and for each vertex of G the bags containing it induce a connected subtree.
For a subtree T ′ of T the induced tree-decomposition (T ′,X ′) is the result of removing from (T,X)
all nodes of V (T) \ V (T ′) and their corresponding bags.

Definition 1 A k-troika3 (A,B,C) of a set X are 3 subsets of X such that |A| ≤ k, |B| ≤ k,
|C| ≤ k, and A ∪ B = A ∪ C = C ∪ B = X. (A,B,C) respects S1, S2, ..., Sq if any Si, 1 ≤ i ≤ q is
contained in at least one of A,B or C.

Definition 2 Let G be a chordal graph with CG its set of maximal cliques and SG its set of minimal
separators. A tree-decomposition (T,X) of G is called k-full if the following conditions hold: 1)
The set of bags X is in 1-1 correspondence with CG ∪ SG. We call the nodes with bags in CG the
maxclique nodes and the nodes with bags in SG the minsep nodes. 2) The bags of the minsep nodes
all have cardinality k. 3) There is an edge ij in the tree T iff Xi ∈ SG,Xj ∈ CG and Xi ⊆ Xj. 4)
Every maxclique bag Xj has a k-troika respecting its neighbor minsep bags.

Note that if G has a k-full tree-dec then it is unique. Also by a result of [13] (Theorem 1) if G
has a k-full tree-decomposition, then it has branchwidth at most k.

Definition 3 We say that a k-full tree-decomposition (T,X) of a graph G has a mergeable subtree
if it has a subtree T ′ containing at least one edge and with its leaves being maxclique nodes and
satisfying:

1. |{v : v ∈ X and X a maxclique node in T ′}| ≤ b3k/2c

2. Either the subtree T ′ has at most one node that in T has a neighbor in V (T) \ V (T ′) or else
T ′ is a path X,B, Y with X,B, Y and all their neighbors in T inducing a path A,X,B, Y,C
satisfying B \ (A ∪ C) = ∅.

We say that a k-full tree-decomposition (T,X) of a graph G is a k-skeleton if G has at least
b3(k − 1)/2c + 1 vertices and T does not have a mergeable subtree.

Definition 4 A graph G of branchwidth k is called a k-branch if adding any edge to G will increase
its branchwidth.

Theorem 1 [12] G is a k-branch ⇔ G has a k-skeleton

2The graphs of branchwidth 1 are the stars, and constitute a somewhat pathological case. To simplify certain
statements we therefore restrict attention to graphs having branchwidth k ≥ 2.

3A troika is a horse-cart drawn by three horses, and when the need arises any two of them should also be able to
pull the cart

4

3 Minimal k-branches

In this section we consider the subgraph-minimal k-branches, and show that even though there is
no upper bound on their size for k ≥ 7, we are able to characterize them precisely. Note that for
treewidth the similar concept is trivial, as Kk+1 is the only minimal k-tree. We will describe the
structure of the minimal k-branches by characterizing the minimal k-skeletons, which is a slightly
different concept.

Definition 5 The set of minimal k-branches is MG(k) = {G : G is a k-branch but no strict
subgraph of G is a k-branch}. The set of minimal k-skeletons is MS(k) = {(T,X : (T,X) is a
k-skeleton but for no proper subtree T ′ of T is the induced tree-decomposition (T ′,X ′) a k-skeleton}

If G ∈ MG(k) then for its k-skeleton (TG,X) we have (TG,X) ∈ MS(K). However, not all
k-skeletons in MS(k) represent a graph in MG(k). For example if (T,X) is the tree T having a
single maxclique node on 6 vertices then we have (T,X) ∈ MS(4) since it is a minimal 4-skeleton
but the graph K6 that it represents is not a minimal 4-branch since it contains the 4-branch K5

as a subgraph. We first give two useful Lemmas and then a Theorem that considers the minimal
k-branches for small values of k and q.

Lemma 1 Let A − X − B − Y − C be a path in T for some k-full tree-decomposition (T,X) with
X and Y maxclique nodes. X ∪ Y has a k-troika respecting A,C if and only if |X ∪ Y | ≤ b3k/2c
and B \ (A ∪ C) = ∅.

Proof. If |X ∪ Y | > b3k/2c then X ∪ Y does not have a k-troika. Let P = B \ (A ∪ C). Note
that we have A ∩ C ⊆ B and since |A| = |C| = k we have |A ∩ C| = 2k − |(X ∪ Y) \ P |. But
then |X ∪ Y |+ |A ∩C| = 2k + |P | and this means that by Theorem 2 of [13] X ∪ Y has a k-troika
respecting A,C if and only if P = ∅. �

Lemma 2 If G is a minimal k-branch, then for its k-skeleton (T,X) the tree T does not contain
a maxclique leaf X with path X − A − Y and both A and Y having degree 2.

Proof. X and Y cannot be merged since otherwise G is not a k-branch, thus |X ∪ Y | > b3k
2 c. But

then the subgraph induced by X ∪Y is already a k-branch and G is not minimal: contradiction. �

Theorem 2 Let MG(k, q) be the k-branches of MG(k) having q maximal cliques. Then

1. for any k > 2, Kb3(k−1)/2c+1 ∈ MG(k, 1).

2. if k 6 6 or k = 8, then MG(k, 2) = ∅. Otherwise if k = 4c or k = 4c + 1, then then
the k-branch Gk,2 with maxcliques Kk+c,Kk+c+1 belongs to MG(k, 2); and if k = 4c + 2 or
k = 4c + 3, then the k-branch G′

k,2 with maxcliques Kk+c+1,Kk+c+1 belongs to MG(k, 2)

3. for any k, MG(k, 3) = ∅.

4. if k 6 4 or k = 6, then MG(k, 4) = ∅. Otherwise the k-branch Gk,4, for which the tree T of
the k-skeleton is a claw 4 (Kk+1,Kk+1,Kk+1,Kb3(k−1)/2c−1) belongs to MG(k, 4).

