
HAL Id: lirmm-00326885
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00326885

Submitted on 6 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Flexible Approach for Planning Schema Matching
Algorithms

Fabien Duchateau, Zohra Bellahsene, Remi Coletta

To cite this version:
Fabien Duchateau, Zohra Bellahsene, Remi Coletta. A Flexible Approach for Planning Schema Match-
ing Algorithms. CoopIS: Cooperative Informations Systems, Nov 2008, Monterrey, Mexico. pp.249-
264, �10.1007/978-3-540-88871-0_18�. �lirmm-00326885�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00326885
https://hal.archives-ouvertes.fr


A Flexible Approach for Planning Schema Matching

Algorithms ⋆

Fabien Duchateau and Zohra Bellahsene and Remi Coletta

LIRMM - Université Montpellier 2

161 rue Ada 34000 Montpellier

{firstname.name}@lirmm.fr

Abstract. Most of the schema matching tools are assembled from multiple match

algorithms, each employing a particular technique to improve matching accuracy

and making matching systems extensible and customizable to a particular do-

main. The solutions provided by current schema matching tools consist in aggre-

gating the results obtained by several match algorithms to improve the quality

of the discovered matches. However, aggregation entails several drawbacks. Re-

cently, it has been pointed out that the main issue is how to select the most suitable

match algorithms to execute for a given domain and how to adjust the multiple

knobs (e.g. threshold, performance, quality, etc.). In this article, we present a

novel method for selecting the most appropriate schema matching algorithms.

The matching engine makes use of a decision tree to combine the most appro-

priate match algorithms. As a first consequence of using the decision tree, the

performance of the system is improved since the complexity is bounded by the

height of the decision tree. Thus, only a subset of these match algorithms is used

during the matching process. The second advantage is the improvement of the

quality of matches. Indeed, for a given domain, only the most suitable match al-

gorithms are used. The experiments show the effectiveness of our approach w.r.t.

other matching tools.

1 Introduction

Schema matching studies has been initially motivated by schema integration applica-

tions in distributed database systems. The task is to produce a global schema from inde-

pendently constructed schemas [4, 34]. The research highlighted the issues in schema

integration of relational schemas, the integrity of integrated schema and different pos-

sible techniques to integrate schemas (binary or n-ary). From the artificial intelligence

view point, it is the task of integrating multiple ontologies into a single global ontol-

ogy [18]. Today, this application has been expanded to XML schemas on the Web [27].

Schema matching is the task of discovering correspondences between semantically

similar elements of two schemas or ontologies [8, 23, 24, 28]. In this paper, our empha-

sis is on schema matching, if otherwise explicitly mentioned e.g., ontology alignment.

Basic syntax based match definition has been discussed in the survey by Rahm and

⋆ Supported by ANR Research Grant ANR-05-MMSA-0007



Bernstein [31], extended by Shvaiko and Euzenat in [33] with respect to semantic

aspect. A plethora of match algorithms have been proposed in the context of schema

matching (refer to [31] for a survey of the different measures). And none of these mea-

sures outperforms all the others on all existing benchmarks. Therefore, most match-

ing tools [2, 15, 13] aggregate the results obtained by several similarity measures to

improve the quality of discovered matches. However, the aggregation function entails

several major drawbacks: computing all match algorithms decreases time performance

and it can negatively influence the matching quality. And adding new match algorithms

mainly implies to update the aggregation function. Finally, a threshold is applied on the

aggregated value. Yet, each match algorithm has its own value distribution, thus they

should have their own threshold.

In this paper, we present a novel method for combining schema matching algo-

rithms, which enables to avoid the previously mentioned drawbacks. Thus, the match-

ing engine makes use of a decision tree to combine most appropriate match algorithms.

As a first consequence of using the decision tree, the performance of the system is im-

proved since the complexity is bounded by the height of the tree. Thus, only a subset of

these match algorithms is used for matching from a large library of match algorithms.

The second advantage is the improvement of the quality of matches. Indeed, for a given

domain, only the most suitable match algorithms are used. Moreover, the decision tree

is flexible since new match algorithms can be added, whatever their output (discrete or

continuous values). Finally, MatchPlanner is also able to tune automatically the sys-

tem for providing the optimal configuration for a given matching scenario.

