
HAL Id: lirmm-00326887
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00326887v1

Submitted on 6 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BMatch: A Quality/Performance Balanced Approach
for Large Scale Schema Matching

Fabien Duchateau, Mathieu Roche, Zohra Bellahsene

To cite this version:
Fabien Duchateau, Mathieu Roche, Zohra Bellahsene. BMatch: A Quality/Performance Balanced
Approach for Large Scale Schema Matching. RR-08023, 2008. �lirmm-00326887�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00326887v1
https://hal.archives-ouvertes.fr

BMatch: A Quality/Performance Balanced Approach

for Large Scale Schema Matching⋆

Fabien Duchateau1 and Zohra Bellahsene1 and Mathieu Roche1

LIRMM - Université Montpellier 2

161 rue Ada 34000 Montpellier, France

{firstname.name}@lirmm.fr

Abstract. Schema matching is a crucial task to gather information of the same

domain. This is even more the case when dealing with data warehouses, where

a large number of data sources are available and require matching and integra-

tion. However, the matching process is still largely performed manually or semi-

automatically, thus discouraging the use of large scale integration systems. In-

deed, these large scale scenarios require a solution which ensures both an ac-

ceptable matching quality and good performance. In this article, we present an

approach to efficiently match a large number of schemas. The quality aspect is

based on the combination of terminological methods and cosine measure between

context vectors. The performance aspect relies on a B-tree indexing structure to

reduce the search space. Finally, our approach has been implemented and exper-

iments with real sets of schemas show that it is both scalable and provides an

acceptable quality of matches as compared to results obtained by the most refer-

enced schema matching tools.

Keywords: semantic similarity, schema matching, BMatch, B-tree index struc-

ture, node context, terminological and structural measures

1 Introduction

Data warehousing is a variation of schema integration application, in which, data sources

have to be integrated into a data warehouse for decision support systems [1]. In such

systems, data are extracted in advance and stored in a repository. Then user queries

are addressed directly to the data warehouse system and processed without requiring

access to the data sources. Data from source databases have to be transformed into

warehouse format using the ETL (Extract, Transform and Loading) process [2]. Ini-

tially, data warehousing was performed with relational databases, preceded by object

relational databases and semi-structured data sources. Usually, the integrated schema is

built manually by the data warehouse designer and the correspondences between this

schema and the data sources are discovered semi-automatically. In this paper, we focus

on finding out automatically: (i) correspondences between data sources schema and (ii)

integrated schema. The number of data source schemas may be very large and the size

of the schema may also be large (e.g. thousands of nodes). A typical issue is how to

perform and provide an integrated schema in this context, and the time performance

⋆ Supported by ANR Research Grant ANR-05-MMSA-0007

issue is crucial.

The schema matching problem consists of identifying one or more terms in a schema

that match terms in a target schema. The current semi-automatic matchers [2–8] com-

pute various similarities between elements and keep pairs with a similarity above a cer-

tain threshold. The main drawback of such matching tools is the performance: although

the matching quality provided at the end of the process is acceptable, the elapsed time to

match implies a static and limited number of schemas. Yet a dynamic environment in-

volving large sets of schema is required in many domain areas, like B2B or company’s

information systems [9]. Nowadays matching tools must provide a tradeoff between

quality and performance.

In this paper, we present our matching tool, i.e. BMatch. It supports both the seman-

tic aspect by ensuring acceptable matching quality and good time performance by using

an indexing structure to match a large number of schemas. Contrary to similar works,

our approach is both language and domain independent. It does not use any dictionary

or ontology, since these resources might not guarantee an acceptable matching quality.

Thus, our approach relies on the schema structure to extract semantic.

The semantic aspect is specifically designed for schemas and involves using both

terminological algorithms and structural rules. Indeed, the terminological approaches

reveal elements represented by close character strings, which enables to determine se-

mantic proximity. On the other hand, the structural rules are used to define the notion

of node context. The node context includes some of its neighbours, each of which is

associated with a weight representing the importance with regards to this node. Vec-

tors composed of neighbour nodes are compared with the cosine measure to detect any

similarity. Finally, the different measures are aggregated for all pairs of nodes.

Like most matchers, this semantic aspect does not provide good time performance.

Indeed, comparing each node from one schema to each node from the other schemas is

a time consuming process. Thus, the second aspect of our approach is aimed at improv-

ing the performance by using an indexing structure to accelerate the schema matching

process. The B-tree structure was chosen to achieve this goal, as it has been designed to

efficiently search and find an index among a large quantity of data. Indeed, we assume

that two similar labels share at least a common token, so instead of parsing the whole

schema, we just search for tokens indexed in the B-tree. Furthermore, we performed

experiments based on large sets of schema and the results show that our approach is

scalable.

Our main contributions are:

– We designed the BMatch approach to discover matches between two schemas. This

method is generic: it is not language dependent and it does not rely on dictionaries

or ontologies. It is also quite flexible with different parameters.

– As for the semantic aspect, we introduce the notion of context for a schema node.

And a formula enables us to extract this context from the schema for a given node.

Our approach is based on both terminological measures and a structural measure

using this context.

– An indexing structure for matching provides good performance by clustering label

tokens.

– Our approach has been implemented as a prototype.

– An experiment section allows asessment of the results provided by BMatch on

both aspects: matching quality and time performance. Experiments with real-world

schemas widely used in the schema matching literature enable acceptable match-

ing quality. A large number of real XML schemas (OASIS, XCBL) show good

performance and are applicable to a large scale scenario. It also enables us to fix

the values of some parameters.

The rest of the paper is structured as follows: first we briefly define some general

concepts in section 2. In section 3, the semantic aspect of our approach is detailed; and

section 4 covers the time performance aspect; in section 5, we present the results of our

experiments; an overview of related work is given in section 6. Finally, we conclude

and outline some future work in section 7.

2 Preliminary Aspects

In this section, we define the main notions used in this paper. Our approach deals with

semi-structured data. Schema in this context are trees.

Definition 1 (Schema): A schema is a labeled unordered tree S = (VS, ES, rS, label)

where VS is a set of nodes; rS is the root node; GS ⊆ VS × VS is a set of edges; and label

ES → Λ where Λ is a countable set of labels.

Definition 2 (Semantic Similarity Measure): Let E1 be a set of elements of schema

1, and E2 be a set of elements of schema 2. A semantic similarity measure between two

elements e1 ∈ E1 and e2 ∈ E2, denoted as Sm(e1,e2), is a metric value based on the

likeness of their meaning / semantic content, defined by:

Sm : E1xE2 → [0,1]

(e1,e2)→ Sm(e1,e2) where a zero value means total dissimilarity and 1 value stands

for total similarity. In the rest of the paper, we refer to Sm(e1,e2) as the similarity value.

Definition 3 (Automatic Schema Matching): Given two schema element sets E1

and E2 and a threshold t, we define automatic schema matching the algorithm to obtain

the set of discovered matches M={(e1,e2,Sm(e1,e2))}, such that between two elements

e1 ∈ E1 and e2 ∈ E2, Sm(e1,e2) ≥ t.

Threshold t may be adjusted by an expert, depending upon the strategy, domain or

algorithms used by the schema matching tools.