5. if q = 5, then for any k > 1, MG(k, q) = ∅
4The claw is the tree on 4 nodes with three leaves and one node of degree 3. It will be denoted (X1, X2, X3, Y)

with Xi’s being the leaves.

5

6. if q > 6, then for any k 6 6, MG(k, q) = ∅.

Proof. The size of any maxclique of a minimal k-branch G = (V,E), distinct from K
b 3(k−1)

2
c+1

, is

in the range [k + 1, b3(k−1)
2 c]. Moreover to be a k-branch, |V | > b3k

2 c + 1.

1. q = 1: Straightforward.

2. q = 2: As any minsep has size k, |V | = |X ∪ Y | = |X|+ |Y | − k with X and Y being the two
maxcliques. It follows that:

b
3k

2
c + 1 6 |V | 6 2b

3(k − 1)

2
c − k (1)

Therefore if k is odd, k > 7, otherwise k > 10.

Finally, let us recall that Gk,2 is the graph with maxcliques Kk+c,Kk+c+1, while G′
k,2 has

maxcliques Kk+c1,Kk+c+1. The fact that Gk,2 ∈ MG(k, 2) (resp. G′
k,2 ∈ MG(k, 2)) follows

from the fact that k + 2c + 1 > b3k/2c + 1 (resp. k + 2c + 2 > b3k/2c + 1).

3. q = 3: By contradiction. By Lemma 2, the tree of the k-skeleton cannot be a path. Therefore
the maxcliques X, Y and Z share a common minsep S. As no pair of maxcliques can be
merged, the size of the union of any pair of maxcliques is at least b3k

2 c + 1. It follows that
any pair of maxcliques is already a k-branch.

4. q = 4: By Lemma 2, the only possible topology for the tree T of the k-skeleton is the claw.
Let X1,X2,X3 be the three maxclique leaves and Y the degree 3 maxclique. For any pair
i 6= j ∈ [1, 3], we have |Xi ∪ Y ∪Xj | > b3k

2 c+ 1 otherwise these three cliques could have been
merged. It follows that:

b
3k

2
c + 1 6 |Xi ∪ Y ∪ Xj| 6 3b

3(k − 1)

2
c − 2k (2)

Therefore if k is odd, k > 5, otherwise k > 8.

Let us recall that Gk,4 is graph having the claw (Kk+1,Kk+1,Kk+1,Kb3(k−1)/2c−1) as k-
skeleton (T,X). It is easy to check that G4,k ∈ MG(k, 4): it has enough vertices, any
pair of neighboring maxcliques is not a k-branch and any path of length 3 is not mergeable.

5. q = 5: First notice that to be minimal, any maxclique of a k-branch has degree at most 3 in
the tree of the k-skeleton. By Lemma 2 and the argument used in case q = 3, we show that
MG(k, 5) = ∅.

6. q > 6: For k 6 4, as K
b
3(k−1)

2
c+1

= k + 1, there is no minimal k-branch on q > 1 maxclique.

For k = 5 or 6, we show that the tree T of the k-skeleton cannot contain a path X−A−Y with
both X and Y maxclique leaves. Combined with Lemma 2, it implies that any maxclique
leaf belongs to a claw. Assume such a path exists. We should have |X| = |Y | = k + 1
and thereby |X ∪ Y | = k + 2: implying that G is not a k-branch. If k = 5, such a claw
contains only maxcliques of size 6, which is already a minimal 5-branch. Similarly, if k = 6,

6

the claw only contains maxcliques of size 7. But then the claw only contains one maxclique
leaf. Otherwise the two maxclique leaves and the degree 3 maxclique could have been merged
without increasingthe branchwidth (it would form a maxclique leaf of size 9). If any claw
contains at most one maxclique leaf, the number of maxcliques cannot be finite: contradiction.
Therfore for any k 6 6 and q > 6, MG(k, q) = ∅

�

See also Figure 1 for an illustration of Theorem 2 and note that it actually indicates every pair
of values k, q for which there is no minimal k-branch on q maximal cliques.

8

5 K7

4 K5

K4

K3

K21

2

3

1 2
q

k

6 K8

K8 − K9

K8

7 K10 K9 − K9

K9 − K10K118

K8

K6

K6

K6 − K6

K9

K9

K8 − K8

K9 K9

K9

6 7

9 K13 K11 − K12

K9 K9 K9

K9K9

K8 − K8 − K8

K9

K9

K8 − K8 − K8 − K8

K9

K9

4

Figure 1: The structure of the trees T in the minimal k-skeletons (T,X) on q maxclique nodes,
for k ≤ 9, q ≤ 8. Downward arrows indicate that these structures exist also for larger k, allthough
the sizes of the maxclique nodes will change. Notice the two pathological cases: q = 2, k = 8 and
q = 4, k = 6. For any example depicted in the array, except for q = 8, the identities of the vertices
(i.e. the way the minimal separators intersect each other) is not important. Let us examine the
case q = 8. Let A − X − B − Y − C be the path where X and Y are the two maxclique nodes of
degree 2. For X and Y to be not mergeable, the minimal separators A, B and C have to satisify
B \ (A ∪ C) 6= ∅ implying that X ∪ Y 6= A ∪ C.

From Theorem 2, we can deduce the shape of the tree T of any minimal k-skeleton (T,X)
having q = 1, 2 or 4 maxclique nodes. If T has a unique maxclique node X, it must satisfy

b3(k − 1)/2c + 1 6 |X| 6 b3k/2c − 1 (3)

If T has two maxclique nodes X and Y , then neither X nor Y is already a minimal k-skeleton so

|X|, |Y | 6 b3(k − 1)/2c and b
3k

2
c + 1 6 |X ∪ Y | 6 2b

3(k − 1)

2
c − k (4)

7

If T has four maxclique nodes X1,X2,X3, Y then none of them satisfy Equation (3), none of the
pairs Xi, Y (for i = 1, 2, 3) satisfy Equation (4) and for any i 6= j:

b
3k

2
c + 1 6 |Xi ∪ Y ∪ Xj | 6 3b

3(k − 1)

2
c − 2k (5)

Note that Lemma 2 is used to establish Equation (5). This implies that the claw is the only
possible tree topology for q = 4. Thus for q = 1, 2 and 4, the shape of T is unique. To describe the
minimal k-skeletons having 6 or more maxclique nodes the following definition of the adjacencies
in a special caterpillar T will be useful (see Figure 3).