Contributions. We designed a flexible and efficient method for the schema matching

problem. The main interesting features of our approach are:

– Introducing the notion of planning in the schema matching process by using a de-

cision tree.

– A tool has been designed based on the planning approach.

– Experiments demonstrate that our tool provides good performance and quality of

matches w.r.t. the main matching tools.

Outline. The rest of the paper is organised as follows. Section 2 describes the draw-

backs of traditional matching tools. Section 3 focuses on the decision tree to combine

match algorithms. Section 4 contains an overview of our prototype. The results of ex-

periments for showing the effectiveness of our approach are presented in section 5.

Related work is described in section 6. Finally, we conclude in section 7.

2 Motivations

Most matching tools are assembled from multiple match algorithms, which are then

aggregated to improve matching accuracy and making matching systems extensible and

customizable to a particular domain. Thus, the aggregation function can be seen as

the kernel of a matching tool. However, as pointed out in [22], the main issues are

how to select and combine the most suitable match algorithms to execute for a given



domain and how to adjust the multiple knobs (e.g. threshold, performance, quality, etc.).

Two other important issues can be added: the thresholds and the precision versus recall

problem.

2.1 A Brutal Aggregation Function

Lots of semantic similarity measures have been proposed in the context of schema

matching (refer to [31] for a survey of the different measures). And none of these mea-

sures outperforms all the others on all existing benchmarks. Therefore, most matching

tools [2, 15, 13] aggregate the results obtained by several similarity measures to im-

prove the quality of discovered matches. However, the aggregation function entails ma-

jor drawbacks on three aspects.

Performance. A first drawback is to apply useless measures, involving a costly time

and resource consumption. Indeed, let consider matching two schemas with n and m el-

ements thanks to a matcher which uses k measures. Then n×m×k similarities will be

computed and aggregated. Yet, there are many cases for which applying the k measures

is not necessary. The following example shows that even a reliable match algorithm,

like the use of a dictionary, may fail to discover even simple matches. Consider the two

elements name and named. Applying a string matching technique like 3-grams between

them provides a similarity value equal to 0.5. On the contrary, a dictionary technique

(based on Wordnet [35] for example) would result in a very low similarity value since

no relationship between the two elements can be inferred. Thus, some techniques can

either be appropriate in some cases or they can reveal totally useless. Applying all

measures between every couple of elements involves a costly time and resource con-

sumption.

Quality. The aggregation function may negatively influence the quality. First, it

might give more weight to closely-related match algorithms: using several string match-

ing techniques between the polysemous labels mouse and mouse leads to a high similar-

ity value, in spite of other techniques, like context-based, which could have identified

that one label represents a computer device and the other an animal. Besides, the quality

due to the aggregation does not necessarily increase when the number of similarity mea-

sures grows. Matching mouse and mouse with one or two string matching algorithms

already results in a high similarity value. Thus using more string matching algorithms

would not have an interesting impact.

Flexibility. The aggregation function often requires manual tuning (thresholds, weights,

etc.) in the way of combining the measures. This does not make it really flexible w.r.t.

new similarity measures contributions. For instance, if a new measure is considered as

reliable for a specific domain (based on an ontology for example), how would it be

aggregated easily by an expert ?



2.2 The Threshold Applied to the Match Algorithms

To decide whether a couple of schema elements should be considered as a match, a

global similarity value is first computed by aggregating the similarity values of several

match algorithms. Then this global similarity value is compared with a threshold. Yet

the value distribution is very different from a match algorithm to another. Thus, the

matching tool should have one threshold for each match algorithm.

2.3 Recall vs Precision

In [19], the author underlines the problem of recall vs precision. Matching tools like

COMA++ focus on a better precision, but this does not seem to be the best choice for

an end-user in terms of post-effort: consider two schemas containing 100 elements each,

there is potentially 10,000 matching possibilities (considering only 1:1 matches), and

the number of relevant matches is 25. Let us assume a first matcher discovers 10 rele-

vant matches and achieves 100% precision, then the expert would have to find manually

the 15 missing matches among 81,000 possibilities. On the contrary, another matcher

returns a set of 300 matches, and it achieves a 100% recall. As all the relevant matches

have been discovered, the expert has to remove the 275 irrelevant matches among the

300 ones. Thus, favouring the recall seems a most appropriate choice. And note that

technically speaking, it is easier to validate (or not) a discovered mapping than to manu-

ally browse two large schemas for adding new matches. The overall metric (also known

as accuracy), proposed in [26], was designed to illustrate the post-match effort. How-

ever, it does not differentiate matching elimination from matching insertion.