Example: If Sm(adresse,address) is calculated using the Levenshtein distance al-

gorithm, the similarity value is 0.857 and if the 3-gram algorithm is used, then the result

is 0.333 (see section 3.2 for more details). For another example Sm(dept,department),
the Levenshtein distance value is 0 and the 3-gram result is 0.111. These examples

show that the threshold has to be adjusted by an expert depending upon the properties

of strings being compared and the match algorithms applied.

Definition 4 (Best Match selection): There could be more than one match for an

element e1 ∈ E1 in E2. In such situations, the match with maximum similarity value has

to be selected.

Given Ei2 ⊆E2 of size n, such that ∀ ei j with 1≤ j ≤ n and corresponding to element

ei, the best match for element ei of E1 denoted as matchib is given as follows:

matchib =
n

max
j=1

Sm(ei,ei j)

Our approach, presented in sections 3 and 4, is based on these definitions.

3 BMatch: Semantic Aspect

In the context of a large amount of information, performing the matching with similar-

ity measures which use external resources or are based on instances might be a costly

process. Besides, an external resource might be inappropriate for matching a given do-

main: it can be either too general (e.g. Wordnet) or too specific (e.g. an ontology). Thus,

our approach is generic and it favours measures which directly rely on the schemas and

do not require too much processing. It combines three semantic similarity measures:

two of them are terminological and the other is based on the structure. All of these mea-

sures are combined with different thresholds to produce a set of matches. In the rest

of this section, we first give some motivations for the choice of similarity measures.

We describe some important notions of our approach, the terminological measures and

the context. Then, the BMatch’s semantic aspect is explained in detail. Finally, more

precision is given about the parameters.

3.1 Semantic Motivations

In this section, we explain the motivations underlying our work, especially why we have

chosen to combine both terminological and structural approaches.

– Terminological measures are not sufficient, for example:

• mouse (computer device) and mouse (animal) lead to a polysemia problem

• university and faculty are totally dissimilar labels

– Structural measures have some drawbacks:

• propagating the benefit of irrelevant discovered matches to the neighbour nodes

increases the discovery of more irrelevant matches

• not efficient with small schemas

Example of schema matching: Consider the two following schemas used in [10]. They

represent the organization in universities from different countries and have been widely

���������	
�����

��	�
�
 �����

����������������������������

����	���
�������

����	���
�����

��

(a) Organization of an Australian university (b) Organization of a US university

Fig. 1. The two university scenario schemas

used in the literature. In the rest of the paper, we will refer to these schemas as the uni-

versity scenario. With these schemas, the ideal set of matches given by an expert is {(CS

Dept Australia, CS Dept U.S.), (courses, undergrad courses), (courses, grad courses),

(staff, people), (academic staff, faculty), (technical staff, staff), (lecturer, assistant pro-

fessor), (senior lecturer, associate professor), (professor, professor)}.

Let’s imagine that we try to determine a similarity between Courses and Grad-

Courses. Using terminological measures, namely 3-grams and Levenshtein distance,

we discover a high similarity between these labels. StringMatching denotes the aver-

age between 3-grams and Levenshtein distance values and it represents the similarity

obtained by terminological measures. All of these measures are defined later in section

3.2.

– 3grams(Courses, GradCourses) = 0.2

– Lev(Courses, GradCourses) = 0.42

⇒ StringMatching(Courses, GradCourses) = 0.31

Now if we consider the nodes Academic Staff and Faculty, the terminological mea-

sures are not useful for discovering a match between these labels, since the labels are

totally dissimilar, implying a StringMatching value of 0.002. However, the structural

measure enables us to match the labels with a similarity value of 0.37. They are based

on the notion of context, which represents, for a given node, its semantically most

important neighbours. And the contexts of two nodes are compared using the cosine

measure. This structural measure thus reveals semantic relationships. A detailed expla-

nation of the context and the cosine measure is given in section 3.4.

– StringMatching(Academic Staff, Faculty) = 0.002

– Context(Academic Staff) = Academic Staff, Lecturer, Senior Lecturer, Professor

– Context(Faculty) = Faculty, Assistant Professor, Associate Professor, Professor

⇒ CosineMeasure(Context(Academic Staff), Context(Faculty)) = 0.37

In our approach, we thus combine both terminological and structural measures to

avoid the previously described problems. Our approach is able to match a large number

of schemas without the need of external resources. However, we ensure an acceptable

matching quality regarding the existing matching tools (see section 5.1).

3.2 Terminological Measures

To calculate the semantic similarity between two labels, there are many measures which

are often cited in the literature [7, 11, 12]. This section only presents the two termino-

logical measures used in the BMatch semantic aspect. They are described in more detail

in [13]. Both measures compute a value in [0, 1], with the 0 value denoting dissimilarity

and 1 denoting total similarity.

n-grams [14]. An n-gram is a similarity measure dealing with subsequences of n items

from a given string. n-grams are used in various areas of statistical natural language

processing to calculate the number of n consecutive characters in different strings. In

general, n value ranges from 2 to 5 and is often set at 3 [15, 16].

Levenshtein distance [17]. The Levenshtein distance between two strings is given by

the minimum number of operations needed to transform one source string into the target

string, where an operation is an insertion, deletion, or substitution of a single character.

3.3 Node Context

A specific feature of our approach is to consider the neighbour nodes. We have called

this notion the context, which represents, given a current node nc, the nodes denoted ni

in its neighbourhood. In fact, all nodes in the schema may be considered in the neigh-

bourhood of nc. However, it is quite obvious that the closest nodes ni are semantically

closer to the node nc. Given this assumption, we calculate the weight of each node ni

according to the node nc, which evaluates how semantically close the context node ni is

to the node nc. First we calculate ∆ d, which represents the difference between the nc

level and the ni level:

∆d = |lev(nc)− lev(ni)| (1)

where lev(n) is the depth of node n from the root. Then we can calculate the weight

denoted ω(nc,ni) between the nodes nc and ni:

ω(nc,ni) =

ω1(nc,ni), i f Anc(nc,ni) or Desc(nc,ni)

ω2(nc,ni), otherwise

(2)

where Anc(n,m) (resp. Desc(n,m)) is a boolean function indicating whether node

n is an ancestor (resp. descendant) of node m. This weight formula is divided into two

cases, according to the relationship between the two related nodes. If n is an ancestor

or a descendant of m, the formula 3 is applied. Otherwise we apply formula 4. The idea

behind this weight formula is based on the fact that the closer two nodes are in the tree,

the more similar their meaning is.

ω1(nc,ni) = 1+
K

∆d + |lev(nc)− lev(na)|+ |lev(ni)− lev(na)|
(3)

ω2(nc,ni) = 1+
K

2× (|lev(nc)− lev(na)|+ |lev(ni)− lev(na)|)
(4)

where na represents the lowest common ancestor to nc and ni, and K is a parameter to

allow some flexibility with the context. This is described in more detail in section 3.5.

The value of this weight is in the interval]1,2] for K = 1. Note that this formula, for

a given node n, gives the same weight to all descendants and ancestors of this node n

which are at the same level.

Example: Let us consider the node Academic Staff from schema 1(a). We look for

the importance of Staff for the node Academic Staff. As Staff is an ancestor of Academic

Staff, we apply formula 3. ∆d, the difference between their levels in the tree hierarchy,

is equal to 1. Their lowest common ancestor is Staff, and the difference in level between

this common ancestor with itself is 0, while it is equal to 1 with the node Academic

Staff, thus giving us the following result:

ω(AcademicSta f f ,Sta f f) = 1+
1

1+1+0
= 1.5 (5)

Now we compute the weight of the node Courses with regards to Academic Staff.