Definition 6 A tree T is a special caterpillar if T consists of a body which is a path X1, S1,X2, S2, ...
Xp, Sp,Xp+1 alternating between maxclique and minsep nodes for some p ≥ 3 with added hairs of
length one or two (a hair of length one being a new maxclique node added as neighbor of a minsep
node of the body, and a hair of length two being two new adjacent maxclique-minsep nodes with the
minsep node added as neighbor of a maxclique node of the body) satisfying the following conditions:

1. at most one hair for each node of the body

2. no hair on any of X1, S1, S2, Sp−1, Sp,Xp+1

3. hair X ′
2 on X2 and hair X ′

p on Xp

4. if hair on Si then no hair on Xi and no hair on Xi+1

5. if hair on Xi then not hairs on both of Xi−1 and Xi+1

Figure 2: The unique special caterpillar with 6 nodes.

Theorem 3 (T,X) is a minimal k-skeleton for some k ≥ 7 on at least q ≥ 6 maxclique nodes ⇔
(T,X) is a k-full tree-decomposition with T a special caterpillar whose bags satisfy (bag names as
in Definition 6):

1. either |X1∪X2∪X3| ≤ 3k/2 or |X ′
2∪X2∪X3| ≤ 3k/2 and also either |Xp+1∪Xp∪Xp−1| ≤ 3k/2

or |X ′
p ∪ Xp ∪ Xp−1| ≤ 3k/2

2. |X1 ∪ X2 ∪ X ′
2| > 3k/2 and |Xp+1 ∪ Xp ∪ X ′

p| > 3k/2

3. For maxcliques X,Y with a common neighbor, |X| ≤ b3(k − 1)/2c and |X ∪ Y | ≤ 3k/2

4. If Si has a hair then Si \ (Si−1 ∪ Si+1) = ∅

5. If Xi has a hair then either i) no hair on Xi−1 and Si−1 \ (Si−2 ∪ Si) = ∅ or ii) no hair on
Xi+1 and Si \ (Si−1 ∪ Si+1) = ∅

6. If no hair on neither of Xi, Si,Xi+1 then Si \ (Si−1 ∪ Si+1) 6= ∅

8

Proof. ⇐: We first show that the k-full tree-decomposition (T,X) is a k-skeleton, by showing that
T does not have a mergeable subtree as in Definition 3. Any subtree T ′ having at most one node
that in T has a neighbor in V (T) \ V (T ′) is by condition 2 not mergeable since we would have
|{v : v ∈ X and X a maxclique node in T ′}| > b3k/2c. Any subtree T ′ which is a path X,B, Y
with X,B, Y and all their neighbors in T inducing a path A,X,B, Y,C will by condition 6 satisfy
B\(A∪C) 6= ∅ and is thus not mergeable. Thus (T,X) is a k-skeleton and it remains to show that it
is a minimal k-skeleton. We prove by contradiction, that for any proper subtree T ′ of T the induced
tree-decomposition (T ′,X ′) is not a k-skeleton. Unless the graph G′ that (T ′,X ′) represents has at
least b3(k− 1)/2c+ 1 vertices, (T ′,X ′) is not a k-skeleton. By condition 3 this means that T ′ must
contain at least 2 maxclique nodes. We show that in any such T ′ there is a mergeable subtree T ′′.
There are 5 special cases of subtrees T ′ to consider:

1. Suppose the maxclique bags of T ′ are X1,X2,X
′
2,X3 or Xp−1,Xp,X

′
p,Xp+1. In both cases

the 3 maxclique bags satisfying the size constraint in condition 1 form the mergeable subtree
T”.

2. T ′ contains a leaf X having a minsep neighbor S of degree 2 that itself has neighbor Y . By
condition 3, X,S, Y makes up the mergeable subtree T ′′.

3. T ′ contains two maxclique leaves X,Y with a common minsep neighbor S. Again by condition
3 X,S, Y is the mergeable subtree.

4. Suppose in T there was a hair on minsep Si and that T ′ does not contain this hair but
does contain Si−1,Xi, Si,Xi+1, Si+1. In this case the mergeable subtree T ′′ is Xi, Si,Xi+1 by
condition 4 and Lemma 1.

5. Suppose T has a hair on maxclique Xi and that T ′ does not contain this hair but that T ′

does contain Xi−1, Si−1,Xi, Si,Xi+1. Since T is a special caterpillar, neither Si−1 nor Si has
a hair. Thus, condition 5 and Lemma 1 guarantee that either the subtree Xi−1, Si−1,Xi or
the subtree Xi, Si,Xi+1 is mergeable.

⇒: We establish properties of the nodes of a tree T of a k-skeleton (T,X) ∈ MS(k).

(A) Any minsep node S of degree larger than 2 must have degree 3 with exactly one of its neighbors
being a maxclique leaf and the other two having degree 2.