2.4 Another Way to Design Matching Tools ?

To solve previously mentioned drawbacks, our approach aims at replacing the current

kernel of matching tools by a decision tree, and it favours the recall to reduce user

post-match effort.

3 A Decision Tree to Combine Match Algorithms

The kernel of traditional matching tools is the aggregation function, which combines

the similarity values computed by different match algorithms. As it suffers from several

drawbacks (see section 2), our idea consists in replacing the aggregation function by a

decision tree. We first explain the notion of decision tree, illustrated by an example, and

give its interesting features for the matching context. We conclude with a discussion

about ongoing work.

3.1 Decision Trees

The idea is to determine and apply, for a matching scenario, the most suitable matching

techniques, by means of a decision tree [29]. In our context, a decision tree is a tree



whose internal nodes represent the similarity measures, and the edges stand for con-

ditions on the result of the similarity measure. Thus, the decision tree contains plans

(i.e ordered sequences) of match algorithms. All leaf nodes in the tree are either true or

false, indicating if there is a match or not. We use well-known match algorithms from

Second String [32], i.e. Levenshtein, trigrams, Jaro-Winkler, etc. We added the neigh-

bour context from [15], an annotation-based measure, a restriction measure and some

dictionary-based [35] techniques.

The similarity value computed by a measure must satisfy the condition (continuous

or discrete) on the edges to access a next node. Thus, when matching two schema ele-

ments with our decision tree, the first similarity measure, at the root node, is computed

and returns a similarity value. According to this value, the edge for which its condi-

tion is satisfied leads to the next tree node. This process will iterate until a leaf node is

reached, indicating whether the two elements should match or not. The final similarity

value between two elements is the last one which has been computed, since we consider

that the previous similarity values have only been computed to find the most appropriate

measure.

3.2 Matching with Decision Trees

(a) quality-based (b) performance-based

Fig. 1. Examples of decision tree

Figure 1 illustrates two examples of decision tree. The first one (1(a)) focuses on

the quality, because it includes some costly measures (context, dictionary). The tree

depicted by figure 1(b) aims at discovering some matches quickly, by using mainly

string matching measures. Now, let us illustrate with 3 examples how the matching

occurs using a decision tree. We want to match the three couples of elements (author,

writer), (name, named), and (title, title) with the quality-based decision tree (figure

1(a)):



– (author, writer) is first matched by equality which returns 0, then the label sum

size is computed (value of 12), followed by the 3-grams algorithm. The similarity

value obtained with 3-grams is low (0.125), implying the dictionary technique to

be finally used to discover a synonym relationship.

– on the contrary, (name, named) is matched using equality, then label sum size,

and finally 3-grams which provides a sufficient similarity value (0.5) to stop the

process.

– finally, the couple (title, title) owns similar labels, implying the equality algorithm

to return 1. The context measure must then be computed to determine if there is a

match or not.

Thus, only 9 match algorithms have been computed (4 for (author, writer), 3 for

(name, named) and 2 for (title, title)) instead of 18 (if all distinct match algorithms

from the decision tree would have been used). In traditional matching tools based on an

aggregation function, all match algorithms would have been applied for each couple of

elements.

3.3 Advantages of Using a Decision Tree

This section describes the advantages of using a decision tree in the schema matching

context:

– First of all, decision trees are simple to understand or interpret. If a given situation

is observable in a model, then the explanation for the condition is easily explained

by boolean logic. An example to illustrate this assumption is shown figure 1(a): if

two labels are similar, the equality measure returns 1.0 and the context measure

is then computed. Indeed, there is no meaning computing more string matching

measures like 3-grams or Levenshtein.

– The decision trees are able to handle both numerical and categorical data. This

feature is crucial since some similarity measures returns either a number (3-grams,

Levenshtein, etc.) or categories (dictionnary-based technique). Other techniques

are usually specialised in analysing datasets that have only one type of variable.

For example, relation rules can be only used with nominal variables while neural

networks can be used only with numerical variables.