They have no ancestor or descendant relationship, so formula 4 is applied. Their lowest

common ancestor is the root node, namely CS Dept Australia. Academic Staff is 2 levels

away from the common ancestor, and Courses is 1 level away from it. The weight of

Courses for the node Academic Staff gives:

ω(AcademicSta f f ,Courses) = 1+
1

2× (2+1)
= 1.17 (6)

We can then generalize to obtain the following set of pairs (neighbour, associated

weight), also called context vector, which represents the context of the node Academic

Staff. {(CS Dept Australia, 1.25), (Courses, 1.17), (Staff, 1.5), (Technical Staff, 1.25),

(Lecturer, 1.5), (Senior Lecturer, 1.5), (Professor, 1.5) } Note that some parameters

(described later in this section) have an impact on the context.

3.4 Semantic Match Algorithm

The semantic aspect of BMatch is based on two steps: first we replace terms in the

context vectors when they have close character strings. This step uses the Levenshtein

distance and 3-gram algorithms (see section 3.2). Secondly, we calculate the cosine

measure between two vectors to determine if their context is close or not.

Step one: terminological measures to replace terms. The following describes in de-

tail the first part of the semantic aspect. The two schemas are traversed in preorder

traversal and all nodes are compared two by two with the Levenshtein distance and the

3-grams. Both measures are processed and, according to the adopted strategy1, the high-

est one or the average is kept. The obtained value is denoted SM for String Measure. If

SM is above a certain threshold, which is defined by an expert, then some replacements

may occur. The threshold will be discussed in section 5. We decided to replace the term

with the greater number of characters by the term with the smaller number of charac-

ters. Indeed, we consider that the smaller sized term is more general than the larger

sized one. This assumption can be checked easily since some terms may be written in

singular or plural. After this first step, we finally obtain the initial schemas that have

possibly been modified with character string replacements.

We have also noted polysemia or synonymy problems. The typical polysemous ex-

ample is mouse, which can represent both an animal and a computer device. In those

cases, the string replacement obviously occurs but has no effect since the terms are simi-

lar. On the contrary, two synonyms are mainly detected as dissimilar by string matching

algorithms. However, the second part of our algorithm, by using the context, enables us

to avoid these two problems.

Step two: cosine measure applied to context vectors. In the second part of our algo-

rithm, the schemas - in which some string replacements may have occurred by means of

step 1 - are traversed again. And the context vector of a current element is extracted in

each schema. The neighbour elements composing this vector may be ancestors, descen-

dants, siblings or further nodes of the current element, but each of them has a weight,

illustrating the importance of this neighbour with regards to the current node. The two

context vectors are compared using the cosine measure, in which we include the node

weight. Indeed, when counting the number of occurrences of a term, we multiply this

number by its weight. This processing enables us to calculate CM, the cosine measure

between two context vectors, and thus also the similarity between the two nodes related

to these contexts.

The cosine measure [18] is widely used in Information Retrieval. The cosine mea-

sure between the two context vectors, denoted CM, is given by the following formula:

CM(v1,v2) =
v1 · v2

√

(v1 · v1)(v2 · v2)
(7)

1 The maximum and average strategies are reported to be a good tradeoff in the literature

CM value is in the interval [0,1]. A result close to 1 indicates that the vectors tend

to be in the same direction, and a value close to 0 denotes total dissimilarity between

the two vectors.

Example: During step 2, the following replacement occurred: Faculty ↔ Academic

Staff. Now consider the two current nodes Staff and People respectively from schemas

1(a) and 1(b). Their respective and limited2 context vectors, composed of pairs of a

neighbour node and its associated weight, are {(CS Dept Australia, 1.5), (Faculty, 1.5),

(Technical Staff, 1.5) } and {(CS Dept U.S., 1.5), (Faculty, 1.5), (Staff, 1.5) }. As the

only common term between the two vectors is Faculty with a weight of 1.5, the cosine

measure between those context vectors is 0.44.

In [19], the authors propose an approach to evaluate tree similarity. It is based on an

approximate numerical multidimensional vector, which stores the structure and infor-

mation of the trees. We do not require such methods to compute the similarity between

two node contexts, which would impact the time performance. Indeed, we have demon-

strated in the experiments section (see 5.1) that our approach requires a limited context

(2 or 3 levels of descendents and ancestors are sufficient), implying a comparison be-

tween small subtrees. Besides, the authors show in [19] that they require around 0.1

second to determine the proximity between small trees. Thus, with schemas containing

thousands of nodes, it would take several seconds to compute the proximity of the con-

texts for each pair.

The context enables to discover or disambiguate a match between polysemous or

synonymous pairs. It also enables to discover matches which share other kind of rela-

tionships. In the previous example, Staff is a “subclassOf” of People while in section

3.1, Academic Staff is a synonym of Faculty. Note that our approach is not able to dis-

cover the kind of relationship between the pair elements, it simply indicates whether it

should be a match with regards to the computed similarity.

Finally, we obtain two similarity measures, SM and CM, with the first one based on

terminological algorithms while the second takes the context into account. Here again,

a strategy must be adopted to decide how to aggregate those similarity measures. In our

approach, the maximum and average were chosen because they generally give better

results in experiments than other formulas where one of the measures is favoured. At

the end of the process, BMatch deals with a set of matches consisting of all element

pairs whose similarity value is above a threshold given by an expert.

3.5 Semantic Parameters

Like most matchers, our approach includes some parameters. Although this may be

seen as a drawback, since a domain expert is often required to tune them, this is offset

2 To clarify the example, the context has been voluntarily limited in terms of number of neigh-

bours thanks to the parameters

by the fact that our application is generic and works with no dictionary regardless of the

domain or language.

– NB LEVELS: this parameter is used to know the number of levels, both up and down

in the hierarchy, to search in order to find the context nodes.

– MIN WEIGHT: combined with NB LEVELS, it represents the minimum weight to be

accepted as a context node. This is quite useful to avoid having many cousin nodes

(that do not have a significant importance) included in the context.

– REPLACE THRESHOLD: this threshold is the minimum value to be reached to make

any replacement between two terms.

– SIM THRESHOLD: this threshold is the minimal value to be reached to accept a

similarity between two schema nodes based on terminological measures.

– K: this coefficient used in formula 2 allows more flexibility. Indeed, it represents

the importance we give to the context when measuring similarities.

Given that the number of parameters is important, such an application needs to be

tuned correctly to give acceptable results. In [13], several experiments show the flexi-

bility of BMatch by testing different configurations. This enabled us to set some of the

parameters at default values. Besides, we note that some tools like eTuner [20] aim at

automatically tuning matching tools.

This section describes the semantic aspect of BMatch, based on the combination

of terminological and structural measures. However, this semantic aspect is hampered

by the same drawback as the other matchers, i.e. low time performance. This is due to

the large number of possibilities, i.e. each element from one schema is tested with each

element of another schema. The next section presents an indexing structure to accelerate

the schema matching process by reducing the search space.

4 BMatch: Performance Aspect

The first part of this section introduces the B-tree, an indexing structure already used in

databases for accelerating the query response time. Then we explain how this structure

is integrated with the semantic part to improve the performance.