Assume by contradiction S has two maxclique leaf neighbors X,Y . If |X ∪ Y | ≤ b3k/2c then they
could have been merged into a larger clique. Otherwise, the subtree on the three nodes X,X ∩Y, Y
would induce a k-skeleton. Contradicting (T,X) ∈ MS(k). We show that for any three components
T1, T2, T3 of T \ S one of the three must be a single maxclique node, thereby establishing that S
has degree 3 and exactly one maxclique leaf neighbor. Assume that none of T1, T2, T3 is a single
maxclique node. Let X2 ∈ V (T2) be a neighbor of S. We claim that the maximal subtree T ′ of T
containing X2 as a leaf with parent S would already induce a k-skeleton. This since any subtree
T ′′ of T ′ that is mergeable in T ′ would have to contain X2 (otherwise it would be mergeable also
in T) and it would have to contain either all of T1 or all of T3, say wlog T1, (otherwise the new
merged clique would contain two minimal separators A,B with X2 6= (A∪B).) But then the union
of maxclique nodes in T1 would have size less than 3k/2, which means that T1 would have been a
mergeable subtree already in T (since the new merged clique also in T would have only the minsep
neighbor S) contradicting T ∈ MS(k). Thus S has degree 3 and one maxclique leaf neighbor X1.
Let us show that the neighbors X2,X3 have degree 2. Assume X2 has 3 minsep neighbors A,B, S
and consider T ′ = T \ {X1}. Note that we cannot have T ′ representing a graph of branchwidth

9

less than k since otherwise T2 would already have been mergeable in T . As any mergeable subtree
T ′′ of T ′ could not be mergeable in T , T ′′ would have to contain X2 and X3. It then would also
have to contain either all of T1 or T2. Otherwise the new merged clique would contain two minimal
separators A,B with X2 ∪ X3 6= (A ∪ B). This means that T1 or T2 was already mergeable in T :
contradiction.

(B) Any maxclique node X of degree 3 has all 3 minsep neighbors A1, A2, A3 of degree 2 and at
least one of them has a maxclique leaf as neighbor.

By (A), the minseps Ai’s all have degree 2. Let Yi be the second neighbor of Ai and assume neither
of Y1, Y2, Y3 is a leaf. Consider the partition of T into the clawt (A1, A2, A3,X) and the three
subtrees Ti rooted in Yi (i = 1, 2, 3). Let T ′ be the subtree of T consisting of nodes X,A1, A2

together with T1, T2. Note that T ′ cannot represent a graph of branchwidth less than k since then
T1 (and T2) would have been mergeable in T . Moreover, any mergeable subtree T ′′ of T ′ could not
be mergeable in T so T ′′ would have to contain Y3 and X, but then it would have to contain either
all of T1 or T2. This means that either the subtree T1 or the subtree T2 was already mergeable in
T , a contradiction.

(C) T cannot contain a leaf X having a degree-2 parent B that itself has another degree-2 neighbor
Y . (This is Lemma 2)

(D) In any path A-X-B-Y-C of T with X and Y maxclique nodes if X,B,Y have degree 2 then
B \ (A ∪ C) 6= ∅. (This because of Lemma 1)

We are ready to describe all trees T ∈ MS(k). There are two trees containing respectively 1
and 2 maxclique nodes except for k = 8 (see Theorem 2). For the remaining trees we note that
(A), (B) and (C) together imply that for any maxclique leaf X in T with parent A we have either
(type i) A of degree 3 with the other two neighbors of A having degree 2 but not being leaves, or A
of degree 2 with parent Y of degree 3 having 3 neighbors of degree 2 with 1, 2 or 3 of these being
neighbors of a leaf (types ii.1, ii.2, ii.3 respectively.) Moreover, all nodes of (maximum) degree 3 in
T have at least one neighbor that is a leaf or neighbor of a leaf. Thus we can use the 4 types (i, ii.1,
ii.2, ii.3) as building-blocks for any tree T ∈ MS(k). If we use a building-block of type ii.3) then
there is only a unique tree possible, with 4 maxclique nodes. Building blocks of type i) and ii.1)
contain one leaf and two nodes needing new neighbors, while type ii.2) contains two leaves and one
node needing a new neighbor. Thus, when using building-blocks of types i), ii.1) or ii.2) we must
always have exactly two building-blocks of type ii.2), that will correspond to two ends of the body
of a caterpillar having hairs of length 1 (type ii.1) or 2 (type i). A minsep node of degree 3 cannot
be adjacent to a maxclique node of degree 3, because the maxclique hair of this minsep could then
have been dropped and we would still have an induced k-skeleton. Likewise, no three consecutive
maxclique nodes of the body all have a hair since then the middle hair could have been dropped
and we would still have an induced k-skeleton. Thus, T is a special caterpillar.

To end the proof, it suffices to note that conditions 1-6 of the Theorem hold, since otherwise T
would have had a mergeable subtree. �

Corollary 1 The set of trees T on six or more maxclique nodes with (T,X) ∈ MS(k) representing
a minimal k-branch are exactly the special caterpillars. The number f(q) of non-isomorphic trees
on q maxclique nodes in MS(k) grows exponentially in q and the sequence f(1), f(2), ..., f(8) is
1,1,0,1,0,1,1,1.

10

(1c)

(0) (2a)

(2c)

(2b)

(1a)

(1b)

Figure 3: The 7 non-isomorphic special caterpillars with p = 6, by Definition 6, with maxclique
nodes drawn as circles and minsep nodes not drawn explicitly but present on any edge between
two adjacent maxclique nodes. Thus, 1c, 2b, 2c have minsep nodes of degree 3. These 7 are
also the trees T in the minimal k-skeletons (T,X) ∈ MS(k) that could result from Stage 1 of
Algorithm of Section 4 if we choose option 5 and execute the Repeat-loop twice (by left-to-right
symmetry we could also get the 3 trees isomorphic to 1a, 1c and 2b.) Assuming the construction
in the algorithm goes from left to right in the figure, then cases 1a, 2a and 2b are the result of
choosing option b: Start(X,W,Y,Z,Hair, S) and the other cases are the result of choosing option
a: Start(X,W,Y,Z, S).