– Matching quality does not decrease because of the decision tree. On the contrary, it

tends to improve since many related match algorithms (for example string match-

ing, or dictionnary-based, etc.) cannot have a very strong impact on a similarity

value. For instance, using several string matching algorithms (3-grams, Leven-

shtein, Jaro, etc.) for matching very similar labels (e.g. power and tower) has as

much weight as another similarity measure which would discriminate the labels.

– Another advantage is the threshold, which is specific for each match algorithm.

Besides, the decision tree enables to consider several cases because a node does

not have a limited number of children. Here is an example with three cases: if a

similarity value is less than 0.3, then we consider there is no match. If it above 0.7,

we consider there is a match. And between 0.3 and 0.7, another match algorithm is

computed.



– Finally, using a decision tree does not have a significant impact on the performance.

It handles large data in a short time. Besides, in the schema matching context, we

show in section 5 that it improves performance by applying only a subset of the

match algorithms. Indeed, the complexity in the worst case depends on the maxi-

mum height of the decision tree. We can add the fact that the time-costly measures,

like the dictionary measure in decision tree 1(a), might appear at the bottom of the

tree: they are only computed if necessary, as illustrated by the example with the

couple (name, named).

3.4 Ongoing Work for Learning Appropriate Decision Trees

The main drawback of such an approach is that a decision tree may work fine for a

given domain, but it can reveal completely inappropriate for another one. This weak-

ness is also true for traditional approaches with an aggregation function. However, our

decision tree is more flexible since we are not only able to tune the parameters, but also

to design a totally new decision tree.

A first solution is to provide a large set of decision trees, enhanced by an editor to

easily allow the creation or modification of decision trees. However, this heavily relies

on the user who might not have all the abilities to design a new decision tree. Thus, we

are currently working on an automatic solution, based on machine learning techniques

and the expert feedback. Indeed, the idea consists in using an existing tree from the

library to quickly generate a set of matches. The expert then validates or not some of

these matches. This feedback is used to learn a new decision tree thanks to machine

learning techniques, for instance C4.5 [30]: the match algorithms which enabled to

obtain the most number of validated matches are selected and added in a new decision

tree. This process is in charge of setting up the thresholds for each match algorithm

too. The user can finally refine the set of matches by using this generated decision tree.

This idea is still a preliminary work and will not be discussed anymore in the rest of the

paper.

4 Implementation

Our approach has been implemented in Java as a prototype named MatchPlanner. Its

architecture is depicted by figure 2. Input of the matching process consists of a set of

schemas and a decision tree, composed of match algorithms. Every couple of schema

elements is matched against the decision tree. MatchPlanner then outputs a list of map-

pings which can be validated or not by an expert. Note that our tool is provided with

several decision trees. Some have been manually designed while a few others have been

generated using machine learning techniques as described in section 3.4. New decision

trees can also been added. Each decision tree is associated with a performance and qual-

ity value. The first one is relative to the number of discarded algorithms. The second

is related to the machine learning techniques. It represents the minimum quality that

should be obtained according to the validated matches. Both values only aim at giving

an idea about the decision tree: for instance, if the tree only has 10% of discarded match



algorithms, then the matching process should be quite long (the worst case being the

one for which the 90% of match algorithms are computed for every couple).

MatchPlanner can also simply be used as a benchmark for testing match algorithms:

by creating a decision tree which includes the match algorithms which need to be tested,

it is possible to show the effectiveness of each match algorithm for specific schemas.

Fig. 2. Architecture of MatchPlanner

5 Experiments

In this section, we demonstrate the benefit of MatchPlanner’s decision tree when com-

pared to other schema matching tools, reputed to provide an acceptable matching qual-

ity: COMA++ and Similarity Flooding. To the best of our knowledge, these tools are

the only ones available for experiments. We first evaluate and compare the matching

tools w.r.t the quality aspect, which is crucial in schema matching. Then, we show that

MatchPlanner ensures good time performance, an important aspect when dealing with

large and / or numerous schemas.

The 3 matching tools have been tested against 7 scenarios:

– book and university have been widely used in the literature [15, 12]. Both are

available in XBenchMatch benchmark [14].

– thalia [21] is another benchmark with 40 schemas describing the courses offered

by some American universities.

– travel are schemas extracted from airfare web forms [1].

– person schemas describes people. However, they have been manually designed for

the schema matching evaluation, and are available in XBenchMatch too.



– currency and sms are popular web services which can be found at http://www.seekda.com.

Note that the decision trees used by MatchPlanner have been specifically generated

for each scenario.