4.1 An Indexing Structure: the B-tree

In our approach, we use the B-tree as the main structure to locate matches and create

matches between schemas. The advantage of searching for matches using the B-tree ap-

proach is that B-trees have indexes that significantly accelerate this process. For exam-

ple, if you consider the schemas 1(a) and 1(b), they have 8 and 9 elements respectively,

implying 72 matching possibilities with an algorithm that tries all combinations. And

those schemas are small examples, but in some domains, schemas may contain up to 6

000 elements. By indexing in a B-tree, we are able to reduce this number of matching

possibilities, thus providing better time performance.

As described in [21], B-trees have many features. A B-tree is composed of nodes,

with each of them having a list of indexes. A B-tree of order M means that each node

can have up to M children nodes and contain a maximum of M-1 indexes. Another fea-

ture is that the B-tree is balanced, meaning that all the leaves are at the same level -

thus enabling fast insertion and fast retrieval since a search algorithm in a B-tree of n

nodes visits only 1+logMn nodes to retrieve an index. This balancing involves some

extra processing when adding new indexes into the B-tree, however its impact is limited

when the B-tree order is high.

The B-tree is a structure widely used in databases due to its efficient capabilities

of retrieving information. As schema matchers need to quickly access and retrieve a

lot of data when matching, an indexing structure such as B-tree could improve the

performances. The B-tree has been preferred to the B+tree (which is commonly used

in database systems) since we do not need the costly delete operation. Thus, with this

condition, the B-tree seems more efficient than the B+tree because it stores less indexes

and it is able to find an index quicker.

4.2 Principle of our Matching Algorithm

Contrary to most other matching tools, BMatch does not use a matrix to compute the

similarity of each pair of elements. Instead, a B-tree, whose indexes represent tokens,

is built and enriched as we parse new schemas, and the discovered matches are also

stored in this structure. The tokens reference all labels that contain it. For example, af-

ter parsing schemas 1(a) and 1(b), the courses token would hold three labels: courses

from schema 1(a), grad courses and undergrad courses from schema 1(b). Note that

the labels grad courses and undergrad courses are also stored under the grad and the

undergrad tokens respectively.

For each input schema, the same algorithm is applied: the schema is parsed element

by element following a preorder traversal. This enables us to compute the context vector

of each element. The label is split into tokens. We then fetch each of those tokens in the

B-tree, resulting in two possibilities:

– no token is found, so we just add it in the B-tree with a reference to the label.

– or the token already exists in the B-tree, and then we try to find semantic similarities

between the current label and those referenced by the existing token. We assume

that in most cases, similar labels have a common token (and, if not, they may be

discovered with the context similarity).

Let us illustrate this case. When courses is parsed in schema 1(a), the label is first

tokenized, resulting in the following set of tokens: courses. We search the B-tree for

this single token, but it does not exist. Thus, we create a token structure whose index is

courses and which stores the current label courses and it is added to the B-tree. Later

on, we parse grad courses in schema 1(b). After the tokenization process, we obtain

this set of tokens: grad, courses. We then search the B-tree for the first token of the

set, but grad does not exist. A token structure with this grad token as index is inserted

in the B-tree, and it stores the grad courses label. Then the second token, courses, is

searched in the B-tree. As it already exists, we browse all the labels it contains (here

only the courses label is found) to calculate the String Measure (denoted SM) between

them and grad courses. BMatch can replace one of the labels by another if they are

considered similar (depending on the parameters). Whatever happens, grad courses is

added in the courses structure. The next parsed element is undergrad courses, which

is composed of two tokens, undergrad and courses. The first one results in an unsuc-

cessful search, implying that an undergrad token structure can be created. The second

token is already in the B-tree, and it contains the two previously added labels: courses

and grad courses. The String Measures are computed between undergrad courses

and the two labels, involving replacements if SM reaches a certain threshold. under-

grad courses is added in the label list of the courses token structure. In this way, the

index enables us to quickly find the common tokens between occurrences, and to limit

the String Measure computation with only a few labels.

At this step, some string replacements might have occurred. Then the parser recur-

sively performs the same action for the descendant nodes, so the children nodes can

then be added to the context. Once all descendants have been processed, similarities

might be discovered by comparing the label with token references using the cosine and

the terminological measures. A parameter can be set to extend the search to the whole

B-tree if no matches have been discovered. Let us extend our example. After processing

undergrad courses, we should go on to its children elements. As it is a leaf, we then

search the B-tree again for all tokens which compose the label undergrad courses.

Under the undergrad token, we find only one label, so nothing happens. Under the

courses token, only one of the three existing labels, namely courses, is interesting (one

is undergrad courses and the other, grad courses, is in the same schema). The String

Measure is thus applied between courses and undergrad courses. The Cosine Measure

is also performed between their respective contexts, and aggregation of these two mea-

sures results in the semantic measure between those labels. If this semantic measure

reaches the given threshold, then a match may be discovered.

5 Experiments

As our matching tool deals with both quality and performance aspects, this section is

organized in two parts. The first one shows that BMatch provides an acceptable qual-

ity of matching regarding the existing matching tools. The second part deals with the

performance. For this purpose, large schemas are matched to evaluate the benefit of the

B-tree. These experiments were performed on a 2 Ghz Pentium 4 laptop running Win-

dows XP, with 2 Gb RAM. Java Virtual Machine 1.5 is the current version required to

launch our prototype.

To evaluate our matching tool, we have chosen five real-world scenarios, each com-

posed of two schemas. These are widely used in the literature. The first one describes

a person, the second is related to university courses from Thalia [22], the third one

on business order extracted from OAGIS3 and XCBL4. Finally, currency and sms are

popular web services5. Their main features are given in table 1.

Person University Order Currency SMS

Number of nodes (S1/S2) 11/10 8/9 20/844 12/35 46/64

Avg number of nodes 11 9 432 24 55

Max depth (S1/S2) 4/4 4/4 3/3 3/3 4/4

Number of mappings 5 9 10 6 20

Table 1. Features of the different scenarios.

5.1 Matching Quality

Some metrics for evaluating quality of matches We present two metrics used to

evaluate the quality of our matching tool. Both metrics are based on table 2, which clas-

sifies the relevance of evaluated matches. ROC curves are well suited to measure the

quality of a ranking list [23]. Thus, ROC curves are interesting for comparing ranked

lists of matching pairs obtained with different parameters. On the other hand, precision,

recall and F-measure come from the information retrieval domain. These metrics are

described in more detail later in this section. We use them to compare matches dis-

covered by BMatch with results obtained by other matching tools, i.e. COMA++ and

Similarity Flooding (SF).

Relevant pairs Irrelevant pairs

Pairs evaluated as relevant by the system TP (True Positive) FP (False Positive)

Pairs evaluated as irrelevant by the system FN (False Negative) TN (True Negative)

Table 2. Contingency table at the base of evaluation measures.

The ROC curves

We first present ROC curves (Receiver Operating Characteristics). More details

are available in [24]. Initially, ROC curves were used in signal processing and they

are often used in the field of medicine to evaluate the validity of diagnostic tests. ROC

curves show on the X-coordinate, the rate of false positive (in our case, rate of irrelevant

matches) and on the Y-coordinate the rate of true positive (rate of relevant matches).