Proof. See Figure 1. For any tree T that is a special caterpillar we can construct a k-skeleton
(T,X) ∈ MS(k) representing a minimal k-branch. Note that we can encode all binary strings of
length q/3 by special caterpillars having q maxclique nodes, for example by letting the digits 1 or
0 correspond to the presence or non-presence of a leaf on a minsep node of the body. �

4 An algorithm that generates k-branches

In this section we give an algorithm generating each possible k-skeleton, which by Theorem 1 will
correspond to generation of the k-branches.

Definition 7 Let (T,X) be a k-skeleton. Add zero or more minsep leaves with bag-size k as
neighbors of maxclique nodes of T as long as each maxclique node still has a k-troika respecting its
minsep neighbors. The resulting objects form the set ES(k) and are called the extended k-skeletons.
If this process started with a minimal k-skeleton (T,X) ∈ MS(k) then the resulting objects form
the set EMS(k) and are called the extended minimal k-skeletons.

Note that by definition MS(k) ⊆ EMS(k) ⊆ ES(k). The algorithm is organised in 3 stages with
the outputs of the previous stage forming the inputs to the next stage. Stage 1 generates MS(k),
Stage 2 generates EMS(k) and Stage 3 generates ES(k). Informally, the extended k-skeletons
ES(k) have the dual property that we get a k-skeleton both if we remove all minsep leaves and
also if we add a new maxclique leaf to each minsep leaf. Moreover, the k-skeletons themselves are
exactly the subset of ES(k) whose trees have only maxclique leaves. For our generation algorithm
this implies that generating k-branches is equivalent to generating extended k-skeletons where all
leaves are maxclique nodes.

Observation {G : G is a k-branch } = {G : ∃(T,X) ∈ ES(k) s.t. every leaf of T is a maxclique
node and (T,X) represents G}

11

Description of STAGE 1: Generation of the minimal k-skeletons MS(k).
The minimal k-skeletons on 1, 2, 4 or 6 maxclique nodes are generated by the special rules 1clique,
2clique, 4clique or 6clique respectively. For the larger minimal k-skeletons (T,X) ∈ MS(k)
we enter a Repeat-loop that will generate the special caterpillar T from left to right by adding
in each iteration one or two new maxclique nodes to the current right end of its body. The
Repeat-loop is prefixed and postfixed by building-blocks of type ii.2) having a central maxclique
node X and two leaves W and Y . The prefix is one of the two rules Start(X,W,Y,Z, S) or
Start(X,W,Y,Z,Hair, S). Here X,W,Y,Z and Hair are maxclique nodes with S the minimal
separator at the current right end of the body at which construction of the caterpillar will continue.
Minsep node S is connected to Z. Z is connected by a minsep node X∩Z to the degree 3 maxclique
node X. In the rule Start(X,W,Y,Z,Hair, S). the node Z has a hair of length 2 ending in
maxclique node Hair.

In the Repeat-loop we iteratively update S to denote the rightmost minsep node of the caterpillar
body. When adding new maxclique nodes, both here and in Stage 3, the syntax for the operation is
ADD(oldminsep, newmaxclique, newminsep1, newminsep2), where the two latter parameters may
be missing. The newmaxclique node is added as a neighbor of oldminsep and the newminsep
nodes are added as neighbors of newmaxclique. Thus, to extend the rightmost end of the body
by a path S,New,C with New a new maxclique node and C the new rightmost minsep node we
use in rule I and rule II the operation ADD(S,New,C). In rule III we are additionally adding
a hair of length two consisting of minsep B and maxclique Hair to the new maxclique node New
and express this by the two operations ADD(S,New,B,C) and ADD(B,Hair). In rule IV we are
adding a hair of length one to minsep node S by the two operations ADD(S,New,C) and ADD(S,W).
The boolean values HasHair and NeedsPair govern which of rule I to rule IV can be applied
while ensuring that the conditions for minimal k-branches are fullfilled. HasHair is True iff the
rightmost maxclique node X of the current body has a hair H attached to it. NeedsPair is True
iff HasHair is True and the next-to-last maxclique node Y would not be mergeable with X even if
we had removed the hair H (in which case the next maxclique node New must satisfy that New
and X would be mergeable if we had removed H.)

The repeat-loop ends with an End(S,X,W, Y) rule where S is the minimal separator at the end
of the current caterpillar body, to which X is attached with two leaves W and Y . The following
condition OK1(X,W,Y,Z) must hold both for the Start and End operations: OK1(X,W,Y,Z) is
True iff |W ∪ X ∪ Y | > 3k/2 and at least one of |W ∪ X ∪ Z| ≤ 3k/2 or |Y ∪ X ∪ Z| ≤ 3k/2.
Without the first condition the final k-skeleton would not represent a k-branch, as we could have
merged W,X, Y into a bigger clique while the second condition ensures that W,X, Y,Z does not
already represent a k-branch. Moreover, in Stage 1, we make the following obvious assumption
on all pairs of maximal cliques X and Y that are made adjacent to the same minsep node X ∩ Y :
|X| ≤ b3(k − 1)/2c and |X ∪ Y | ≤ b3k/2c. To not clutter the code we do not explicitly state these
conditions, that correspond to condition 3 in Theorem 3 and ensure minimality.

Description of STAGE 2: Generation of the set EMS(k)
The input to Stage 2 is a minimal k-skeleton (T,X) ∈ MS(k) as generated by Stage 1. Stage

2 is a repeat-loop that can be exited at any time and which in each iteration adds one new minsep
leaf S as neighbor of some maxclique node X of (T,X), according to Definition 7. We must ensure
that X will still have a k-troika respecting its minsep neighbors. If X already had one neighbor A
condition OK(X,A, S) must hold, if it had two neighbors A,B condition OK(X,A,B, S) must hold,