Quality Measures : To evaluate the matching quality of MatchPlanner, we use com-

mon measures in the literature, namely precision, recall and F-measure. Precision calcu-

lates the proportion of relevant mappings extracted among extracted mappings. Another

typical measure is recall which computes the proportion of relevant mappings extracted

among relevant mappings. F-measure is a tradeoff between precision and recall.

5.1 Quality Aspect

The first figure 3 illustrates the precision obtained by the matching tools for each sce-

nario. On 5 scenarios, COMA++ achieves the best precision. However, it is also the

only tool which is not able to discover any match for one of the scenarios (travel). Sim-

ilarity Flooding obtains twice the best precision, but it achieves the lowest score on the

5 others scenarios. Although MatchPlanner does not emphasize on the precision, it is

ranked second in terms of precision for all scenarios.

Fig. 3. Precision obtained by the matching tools on the 7 scenarios

The next figure 4 depicts the recall obtained by the tree matching tools for each

scenario. For the 7 scenarios, MatchPlanner obtains the highest recall (mostly above

60%), and it discovers all the relevant matches for 3 scenarios. We remind that our tool

favours the recall since we believe that a high recall reduces the post-match effort of the

user. Leaning towards recall is possible thanks to the numerical conditions on the edges



of the decision trees: they have sufficiently low thresholds to get several matchings, and

these results are refined when going down in the tree or when a categorical measure

is encountered. Both Similarity Flooding and COMA++ mainly achieve a lower recall

(less than 60%), which indicates that an expert would have to browse the input schemas

to manually discover the lacking matches.

Fig. 4. Recall obtained by the matching tools on the 7 scenarios

Figure 5 depicts the F-measure that each matching tool experimented on the 7 sce-

narios. Our tool performs best on 6 scenarios, while COMA++ is better on the person

scenario. We notice that COMA++ might give poor results in 2 cases (book and travel).

Similarity Flooding obtains the lowest F-measure in 4 scenarios. The string match-

ing measures combined with a propagation process may not reveal flexible enough to

achieve better results, even with average-sized schemas (thalia and currency). And we

note that the web-based scenarios (travel, currency, sms) are more difficult to match

than the others: the F-measure of the matching tools slightly decreases for these scenar-

ios, probably due to their strong heterogeneity.
F-measure represents a tradeoff between precision and recall and it is calculated

with the formula

F − measure(β) =
(β2 + 1) × Precision × Recall

(β2 × Precision) + Recall
(1)

in which the β parameter represents the influence of recall and precision. It is mainly

tuned to 1, implying precision and recall to be both as much important. However, we

do not believe that recall and precision should be given the same weight. Let us give

an example with the sms scenario, composed of two schemas with 45 and 64 elements:



Fig. 5. F-measure (β = 1) obtained by the matching tools on the 7 scenarios

there are 20 relevant matches between the schemas among 2880 possibilities (we are

only considering 1:1 match for sake of clarity). MatchPlanner discovered 10 relevant

matches and 12 irrelevant ones. Thus, during the post-match effort, the expert firstly

has to manually remove the irrelevant matches. This step mainly consists in validating

or not the discovered matches, which can be done quickly. Then she has to find the 10

other relevant matches among the 2880. With COMA++, which discovered 4 relevant

matches and 3 irrelevant ones, the expert would have to manually find 16 forgotten

matches among 2880 possibilities. As for Similarity Flooding, it discovered 2 relevant

matches and 4 irrelevant ones, thus implying the expert to manually find the 18 for-

gotten matches. Based on this assumption, the recall should be given more weight. By

setting α to 2 in the F-measure formula, we generated the figure 6.

On this figure, we notice that MatchPlanner obtains the best F-measure in all scenar-

ios. However, its F-measure slightly decreases for 2 scenarios (university and thalia)

in which the precision is higher than the recall. But it improves for scenarios like travel,

person, currency. By tuning the F-measure, Similarity Flooding mainly do not vary its

results. This tool is quite balanced enough between precision and recall. On the con-

trary, COMA++, which favours the precision, has a lower F-measure in most scenarios.

When evaluating the result of the matching w.r.t. the post-match effort, MatchPlanner

is the tool which reduces most the expert effort.