The surface under the ROC curve (AUC - Area Under the Curve), can be seen as the

effectiveness of a measure of interest. The criterion related to the surface under the

curve is equivalent to the Wilcoxon-Mann-Whitney statistical test [25]. Figure 2 depicts

an example of a ROC curve. Why is this metric interesting in our context? As our tool

3 http://www.oagi.org
4 http://www.xcbl.org
5 http://www.seekda.com

is dedicated to matching numerous and/or large schemas, resulting in a huge set of

matches, we promote a good ranking of the relevant matches, i.e. they obtain the best

similarity values.

Fig. 2. An example of a ROC curve whose AUC = 0.67

In the case of pair ranking in statistical measures, a perfect ROC curve means that

we obtain all relevant pairs at the beginning of the list and all irrelevant pairs at the

end of the list. This situation corresponds to AUC = 1. The diagonal corresponds to the

performance of a random system, with the progress of the rate of true positives being

accompanied by an equivalent degradation of the rate of false positives. This situation

corresponds to AUC = 0.5. If the pairs are ranked by decreasing interest (i.e. all relevant

pairs are after the irrelevant ones), then AUC = 0. Table 3 shows the commonly accepted

interpretation of AUC values. Note that an AUC value below 0.5 corresponds to a bad

ranking. An effective measurement of interest to order matches consists of obtaining

the highest possible AUC value. This is strictly equivalent to minimizing the sum of the

rank of positive examples. The advantage of ROC curves is that they are resistant to

imbalance (e.g. an imbalance in the number of positive and negative examples).

AUC value Interpretation

0.90 -1.00 excellent

0.80 -0.90 good

0.70 -0.80 fair

0.60 -0.70 poor

Table 3. Understanding AUC values

Precision, recall and F-measure

Precision is an evaluation criterion that is very appropriate for an unsupervised ap-

proach. Precision calculates the proportion of relevant pairs extracted among extracted

pairs. Using the notations of table 2, the precision is given by the formula 8.

Precision =
T P

T P+FP
(8)

100% precision means that all pairs extracted by the system are relevant.

Another typical measurement of the machine learning approach is recall, which

computes the proportion of relevant pairs extracted among relevant pairs. The recall is

given by formula 9.

Recall =
T P

T P+FN
(9)

100% recall means that all relevant pairs of elements have been found. This measure-

ment is adapted to the supervised machine learning methods, where all positive exam-

ples (relevant pairs of elements) are known.

It is often important to find a tradeoff between recall and precision. We can use

a measure that takes these two evaluation criteria into account by calculating the F-

measure [26] :

F −measure(β) =
(β 2 +1)×Precision×Recall

(β 2 ×Precision)+Recall
(10)

The β parameter of formula 10 regulates the respective influence of precision and

recall. It is often set at 1 to give the same weight to these two evaluation measurements.

This measure is widely used in the research field (e.g. INEX6, TREC7 or the evaluation

of schema matching [27]).

Parameter tuning. BMatch is a flexible matching tool with parameters. Such an ap-

plication needs to be tested to set some parameters or help the end-user to tune them

properly. BMatch ranks all matching pairs differently according to the parameter tun-

ing. Thus, we have used ROC curves to evaluate its matching quality on several sce-

narios while some parameters are tuned. The advantage of using ROC curves in this

case is that the similarity threshold (i.e. the limit above which a matching is con-

sidered relevant) is not another crucial parameter to be tuned. Indeed, it is set at 0

to obtain all matching pairs ranked by similarity values. Only three parameters have

been tested: the replacement threshold, the two strategies and the number of levels to

select the context. The other parameters (K and minimum weight) have a lower im-

pact in the matching process. The AUC is calculated for several values of the three

6 http://xmlmining.lip6.fr
7 http://trec.nist.gov

studied parameters, for each scenario (university, person, order, currency and sms).

Due to space limitation, all ROC curves of these experiments are stored at this URL:

http://www.lirmm.fr/∼duchatea/projects/BMatch/appendixCourbesROC.pdf.

Note that in the strategy table (figure 6), the first strategy represents a combination

of CM (context measure) and SM (string matching measure). The second strategy is

that applied between the terminological measures (Levenshtein distance and 3-grams).

And avg means the average while max stands for the maximum. Thus, avg−max means

that we calculated the average between CM and SM, and that we selected the maximum

between Levenshtein distance and 3-grams. The default parameters are as follows: the

replacement threshold is set at 0.2, the number of levels at 2 and the default strategy

is avg−max. This means that when we vary the replacement threshold, the strategy is

avg−max and the number of levels is 2.

Table 4 shows the AUC obtained when varying the replacement threshold for the

five scenarios. We first note that the replacement threshold should not be too high.

This is due to the string matching measures used, which often return values around

0.15 for terminologically close labels. In the person scenario, the results are mostly

good regardless of parameter tuning. A low replacement threshold seems best suited in

this person scenario, although increasing it does not have a significant impact on the

quality. On the contrary, the order and currency scenarios have normalized labels which

contain many similar tokens. Thus, increasing the replacement threshold provides a

better quality in this case.

Scenario Replacement Threshold AUC Interpretation

0.1 0.80 good

University 0.2 0.80 good

0.3 0.68 poor

0.1 0.88 good

Person 0.2 0.86 good

0.3 0.85 good

0.1 0.71 fair

Order 0.2 0.81 good

0.3 0.85 good

0.1 0.87 good

Currency 0.2 0.88 good

0.3 0.89 good

0.1 0.73 fair

Sms 0.2 0.74 fair

0.3 0.74 fair

Table 4. Varying the replacement threshold

Table 5 shows the AUC obtained when varying the number of levels for all sce-

narios. The university and person scenarios confirm that the context should not include

too many nodes that are too far in the hierarchy. On the contrary, a small context is

not sufficient to obtain the best quality. In the order and currency scenarios, the schema

depth is small (3). Thus, varying the number of levels above 2 has no impact. Note that

a context limited to 2 levels is a good heuristic.

Scenario NB Levels AUC Interpretation

1 0.72 fair

University 2 0.80 good

3 0.71 fair

1 0.82 good

Person 2 0.86 good

3 0.82 good

1 0.81 good

Order 2 0.81 good

3 0.81 good

1 0.88 good

Currency 2 0.88 good

3 0.88 good

1 0.73 fair

Sms 2 0.74 fair

3 0.74 fair

Table 5. Varying the number of levels

Table 6 shows the AUC obtained when varying the strategies for the five scenarios.

In the university and person scenarios, it appears that the avg −max strategy is the

most appropriate since it is the only one that provides a good AUC. The order scenario

offers different results: the avg−max strategy is not the best one, even if it provides a

matching quality above 0.8. This is probably due to the max used to combine the string

matching measures (this also applies for max−max strategy whose AUC is lower too):

as the labels contain many similar tokens, this max strategy involves more irrelevant

replacements, which tends to decrease the overall matching quality. The good results

obtained with the currency scenario are due to the four relevant matches (out of six)

which are very similar. Regardless the used strategy, these labels are always ranked in

the top-ten of the list.

Discussion on parameters All matching tools have their own parameters, and some

tools like eTuner [20] help an user to automatically tune them. Otherwise, the user must

manually tune the parameters on small samples of schemas. First, some of BMatch pa-

rameters depend on the domain application, and the way schemas have been designed.