12

Algorithm 1: Stage 1: Generate any (T,X) ∈ MS(k) by choosing 1,2,3,4 or 5

1: (T,X) := 1clique(X) s.t. b3(k − 1)/2c + 1 ≤ |X| ≤ b3k/2c;
2: (T,X) := 2clique(X,Y) s.t. Equation (4) hold ;
3: (T,X) := 4clique(X,Y,Z,W) s.t. T is the claw and Equation (5) hold ;
4: (T,X) := 6clique(X1, ...,X6) s.t. T is the unique special caterpillar with q = 6 and
conditions in Theorem 3 hold ;
5: begin

first choose a or b ;
a: Start(X,W,Y,Z, S) s.t. OK1(X,W,Y,Z); HasHair:= 0, NeedsPair:= 0;
b: Start(X,W,Y,Z,Hair, S) s.t. OK1(X,W,Y,Z); HasHair:= 1, NeedsPair:= 1;
repeat

if HasHair and NeedsPair then choose rule I;
else if HasHair and not NeedsPair then choose rule I,II or III;
else choose rule II, III or IV;
rule I: ADD(S,New,C) s.t. S \ (A ∪ C) = ∅;
rule II: ADD(S,New,C) s.t. S \ (A ∪ C) 6= ∅;
rule III: ADD(S,New,B,C) and ADD(B,Hair);
rule IV: ADD(S,New,C) and ADD(S,W) s.t. S \ (A ∪ C) = ∅;
if rule III was chosen then HasHair:= 1 and NeedsPair:= (S \ (A ∪ C) 6= ∅);
else HasHair:= 0 and NeedsPair:= 0;
A := S and S := C;

until body of caterpillar is finished and NeedsPair= 0;

end

while if it had three neighbors then a new neighbor cannot be added. These conditions are used
also in Stage 3 and defined below:

• OK(X,A,B) which is True iff |X| + |A ∩ B| ≤ 2k

• OK(X,A,B,C) which is True iff |A ∪ B| = |A ∪ C| = |B ∪ C| = |X|

Lemma 3 EMS(k) = {(T,X) : ∃ sequence of choices in Stage 1 and in Stage 2 s.t. Stage 2

gives as output (T,X)}

Proof. We first show that MS(k) ⊇ {(T,X) : ∃ sequence of choices in Stage 1 that gives (T,X)}.
For T having 1, 2, 4 or 6 maxclique nodes this is clear by the rules for 1clique, 2clique, 4clique
and 6clique. For 7 or more maxclique nodes we note that rule I and rule II does not add any
hairs, while rule III adds a hair to the new maxclique node and rule IV adds a hair to the old
minsep node. This means that conditions 1 and 4 of Definition 6 hold while conditions 2 and 3 hold
by the OK1 test on the Start and End additions. Condition 5 of Definition 6 holds since whenever
the two last consecutive maxclique nodes of the body both have a hair then HasHair and NeedsPair

are both True and none of rule II, III, IV or End addition could be applied, but only rule I.
We have established that any T produced by the first stage of the algorithm is a special caterpillar
and it remains to show that the 6 conditions of Theorem 3 hold for T . Conditions 1 and 2 hold
by the OK1 test of the Start and End additions. Condition 3 is enforced but as mentioned we did
not include it in this extended abstract not to clutter the Algorithm. Condition 4 holds since only

13

Rule III adds such a hair and the condition is explicitly mentioned in the rule. Finally, if the last
maxclique node of the body has a hair and part i) of condition 5 fails, then HasPair and NeedsPair

are both True and only rule I can be applied, which enforces part ii) of condition 5. Condition 6
holds since rule II does enforce S \ (A ∪ C) 6= ∅ while rule III, IV enforce addition of a hair,
and rule I is applied only when HasHair is already True.

We next show that MS(k) ⊆ {(T,X) : ∃ sequence of choices in Stage 1 that gives (T,X)}:
For T having 1, 2, 4 or 6 maxclique nodes this is clear by the rules for 1clique, 2clique, 4clique
and 6clique. For 7 or more maxclique nodes we need to show that any (T,X) ∈ MS(k) could
have been generated by Stage 1 of the Algorithm. First note that the OK1 tests at the Start and
End additions will allow either of the inequalities of condition 1 and condition 2 of Theorem 3 to
hold. Thus we know that the ends of the special caterpillar T can be generated correctly. For the
rest of T note that the boolean values HasHair and NeedsPair ensure that the Rules that can be
applied will allow any (T,X) satisfying conditions 3, 4, 5 and 6 of Theorem 3.

Thus we know that at the start of Stage 2 we have any (T,X) in MS(k). To prove the lemma
it thus suffices to note that Stage 2 enforces exactly the conditions imposed on extended minimal
k-skeletons in EMS(k) as given by Definition 7. �

Description of STAGE 3: Generate the set ES(k).
As in Stage 1 the rule adding a new maxclique node X adjacent to an existing minsep node A
with new promise leaves B and C will have the syntax ADD(A,X,B,C). In case we have one or
zero promise leaves the syntax is ADD(A,X,B) and ADD(A,X). The shorthand ADD(A,X, ...) can
be replaced by any of the 3 rules. Similarly, the shorthand OK(X,A, ...) appearing right after some
ADD(A,X, ...) has the intepretation that any third and fourth parameters B and C of the ADD also
becomes a third and fourth parameter of the OK.

Algorithm 2: Stage 3: Takes as input some (T,X) ∈ EMS(k) produced by Stage 2 and
builds on this to produce as output an extended k-skeleton in ES(k)

repeat

Choose a minsep node A of T ;
if A a leaf with parent W having a single other neighbor S then

choose 1, 2, 3, 4 or 5;
1: ADD(A,New) s.t. |W ∪ New| > b3k/2c;
2: ADD(A,New,B) s.t. OK(New,A,B) and |W ∪ New| + |B ∩ S| > 2k;
3: ADD(A,New1) and ADD(A,New2) s.t. |New1 ∪ New2| > b3k/2c;
4: ADD(A,New1, B, ...) and ADD(A,New2, ...) s.t. OK(New1, A,B, ...) and
OK(New2, A, ...);
5: ADD(A,New,B,C) s.t. OK(New,A,B,C);

else

choose 6 or 7;
6: ADD(A,New,B, ...) s.t. ADD(New,A,B, ...);
7: ADD(A,New) s.t. |Y ∪ New| > b3k/2c for ∀Y maxclique leaf with parent A;

until done;
Output the extended k-skeleton (T,X), which represents a k-branch iff it has no minsep
leaves;

14

Theorem 4 ES(k) = {(T,X) : ∃ sequence of choices of rules in the 3 stages s.t. output is (T,X)}

Proof. ⊆: By induction on the number of iterations of the repeat loop in the Stage 3. For the
base case, by Lemma 3 we know that the second stage gives (T,X) ∈ EMS(k) which by definition
is a member of ES(k). For the inductive case, each of the 7 addition rules preserves membership
in ES(k), since we can easily check that the condition for having a mergeable subtree given in
Definition 3 will never be met.