Fig. 6. F-measure (β = 2) obtained by the matching tools on the 7 scenarios

5.2 Performance Aspect

In this section, we evaluate the time performance of the matching tools. For the sce-

narios with small schemas (less than 20 elements), the three matching tools performed

the matching in a few seconds (less than 3 seconds). With larger schemas (currency

and sms, whose schemas contains more than 50 elements), Similarity Flooding still

performs well (less than 6 seconds). MatchPlanner needs 2 more seconds to match the

schemas of the sms scenario. COMA++ is the slowest matching tool in most cases

and it takes nearly 20 seconds to match the sms scenario. Although MatchPlanner and

COMA++ have the same number of match algorithms in their libraries for the sms sce-

nario, MatchPlanner obtains better time performance due to its decision tree, which is

able to compute a subset of the match algorithms to match every couple of elements.

5.3 Discussion

In these experiments, Similarity Flooding is the fastest matching tool, probably because

it only computes a few initial match algorithms. However, these results are mitigated by

the quality of the matches: Similarity Flooding obtains the lowest F-measure for 4 sce-

narios. We also point out that Similarity Flooding’s match algorithms are not efficient

from the quality point of view with heterogeneous schemas. On the contrary, COMA++

computes 17 match algorithms for each couple of schema elements. Thus its time per-

formance strongly decreases w.r.t the number of schema elements. Besides, the good

precision is obtained to the detriment of the recall. Thus, COMA++ does not achieve the

best F-measure in most scenarios. MatchPlanner can be seen as a tradeoff between time

performance and quality: although we do no compute all the match algorithms from



Fig. 7. Time performance for matching each scenario

our library due to the decision tree, the matching quality is mainly better than the one

produced by the other matching tools. And it enables to spare some resources, reducing

the time execution of the matching process. Finally, our approach shows robustness in

terms of quality (highest F-measure in most scenarios) while ensuring acceptable time

performance.

6 Related Work

This section covers the related work in schema matching. However, we only mention

the works which are the closest of our approach, i.e. they are based on a composi-

tion/aggregation approach or they use some machine learning techniques or decision

trees.

COMA/COMA++ [2, 9] is a generic, composite matcher with very effective match

results. It can process the relational, XML, RDF schemas as well as ontologies. In-

ternally it converts the input schemas as trees for structural matching. For linguistic

matching it utilizes a user defined synonym and abbreviation tables like CUPID [24],

along with n-gram name matchers. Similarity of pairs of elements is calculated into a

similarity matrix. At present it uses 17 element level match algorithms. For each source

element, elements with similarity higher then than threshold are displayed to the user

for final selection. The COMA++ supports a number of other features like merging,

saving and aggregating match results of two schemas. MatchPlanner is able to learn the

best combination of match algorithms instead of using the whole set. It outperforms

COMA++ in scenario involving large and / or numerous schemas.



Similarity Flooding [26] has been used with Relational, RDF and XML schemas.

These schemas are initially converted into labeled graphs and SF approach uses fix-

point computation to determine correspondences of 1:1 local and m:n global cardinality

between corresponding nodes of the graphs. The algorithm has been implemented as a

hybrid matcher, in combination with a name matcher based on string comparisons. First,

the prototype does an initial element-level name mapping, and then feeds these map-

pings to the structural SF matcher for the propagation process. The weight of similarity

between two elements is increased, if the algorithm finds some similarity between the

related elements of the pair of elements. In a modular architecture, the components of

SF, such as schema converters, the name and structural matchers, and filters, are avail-

able as high-level operators and can be flexibly combined within a script for a tailored

match operation. One of the main drawback of Similarity Flooding is the matching

quality. But this weak point is compensated by the performance. Our approach goes

further by using different matching techniques selected by a planner.

S-MATCH/S-MATCH++ [3, 20] takes two directed acyclic graphs like structures

e.g. XML schemas or ontologies and returns semantic correspondences between pairs

of elements. It uses external oracle Wordnet to evaluate the linguistic matching along

with its structural matcher to return a subsumption type match. At present, it uses 13

element level matchers and 3 structural level matchers. It is also heavily dependent on

SAT solvers, which decrease its time efficiency.

AUTOMATCH [6] is the predecessor of AUTOPLEX [5], which uses schema in-

stance data and machine learning techniques to find possible matches between two

schemas. It explicitly uses Naive Bayesian algorithm to analyze the input instances of

relational schemas fields against previously built global schema. The match result con-

sists of 1:1 correspondences and global cardinality. The major drawback of this work

is the importance of the data instances. Although this approach is interesting on the

machine learning aspect, it seems risky to only have one matching technique.