For instance, the replacement threshold might sometimes be tuned to a low value, so

some replacements may occur. In other cases, where schema labels share many simi-

lar tokens, it needs to be set at a high value to avoid wrong replacements. Yet, those

experiments enable us to scale this parameter between 0.1 to 0.3, which can be war-

ranted by the values returned by the terminological measures. For the number of levels,

Scenario Strategies AUC Interpretation

avg - avg 0.67 poor

University avg - max 0.80 good

max - avg 0.67 poor

max - max 0.71 fair

avg - avg 0.81 good

Person avg - max 0.86 good

max - avg 0.75 fair

max - max 0.75 fair

avg - avg 0.86 good

Order avg - max 0.81 good

max - avg 0.85 good

max - max 0.82 good

avg - avg 0.90 excellent

Currency avg - max 0.88 good

max - avg 0.88 good

max - max 0.89 good

avg - avg 0.74 fair

Sms avg - max 0.74 fair

max - avg 0.74 fair

max - max 0.71 fair

Table 6. Varying the strategies

a too small or too large context can decrease the quality. However, this parameter of-

fers good results when it is set at 2. As for the strategies, the experiments clearly show

that avg−max is an acceptable tradeoff. This strategy provided a good AUC in each of

this five scenarios. We also note that whatever the parameter tuning, our application is

not able to obtain better than fair results for the sms scenario. Indeed, several relevant

matches were ranked in the middle of the matches list, and neither the measures nor the

tuning seem efficient to discover them with a higher similarity value.

This study of BMatch parameters led to the following configuration to compare

our tool with other matching tools: the strategy is set at avg−max, the replacement

threshold at 0.2 and the number of levels is 2.

Comparison with other Matching Tools In this part, the quality of BMatch is com-

pared with two matching tools known to provide an acceptable matching quality: COMA++

and Similarity Flooding (SF).

COMA++ [4] uses 17 similarity measures to build a matrix between every pair of el-

ements to finally aggregate the similarity values and extract matches. Conversely, SF [5]

builds a graph between input schemas and then processes some initial matches with a

string matching measure. The matches are refined thanks to the propagation mecha-

nism. Both matching tools are described with more detail in section 6.

As COMA++ and SF do not rank all matching pairs by relevance order, the ROC

curves cannot be used. Thus we analysed the set of matches returned by the matching

tools to compute the precision, recall, and F-measure. We first focus on our running

scenario which describes two universities. BMatch obtained matches for this scenario

are shown in table 7. Our application was tuned with the following configuration: the

adopted strategy is avg−max, the replacement threshold is 0.2, the similarity threshold

is 0.15. The number of levels in the context is limited to 2, K and the minimum weight

are respectively set at 1 and 1.5. For COMA++, all its strategies have been tried and the

best obtained results are shown in the following table 8. Similarity Flooding matches

are listed in table 9. Both matching tools are responsible for their thresholds. Note that

in these three tables, a + in the relevance column indicates that the match is relevant.

Element from Element from Similarity Relevance

schema 1 schema 2 value

Professor Professor 0.58 +

Courses Grad Courses 0.32 +

CS Dept Australia CS Dept U.S. 0.26 +

CS Dept Australia People 0.25

Courses Undergrad Courses 0.17 +

Staff People 0.16 +

Academic Staff Faculty 0.15 +

Technical Staff Staff 0.15 +

Table 7. Mappings obtained with BMatch for university scenario

Element from Element from Similarity Relevance

schema 1 schema 2 value

Professor Professor 0.54 +

Technical Staff Staff 0.53 +

CS Dept Australia CS Dept U.S. 0.52 +

Courses Grad Courses 0.50 +

Courses Undergrad Courses 0.50 +

Table 8. Mappings with COMA++ for university scenario

Element from Element from Similarity Relevance

schema 1 schema 2 value

Professor Professor 1.0 +

Staff Staff 1.0

CS Dept Australia CS Dept U.S. 1.0 +

Courses Grad Courses 1.0 +

Faculty Academic Staff 1.0 +

Table 9. Mappings with SF for university scenario

In table 7, the fourth match between CS Dept Australia and People is irrelevant.

However, the relevant matches are also noted on line 3 and 6. BMatch is currently not

able to determine if one of the matches should be removed or not. Indeed, some com-

plex matches can be discovered, for instance the label Courses with both Grad Courses

and Undergrad Courses on line 2 and 5. Applying a strategy to detect complex matches

and remove irrelevant ones is the focus of ongoing research. Similarity Flooding also

discovers an irrelevant match.

After this detailed example for the university scenario, we give the results in terms

of precision, recall and F-measure for all scenarios. Figure 3 depicts the precision ob-

tained by the matching tools for the five scenarios. COMA++ is a tool that favours the

precision, and achieves a score higher than 70% in three scenarios (university, person

and currency). However, we also note that COMA++ obtains the lowest score for the

order scenario. BMatch achieves the best precision for two scenarios (order and sms),

but the experiments also show that in the other cases, the difference between BMatch

and COMA++ precisions is not very significant (10% at most). Although Similarity

Flooding scores a 100% precision for the person scenario, it obtains low precision for

the others, thus discovering many irrelevant matches.

Fig. 3. Precision obtained by the matching tools in the five scenarios

Figure 4 depicts the recall for the five scenarios. We first note that the matching

tools do not discover many relevant matches for the order and sms scenarios (recall

less than 40%). BMatch performs best in four scenarios, but it misses many relevant

matches for the person scenario (recall equals 32%). This poor recall is mainly due to

the numerous tokens in the person schemas and the parameters configuration: with a

replacement threshold set at 0.2 and a similarity threshold set at 0.15, our approach

missed many relevant matches because terminological measures did not return values

which reach these thresholds. We have seen in 5.1 that BMatch obtains better results

when tuned differently. We have also demonstrated in [13] that BMatch is able to obtain

100% recall for the university scenario when its parameters are tuned in an optimal

configuration. COMA++ is the only matching tool to obtain a recall above 80% for the

person scenario. However, in three scenarios, its recall is at least 15% worse than that

of BMatch. Similarity Flooding obtains the lowest recall in four scenarios.

Fig. 4. Recall obtained by the matching tools in the five scenarios

F-measure, the tradeoff between precision and recall, is given in figure 5. Due to

its previous results, Similarity Flooding achieves the lowest F-measure for most sce-

narios, except for a 73% F-measure for person. BMatch obtains the best F-measure for

four scenarios and it outperforms COMA++ by almost 10%. However, both BMatch

and COMA++ did not perform well in one scenario (person for BMatch and order for

COMA++).

5.2 Time Performance Aspect

A matching tool that ensures good performance is required in large scale scenarios, or

on the Internet where numerous data sources are available. Since the matching tools

which are dedicated to large scale scenarios are not available, we compare our BMatch

application with a BMatch version without any indexing structure. In this case, the

Fig. 5. F-measure obtained by the matching tools in the five scenarios

matching algorithm tries to match every pair of nodes for each schema by traversing

the trees in preorder. By focusing on performance, we mainly mean the time spent to

match a large number of schemas. The node context is limited to its direct parent and its

children nodes. Although this constraint could be removed, it was shown in the quality

experiments (see section 5.1) that the context should not include too many further nodes

which could have a negative impact on the quality. BMatch parameters do not have a

significant impact on the performance aspect.

Table 10 shows the different features of the sets of schemas we used in our ex-

periments. Two large scale scenarios are presented: the first one involves more than

a thousand average sized schemas about business-to-business e-commerce taken from

the XCBL8 standards. In the second case, we deal with OASIS9 schemas which are also

business domain related. Note that it is very hard to evaluate the obtained quality when

matching large and numerous schemas, because an expert must first manually match

them. An example of matching quality with this kind of schema is shown by the order

scenario in the previous section.