⊇: Since (T,X) ∈ ES(k) we know that there exists at least one subtree T ′ of T with the induced
tree-decomposition (T ′,X ′) ∈ MS(k). The proof will be by structural induction on the tree T .
Base case: If the subtree T ′ mentioned above is the subtree of T that we get by removing all
minsep leaves from T then we have (T,X) ∈ EMS(k) and are done since by Lemma 3 there is a
sequence of choices such that the Stage 2 gives T .

Inductive case: Assuming the base case does not hold we show that T contains a smaller subtree
T ′ with the induced tree-decomposition (T ′,X ′) ∈ ES(k) and such that application of some rule
1-7 of the Algorithm to the tree T ′ would give the tree T . We call a maxclique node pendant if it
has at most one neighbor that is not a leaf. We call a pendant node prunable if its minsep parent
itself has at most one non-pendant neighbor. We call a prunable node good if for the subtree T ′

resulting from removing it and any of its leaf neighbors we have the induced tree-decomposition in
ES(k), meaning that in particular T ′ itself contains a subtree whose induced tree-decomposition
is a minimal k-skeleton. In the inductive case we will consider a good prunable maxclique node X
with parent A, which exists by the Claim below.

Claim: A tree T with (T,X) ∈ ES(k) contains a good prunable node X iff (T,X) 6∈ EMS(k).
Proof: Consider the subtree of T where we have removed all minsep leaves and then removed all
maxclique leaves. Any minsep leaf in this subtree is the parent of a prunable node. If none of these
prunable nodes are good in T , then the subtree of T that we get after removing all minsep leaves
must induce a tree-decomposition which is a minimal k-skeleton and thus (T,X) ∈ EMS(k). On
the other hand, if one of these prunable nodes are good, then by definition (T,X) 6∈ EMS(k). ♦

Let us first assume that A does not have any non-pendant neighbors. Then the intersection of
any two maximal cliques in T is equal to A. Let T ′ be the subtree resulting from removing X and
any of its leaf neighbors from T . By induction T ′ could be generated by a sequence of choices of
the algorithm. If X has no leaf neighbors we apply rule 7 ADD(A,X) to T ′ to get T and if X has
some leaf neighbors B, ... we apply rule 6 ADD(A,X,B, ...) to T ′ to get T . Note that the conditions
allowing application of these rules in the Algorithm must be True, otherwise (T,X) would not be
an extended k-skeleton.

For the remaining cases, we have the good prunable maxclique node X with parent A and with
the unique non-pendant neighbor of A being called W . The possible arrangements of these nodes
can be described by 3 numbers (x, y, z) where

• x ∈ {1, 2} describes the number of neighbors W has apart from A,

• y ∈ {1, 2, 3} describes the number of pendant maxclique neighbors A has, with 3 denoting
any number larger than 2

• z ∈ {0, 1, 2} describes the number of children leaves X has

The rest of the proof considers in turn each of these cases, showing that one of rules 1-7 could
have been applied to a subtree T ′ of T with (T ′,X ′) ∈ ES(k), to add the prunable maxclique node

15

X and possibly some of the other nodes as well, to yield the tree (T,X). Note that rules 3 and
4 actually add 2 new maxclique nodes as neighbors of the minsep A, whereas the other rules add
only a single neighbor.

Let us start with a full argument for the case (x = 1, y = 1, z = 1). We then have in the tree T
a minsep leaf B with its parent X being a pendant maxclique node with a path B−X−A−W −S
in the tree T such that nodes X,A,W all have degree 2. Consider the tree T ′ = T \ {B,X} and
note that the assumption (T,X) ∈ ES(k) implies (T ′,X ′) ∈ ES(k) since in particular no cliques
could be merged without increasing branchwidth in T ′ because then they could also be merged in
T . The crucial point here is that T ′ contains the promise leaf A and any clique that is merged
with W in T ′ would still need to have a k-troika respecting also A. By the induction hypothesis
there is a derivation sequence giving (T ′,X ′) and we argue that this derivation sequence followed
by application of rule 2 with parameters ADD(A,X,B) will yield (T,X). The fact that applying
this rule to (T ′,X ′) would yield (T,X) is obvious so all we need to check is that the conditions
of the Algorithm allow application of rule 2. Rule 2 is prefaced by the condition ’If A a leaf with
parent W having a single other neighbor S choose 1,2,3,4 or 5’, and we first note that minsep leaf
A in the tree T ′ does indeed satisfy this condition. Rule 2 has the further condition ’if OK(X,A,B)
and |W ∪ X| + |B ∩ S| > 2k’ that holds for the following reason: Since T is a k-skeleton we must
have OK(X,A,B) since otherwise X could not have a k-troika respecting A,B, while condition
|W ∪X|+ |B ∩S| > 2k must be True since otherwise we could have merged the two cliques X and
W in T without increasing branchwidth contradicting (T,X) ∈ ES(k).