In [25], the authors propose a model for expressing uncertainty in the schema match-

ing process. A Naive Bayes heuristic, which combines three matchers (term, composi-

tion and precedence), is used to discover matches. Given a similarity degree, the Naive

Bayes heuristic tries to classify a new match either as correct or incorrect. The matcher

independence assumption limits the performance of the approach.

ASID [7] is a 2-step schema matching tool. Reliable matchers (Jaro, TF/IDF applied

to descriptions) generate a first set of matches, which is proposed to the user. Then, all

non-matched pairs are matched with less credible matchers (Naive Bayes classifier and

TF/IDF both applied to data instances). This approach is less flexible than MatchPlan-

ner, since there is only 4 matchers, which are always applied in the same order. Besides,

the matchers are combined with an average function.

eTuner [22] aims at tuning schema matching system. It proceeds as follows: a given

matching tool (e.g., COMA or Similarity Flooding [26]) is applied against a set of ex-

pert matches until an optimal configuration is found for the matching tool. Whereas,

MatchPlanner is aimed at learning the best combination of a subset of match algo-

rithms (not matching tools). Moreover, it is able to self tune important features like the

performance and quality.



Machine learning techniques have already been used in the context of schema match-

ing. In [10], the authors proposed a full machine learning based approach called LSD.

GLUE[11] is the extended version of LSD, which creates ontology/ taxonomy mapping

using machine learning techniques. The system is input with set of instances along with

the taxonomies. Glue classifies and associates the classes of instances from source to

target taxonomies and vice versa. It uses a composite approach, as in LSD, to do so.

In this approach, most of the computational effort is spent on the classifiers discovery.

As a difference, our approach enables to reuse any existing similarity measures and it

focuses on combining them.

Decision trees have been used in ontology matching for discovering hidden map-

pings among entities [17]. Their approach is based on learning rules for matching terms

in Wordnet. In another work [16], decision trees have been used for learning parameters

for semi-automatic ontology alignment method. This approach is aimed at optimizing

the process of ontology alignment and supporting the user in creating the training exam-

ples. However, the decision trees were not used for choosing the best match algorithms.

7 Conclusion

In this paper, we have presented a flexible and efficient approach for schema matching.

Unlike other mathing approaches which try to aggregate a given set of match algo-

rithms, our approach makes use of a decision tree to combine the most appropriate

match algorithms. The first advantage of using the decision tree is performance im-

provement of matching process since we do not compute all match algorithms for a

given couple of schema elements: only a subset of these match algorithms is used for

matching from a large library of match algorithms. The second advantage is the im-

provement of the matching quality. Indeed, for a given domain, only the most suitable

match algorithms are used. Our approach has been implemented as a matching tool and

several decision trees are provided. Experiments with 7 scenarios show that our tool

outperforms the existing matching tools on the quality aspect. And MatchPlanner has

an acceptable time performance. Thus, it can be seen as a tradeoff between Similarity

Flooding and COMA++. Besides, the user can select her configuration: she might em-

phasize on the time performance aspect, thus using a decision tree like the one depicted

by figure 1(b). Or she could favour the quality by choosing a decision tree like the one

depicted by figure 1(a).

A major ongoing work deals with the automatic generation of the decision trees.

This is based on machine learning techniques and expert feedback. The idea consists in

creating a bootstrap (several matches are discovered with a default decision tree), then

an expert validates (or not) some of the discovered matches. Finally, a new decision

tree is generated and can be used to discover more matches. This greatly reduces the

number of parameters that the user needs to tune (thresholds, weights, etc.).

References

1. The UIUC web integration repository. Computer Science Department, University of Illinois

at Urbana-Champaign. http://metaquerier.cs.uiuc.edu/repository, 2003.



2. D. Aumueller, H. H. Do, S. Massmann, and E. Rahm. Schema and ontology matching with

coma++. In SIGMOD Conference, Demo paper, pages 906–908, 2005.

3. P. Avesani, F. Giunchiglia, and M. Yatskevich. A large scale taxonomy mapping evaluation.

In International Semantic Web Conference, pages 67–81, 2005.