XCBL Scenario. Here we compare the performance of BMatch and BMatch with-

out the indexing structure (thus limited to the semantic part) on a large set of average

schemas. The results are illustrated by the graph depicted in figure 6. We can see that

the version without indexing structure is efficient when there is not a large number of

nodes (less than 1600). This is due to the fact that the B-tree requires some maintenance

8 http://www.xcbl.org
9 http://www.oagi.org

XCBL set OASIS set

Average number of 21 2 065

nodes per schema

Largest / smallest 426 / 3 6 134 / 26

schema size

Maximum depth 7 21

Table 10. Characterization of schema sets

cost to keep the tree balanced. BMatch enhanced with indexing provides good perfor-

mance with a larger number of nodes, since two thousand schemas are matched in 220

seconds.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1000 1200 1400 1600 1800 2000

tim
e

in
 s

ec
on

ds

number of nodes

BMatch
Without index

Fig. 6. Matching time with XCBL schemas depending on the number of nodes

OASIS Scenario. In this scenario, we are interested in matching 430 large schemas,

with an average of 2000 nodes. The graph depicted in figure 7 shows that the version

without indexing structure is not suited for large schemas. On the contrary, BMatch is

able to match a high number of large schemas in 60 seconds. The graph also shows that

BMatch is quite linear. Indeed, it has also been tested for 900 schemas, and BMatch

needs around 130 seconds to perform the matching.

Comparison with other Matching Tools Now we compare the time performance of

the three matching tools for the five scenarios. The time includes both the parsing of the

input schemas and the matching process.

Table 11 depicts the matching performance of each matching tool for each scenario.

All matchers are able to match small schemas (university and order) in less than one

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 150 200 250 300 350 400 450

tim
e

in
 s

ec
on

ds

number of schemas

BMatch
Without index

Fig. 7. Matching time with OASIS schemas depending on the number of schemas

Person University Order Currency Sms

Average Number of Nodes 11 9 432 24 55

COMA++ ≤ 1 s ≤ 1 s 43 s 5 s 19 s

SF ≤ 1 s ≤ 1 s 2 s 1 s 2 s

BMatch ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s

Table 11. Time performance of COMA++, Similarity Flooding and BMatch on the different

scenarios

second. However, with larger schemas (order, sms), COMA++ and Similarity Flood-

ing are less efficient. On the other hand, BMatch still ensures good performance while

providing the best matching quality (see section 5.1). These matching tools use several

methods to store information: COMA++ extracts information from the schemas and

stores them in a MySQL database. Then, this information is loaded into memory, in

directed graphs [4]. The matching matrix, which stores similarities between pairs of el-

ements, is not efficient when the number of pairs is very important. Similarity Flooding

stores information in a graph, and then the propagation process runs, and it requires 1

or 2 seconds to perform according to the schemas size. Its time performance are quite

similar with that of BMatch. On the contrary, we store all information in the B-tree, and

elements are quickly accessed thanks to indexes.

5.3 Discussion

In this section, we conducted some experiments to demonstrate both the quality and

time performance of BMatch. We first tuned some parameters to show their influence

on the results and to set some of them. Then our matching tool is compared with

COMA++ and Similarity Flooding, and we have shown that BMatch provides an ac-

ceptable matching quality: in four scenarios out of five, BMatch obtains the highest

F-measure. BMatch also performed well in the performance aspect: even with scenar-

ios involving large schemas, there is no impact on BMatch performance, contrary to

COMA++ and Similarity Flooding. We also proved the efficiency of the B-tree indexing

structure. Indeed, it enables matching of 430 schemas in 50 seconds, while the BMatch

version without indexing structure requires 160 seconds. Thus, BMatch is suitable for

a large scale scenario.

6 Related Work

Many approaches have been devoted to schema matching. Most of them are based

on both terminological and structural measures [3–6, 9]. However, they mainly aim at

matching a small number of schemas. SAT techniques were used in [28] while [29–32]

deal with instances. Similarly, in the ontology domain, several tools [33–39] have been

designed to fulfill the alignment task. This section only focuses on schema matching

tools that we compared BMatch with. Further details about the other approaches are

given in surveys [2, 7, 8, 40].

6.1 COMA++

As described in [4, 41], COMA++ is a hybrid matching tool that can incorporate many

independent matching algorithms. Different strategies, e.g. reuse-oriented matching or

fragment-based matching, can be included, offering different results. When loading a

schema, COMA++ transforms it into a rooted directed acyclic graph. Specifically, the

two schemas are loaded from the repository and the user selects the required match

algorithms from the matcher library. For each algorithm, each element from the source

schema is attributed a threshold value between 0 (no similarity) and 1 (total similarity)

with each element of the target schema, resulting in a cube of similarity values. The

final step involves combining the similarity values given by each matcher algorithm by

means of aggregation operators like max, min, average, etc. Finally, COMA++ displays

all match possibilities and the user checks and validates their accuracy.

The shortcoming of COMA++ is the time required, both for adding files into the

repository and matching schemas. In a large scale context, spending several minutes

with those operations can entail performance degradation and the other drawback is

that it does not support direct matching of many schemas.

COMA++ is more complete than BMatch, it uses many algorithms and selects the

most appropriate function to aggregate them. However, BMatch is designed for a large

scale scenario while COMA++ mainly focuses on the matching quality and is able to

match only two schemas at a time.

6.2 Similarity Flooding

Similarity Flooding is a matching tool described in [5] and is based on structural ap-

proaches. Input schemas are converted into directed labeled graphs and the aim is to

find terminological relationships between those graphs. Then the following structural

rule is applied: two nodes from different schemas are considered similar if their adja-

cent neighbours are similar. When similar nodes are discovered, this similarity is then

propagated to adjacent nodes until there are no longer any changes. As in most of match-

ers, Similarity Flooding generates matches for nodes having a similarity value above a

certain threshold.

Our experiment results show that Similarity Flooding does not give good results

when labels from the same schema are quite similar (e.g they share several common

tokens) or with small schemas. BMatch uses the same structural rule which states that

two nodes from different schemas are similar if most of their neighbours are similar. But

BMatch is a combination of terminological and structural measures while Similarity

Flooding uses only terminological measures as an initial step, and then the structural

aspect to refine the initial matches.

6.3 An Approach for Large Schemas Based on COMA++

To the best of our knowledge, two works have dealt with large schemas. The first one

[42] is based on the COMA++ tool [4]. First, the user divides the schema into fragments

and then each fragment from the source schema is mapped to target schema fragments

in order to find interfragment matches. Next, these fragment matches are merged to

compute the schema level matches. Thus, the tool is not able to directly process large

schemas. Another issue related to this approach [42] is the fragmentation criteria of

large schemas. The second approach is Porsche [43], which presents a robust mapping

method that creates a mediated schema tree from a large set of input XML schemas

(converted to trees) and defines mappings from the contributing schema to the mediated

schema. It combines tree mining with semantic label clustering which minimizes the

target search space and improves time performance, thus making the algorithm suitable

for large scale data sharing.

7 Conclusion

In this paper, we have presented the BMatch approach which was designed for improv-

ing both the quality of matches and time performance of the schema matching process.