We now argue for the remaining cases. By inspecting the Algorithm, we note that rules 1-5 are
used only if A is a leaf and x = 1. Thus when y = 1, meaning that A has in T a single maxclique
pendant neighbor X, we take the subtree resulting from removing X and its leaf neighbors and
apply to it rule 1 if z = 0, rule 2 if z = 1 and rule 5 if z = 2. In each case this will add X to A. This
covers all cases of x = 1, y = 1. If x = 1, y = 2 then the minsep node A has two pendant maxclique
neighbors X1,X2. Let Xi have σi minsep leaf neighbors and assume that σ1 ≥ σ2. We let z = σ1

and apply rule 3 in case z = 0 and we apply rule 4 in case z ∈ {1, 2}, adding both maxcliques X1

and X2. Note that no minimal k-skeleton has a minsep node A of degree 3 with two leaves. Thus,
both X1 and X2 are good prunable nodes. Moreover, since no minimal k-skeleton has a minsep
node A of degree 2 with one neighbor being X a leaf and the other neighbor W having degree 2,
then in fact we can remove both X1 and X2 and still be guaranteed to have a subtree T ′ of T with
(T ′,X ′) ∈ ES(k). We have thus argued all cases of x = 1, y ∈ {1, 2}, z ∈ {0, 1, 2}.

It remains to argue for x = 2 and also all cases where y = 3. For all these cases we use rule
7 if z = 0 and rule 6 otherwise, adding a single maxclique neighbor X to minsep A. Consider
the subtree T ′ of T resulting from removing X and its leaf neighbors. We note that the ’Else’
pre-condition for rules 6 and 7 hold, that the pre-condition OK(New,A,B, ...) for rule 6 holds, and
that the pre-condition |Y ∪X| > b3k/2c for rule 7 holds since if X had no leaf neighbor and Y was
another maxclique leaf neighbor of A then we would have |Y ∪ X| > b3k/2c, as otherwise (T,X)
would not be a k-skeleton. We need to argue that (T ′,X ′) ∈ ES(k), in particular that W could not
in T ′ be merged with some maxclique Y into a larger new clique without increasing branchwidth
(the reason we cannot merge W with two other maxcliques Y1, Y2 in T ′ is because then Y1, Y2 could
have been merged already in T). In all cases the argument is that in T ′ the new clique would have
two minsep neighbors S1, S2 and the newly merged clique would have to respect both S1 and S2

which is not possible as S1 ∪ S2 6= W ∪ Y . In particular, in case x = 2 we take for S1, S2 the 2
minsep neighbors of W different from A and in case x = 1, y = 3 we can use S1 = A since the

16

minsep A would have remained a minimal separator also in T ′. �

References

[1] H.L. Bodlaender, T. Kloks and D. Kratsch. Treewidth and pathwidth of permutation graphs.
SIAM J.Computing, 25:1305-1317, 1996.

[2] H.L. Bodlaender. Treewidth: Algorithmic techniques and results. In 22nd International Sym-
posium on Mathematical Foundations of Computer Science (MFCS). Vol. 1295 of Lecture Notes
in Computer Science, p. 19–36, 1997.

[3] H.L. Bodlaender and D.M. Thilikos. Graphs with branchwidth at most three. Journal of
Algorithms, 32:167–194, 1999.

[4] W. Cook and P.D. Seymour. Tour merging via branch-decompositions. Journal on Computing,
15:233–248, 2003.

[5] E. Demaine, F. Fomin, M. Hajiaghayi, and D.M. Thilikos. Fixed-parameter algorithms for
(k,r)-center in planar graphs and map graphs. In 30th Int. Colloquium on Automata, Languages,
and Programming (ICALP). Vol. 2719 of Lecture Notes in Computer Science, p. 829–844, 2003.

[6] F. Dorn, E. Penninkx, H.L. Bodlaender and F.V. Fomin. In 13th European Symposium on
Algorithm (ESA). To appear in Lecture Notes in Computer Science, 2005.

[7] F. Fomin and D.M. Thilikos. Dominating sets in planar graphs: Branch-width and exponential
speedup. In 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), p. 168–177,
2003.

[8] F. Fomin and D.M. Thilikos. A simple and fast approach for solving problems on planar graphs.
In 22nd Annual Symposium on Theoretical Aspect of Computer Science (STACS) Vol. 2996 of
Lecture Notes in Computer Science, p. 56-67, 2004.

[9] F. Fomin and D. Thilikos. Fast parameterized algorithms for graphs on surfaces: Linear ker-
nel and exponential speedup. In 31st International Colloquium on Automata, Languages, and
Programming (ICALP), Vol. 3142 of Lecture Notes in Computer Science, p. 581-592, 2004.

[10] F. Fomin, F. Mazoit and I. Todinca. Computing branchwidth via efficient triangulation and
blocks. In 31st Workshop on Graph Theoretic Concepts in Computer Science (WG), To appear
in Lecture Notes in Computer Science, 2005.

[11] J. Kleinberg and E. Tardos. Algorithm design. Addison-Wesley, 2005.

[12] C. Paul and J.A. Telle. Edge-maximal graphs of branchwidth k. In International Conference on
Graph Theory - ICGT. To appear in Electronic Note in Discrete Mathematics, 2005. Availbale
at http://www.lirmm.fr/~paul

[13] C. Paul and J.A. Telle. New tools and simpler algorithms for branchwidth. In 13th Euro-
pean Symposium on Algorithm (ESA). To appear in Lecture Notes in Computer Science, 2005.
Avalaible as LIRMM RR05-017 at http://www.lirmm.fr/~paul

17

[14] B. Reed. Treewidth and tangles, a new measure of connectivity and some applications. In Sur-
veys in Combinatorics. Vol. 241 of London Mathematical Society Lecture Note Series Cambridge
University Press, 1997.

[15] N. Robertson and P.D. Seymour. Graph minors X: Obstructions to tree-decomposition. Journal
on Combinatorial Theory Series B, 52:153–190, 1991.

[16] D. Rose. On simple characterization of k-trees. Discrete Mathematics, 7:317–322, 1974.

18