4. C. Batini, M. Lenzerini, and S. B. Navathe. A comparitive analysis of methodologies for

database schema integration. ACM Computing Surveys, 18(4):323–364, 1986.

5. J. Berlin and A. Motro. Automated discovery of contents for virtual databases. In CoopIS,

pages 108–122, 2001.

6. J. Berlin and A. Motro. Database schema matching using machine learning with feature

selection. In CAiSE, 2002.

7. N. Bozovic and V. Vassalos. Two-phase schema matching in real world relational databases.

In Data Engineering Workshop, ICDE.

8. H. H. Do, S. Melnik, and E. Rahm. Comparison of schema matching evaluations. In IWWD,

2003.

9. H. H. Do and E. Rahm. Coma - a system for flexible combination of schema matching

approaches. In VLDB, pages 610–621, 2002.

10. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data sources: a

machine-learning approach. In SIGMOD, pages 509–520, 2001.

11. A. Doan, J. Madhavan, R. Dhamankar, P. Domingos, and A. Y. Halevy. Learning to match

ontologies on the semantic web. VLDB J., 12(4):303–319, 2003.

12. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching: A machine learning

approach. In Handbook on Ontologies, International Handbooks on IS, 2004.

13. C. Drumm, M. Schmitt, H. H. Do, and E. Rahm. Quickmig: automatic schema matching for

data migration projects. In CIKM, pages 107–116. ACM, 2007.

14. F. Duchateau, Z. Bellahsène, and E. Hunt. Xbenchmatch: a benchmark for xml schema

matching tools. In VLDB Proceedings, pages 1318–1321. VLDB Endowment, 2007.

15. F. Duchateau, Z. Bellahsene, and M. Roche. A context-based measure for discovering ap-

proximate semantic matching between schema elements. In RCIS, 2007.

16. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with apfel. In

ISWC, 2005.

17. D. W. Embley, L. Xu, and Y. Ding. Automatic direct and indirect schema mapping: Experi-

ences and lessons learned. SIGMOD Record journal, 33(4):14–19, 2004.

18. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag, Heidelberg (DE), 2007.

19. A. Gal. The generation y of xml schema matching (panel description). In XSym, pages

137–139, 2007.

20. F. Giunchiglia, P. Shvaiko, and M. Yatskevich. S-match: an algorithm and an implementation

of semantic matching. In ESWS, 2004.

21. J. Hammer, M. Stonebraker, , and O. Topsakal. Thalia: Test harness for the assessment of

legacy information integration approaches. In Proceedings of ICDE, pages 485–486, 2005.

22. Y. Lee, M. Sayyadian, A. Doan, and A. Rosenthal. etuner: tuning schema matching software

using synthetic scenarios. VLDB J., 16(1):97–122, 2007.

23. C. Li and C. Clifton. Semantic integration in hetrogeneous databases using neural networks.

In VLDB, 1994.

24. J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with cupid. In VLDB,

pages 49–58, 2001.

25. A. Marie and A. Gal. Managing uncertainty in schema matcher ensembles. In H. Prade

and V. Subrahmanian, editors, Scalable Uncertainty Management, First International Con-

ference, SUM 2007, pages 60–73, Washington, DC, USA, Oct. 2007. Springer.

26. S. Melnik, H. G. Molina, and E. Rahm. Similarity flooding: A versatile graph matching

algorithm and its application to schema matching. In Data Engineering, pages 117–128,

2002.



27. P. D. Meo, G. Quattrone, G. Terracina, and D. Ursino. Integration of xml schemas at various

”‘severity”’ levels. Information Systems, pages 397–434, 2006.

28. T. Milo and S. Zohar. Using schema matching to simplify heterogeneous data translation. In

VLDB, pages 122–133, 1998.

29. J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81–106, 1987.

30. J. R. Quinlan. Improved use of continuous attributes in c4.5. In Journal of Artificial Intelli-

gence Research, volume 4, pages 77–90, 1996.

31. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB

J., 10(4):334–350, 2001.

32. Secondstring. http://secondstring.sourceforge.net/.

33. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. J. Data Seman-

tics IV, pages 146–171, 2005.

34. S. Spaccapietra, C. Parent, and Y. Dupont. Model independent assertions for integration of

hetrogeneous schemas. VLDB, pages 81–126, 1992.

35. Wordnet. http://wordnet.princeton.edu, 2007.