This approach is very appropriate for large scale contexts like data warehousing systems

where a large number of data sources may be integrated. Our approach deals with both

the semantic aspect by relying on terminological and structural measures and the per-

formance aspect by using an indexing structure, i.e. the B-tree. Moreover, our method is

generic: it is not language dependent and it does not rely on dictionaries or ontologies.

It is also quite flexible with different parameters.

The results of our experiments are very enlightening. They show that our method

is scalable and provides good time performance thanks to the benefit provided by the

index structure. And BMatch ensures a matching quality as good as other matching

tools on several real-world scenarios.

We are planning to look for schemas involving more heterogeneity, thus we need

to enhance BMatch by adding specific parsers for each format file. Another part of our

ongoing work is to detect complex matches and remove irrelevant ones, probably by an

automatic post-match process. Finally, we could rely on machine learning methods to

discover and/or confirm matches since data are increasingly available with the schemas.

References

1. Kerkri, E.M., Quantin, C., Allaert, F., Cottin, Y., Charve, P., Jouanot, F., Ytongnon, K.: An

approach for integrating heterogeneous information sources in a medical data warehouse.

Journal of Medical Systems 25(3) (2001) 167–176

2. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB

Journal 10(4) (2001) 334–350

3. Madhavan, J., Bernstein, P., Rahm, E.: Generic schema matching with cupid. In: VLDB.

(2001)

4. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with

coma++. In: ACM SIGMOD Conference, DEMO paper. (2005) 906–908

5. Melnik, S., Molina, H.G., Rahm, E.: Similarity flooding: A versatile graph matching algo-

rithm and its application to schema matching. In: Proc. of ICDE. (2002)

6. Tranier, J., Baraer, R., Bellahsène, Z., Teisseire, M.: Where’s charlie: Family-based heuristics

for peer-to-peer schema integration. In: Proc. of IDEAS. (2004) 227–235

7. Euzenat, J., et al.: State of the art on ontology matching. Technical Report

KWEB/2004/D2.2.3/v1.2, Knowledge Web (2004)

8. Yatskevich, M.: Preliminary evaluation of schema matching systems. Technical Report

DIT-03-028, Informatica e Telecomunicazioni, University of Trento (2003)

9. Drumm, C., Schmitt, M., Do, H.H., Rahm, E.: Quickmig: automatic schema matching for

data migration projects. In: CIKM, ACM (2007) 107–116

10. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: A machine learning

approach. In: Handbook on Ontologies in Information Systems. (2004)

11. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for name-

matching tasks. In: In Proceedings of the IJCAI-2003. (2003)

12. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proc. of EKAW. (2002)

251–263

13. Duchateau, F., Bellahsene, Z., Roche, M.: A context-based measure for discovering approx-

imate semantic matching between schema elements. In: RCIS. (2007) 9–20

14. Shannon, C.: A mathematical theory of communication. Bell System Technical Journal 27

(1948) 379–423, 623–656

15. Lin, D.: An information-theoretic definition of similarity. In: Proc. 15th International Conf.

on Machine Learning, Morgan Kaufmann (1998) 296–304

16. Kefi, H.: Ontologies et aide à l’utilisateur pour l’interrogation de sources multiples et

hétérogènes. PhD thesis, Université de Paris 11 (2006)

17. Levenshtein, V.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals.

Soviet Physics Doklady 10 (1966) 707

18. Wilkinson, R., Hingston, P.: Using the cosine measure in a neural network for document

retrieval. In: Proc of ACM SIGIR Conference. (1991) 202–210

19. Yang, R., Kalnis, P., Tung, A.K.H.: Similarity evaluation on tree-structured data. In: SIG-

MOD, ACM (2005) 754–765

20. Lee, Y., Sayyadian, M., Doan, A., Rosenthal, A.: etuner: tuning schema matching software

using synthetic scenarios. VLDB J. 16(1) (2007) 97–122

21. Comer, D.: The ubiquitous btree. In: Computing Surveys. (1979)

22. Hammer, J., Stonebraker, M., , Topsakal, O.: Thalia: Test harness for the assessment of

legacy information integration approaches. In: Proceedings of ICDE. (2005) 485–486

23. Roche, M., Kodratoff, Y.: Pruning Terminology Extracted from a Specialized Corpus for CV

Ontology Acquisition. In: Proc. of onToContent’06 workshop - OTM’06. (2006) 1107–1116

24. Ferri, C., Flach, P., Hernandez-Orallo, J.: Learning decision trees using the area under the

ROC curve. In: Proceedings of ICML’02. (2002) 139–146

25. Yan, L., Dodier, R., Mozer, M., Wolniewicz, R.: Optimizing classifier performance via an

approximation to the Wilcoxon-Mann-Whitney statistic. In: Proceedings of ICML’03. (2003)

848–855

26. Van-Risbergen, C.: Information Retrieval. 2nd edition, London, Butterworths (1979)

27. Do, H.H., Melnik, S., Rahm, E.: Comparison of schema matching evaluations. In: Proceed-

ings of the 2nd Int. Workshop on Web Databases (German Informatics Society. (2002)

28. Avesani, P., Giunchiglia, F., Yatskevich, M.: A large scale taxonomy mapping evaluation.

In: International Semantic Web Conference. (2005) 67–81

29. Hernandez, M.A., Miller, R.J., Haas, L.M.: Clio: A semi-automatic tool for schema mapping

(software demonstration). In: ACM SIGMOD. (2002)

30. Berlin, J., Motro, A.: Database schema matching using machine learning with feature selec-

tion. In: CAiSE. (2002)

31. Doan, A., Domingos, P., Halevy, A.Y.: Reconciling schemas of disparate data sources - a

machine learning approach. In: IACM SIGMOD. (2001)

32. Bilke, A., Naumann, F.: Schema matching using duplicates. icde 0 (2005) 69–80

33. Ehrig, M., Haase, P., Stojanovic, N.: Similarity for ontologies - a comprehensive framework.

In: Proc. of Practical Aspects of Knowledge Management. (2004)

34. Euzenat, J., Valtchev, P.: Similarity-based ontology alignment in owl-lite. In: ECAI. (2004)

333–337

35. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., Halevy, A.Y.: Learning to match

ontologies on the semantic web. VLDB J. 12(4) (2003) 303–319

36. Ehrig, M., Staab, S.: Qom - quick ontology mapping. In: ISWC. (2004)

37. Tang, J., Li, J., Liang, B., Huang, X., Li, Y., Wang, K.: Using bayesian decision for ontology

mapping. Web Semant. 4(4) (2006) 243–262

38. Cudre-Mauroux, P., Agarwal, S., Aberer, K.: Gridvine: An infrastructure for peer informa-

tion management. IEEE Internet Computing 11(5) (2007) 36–44

39. Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between

words using multiple information sources. IEEE Transactions on Knowledge and Data En-

gineering 15(4) (2003) 871–882

40. Noy, N.F.: Semantic integration: A survey of ontology-based approaches. SIGMOD Record

33(4) (2004) 65–70

41. Do, H.H., Rahm, E.: Matching large schemas: Approaches and evaluation. Information

Systems 32(6) (2007) 857–885

42. Rahm, E., Do, H.H., Massmann, S.: Matching large xml schemas. SIGMOD Rec. 33(4)

(2004) 26–31

43. Saleem, K., Bellahsene, Z., Hunt, E.: Porsche: Performance oriented schema mediation. to

appear in Information Systems (2008)

