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tBa
kground Of the 5 484 predi
ted proteins of Plasmodium fal
iparum, the main 
ausative agent ofmalaria, about 60% do not have su�
ient sequen
e similarity with proteins in other organisms to warrantprovision of fun
tional assignments. Non-homology methods are thus needed to obtain fun
tional 
luesfor these un
hara
terized genes.Method We present PlasmoDraft, a database of Gene Ontology (GO) annotation predi
tions for P.fal
iparum genes based on postgenomi
 data. Predi
tions of PlasmoDraft are a
hieved with a GuiltBy Asso
iation method named Gonna. This involves (1) a predi
tor that proposes GO annotations fora gene based on the similarity of its pro�le (measured with trans
riptome, proteome or intera
tomedata) with genes already annotated by GeneDB; (2) a pro
edure that estimates the 
on�den
e of thepredi
tions a
hieved with ea
h data sour
e; (3) a pro
edure that 
ombines all data sour
es to providea global summary and 
on�den
e estimate of the predi
tions.Results Gonna has been applied to all P. fal
iparum genes using most publi
ly available trans
riptome,proteome and intera
tome data sour
es. Gonna provides predi
tions for numerous genes without anyannotations. For example, 2 434 genes without any annotations in the Biologi
al Pro
ess ontology areasso
iated with spe
i�
 GO terms (e.g. Rosetting, Antigeni
 variation), and among these, 841 have
on�den
e values above 50%. In the Cellular Component and Mole
ular Fun
tion ontologies, 1 905and 1 540 un
hara
terized genes are asso
iated with spe
i�
 GO terms, respe
tively (740 and 329 with
on�den
e value above 50%). All predi
tions along with their 
on�den
e values have been 
ompiledin PlasmoDraft, whi
h thus provides an extensive database of GO annotation predi
tions that 
anbe a
hieved with these data sour
es. The database 
an be a

essed in di�erent ways. A global viewallows for a qui
k inspe
tion of the GO terms that are predi
ted with high 
on�den
e, depending onthe various data sour
es. A gene view and a GO term view allow for the sear
h of potential GO termsatta
hed to a given gene, and genes that potentially belong to a given GO term.Availability http://atg
.lirmm.fr/plasmo_draft/
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Ba
kgroundMalaria is one of the most prevalent disease in the world, infe
ting 400 million people every year,and 
ausing 2.7 million deaths, mainly 
hildren under 5 years [1℄. Plasmodium fal
iparum, themain 
ausative agent of this parasiti
 disease, develops drug resistan
e and no e�e
tive va

ine isavailable. Of the 5 484 
oding genes of P. fal
iparum (http://plasmodb.org version 5.4), about 60%do not have su�
ient similarity to proteins in other organisms to warrant provision of fun
tionalassignments. Thus, two-thirds of the proteins appear to be spe
i�
 to P. fal
iparum, a mu
hhigher proportion than observed in other eukaryotes [2℄. However, this is likely exa
erbated by thehigh evolutionary distan
e between P. fal
iparum and other sequen
ed eukaryotes, so homologydete
tion is a hard task. Be
ause of the extreme AT bias (80%), the high amino a
id bias (six aminoa
ids a

ount for more than 50% of the protein 
omposition) and the presen
e of a large numberof low 
omplexity repeat regions that are believed to form non-globular segments [3℄, standardsequen
e 
omparison methods based on BLAST [4℄ or HMMER [5℄ may be ine�e
tive [6℄. Non-homology methods are thus needed to obtain fun
tional 
lues for these un
hara
terized genes [7℄.Methods based on post-genomi
 data (mainly gene expression and protein intera
tion) havebeen proposed. These are 
ommonly 
alled Guilt by Asso
iation (GBA) methods. Contrary tosequen
e homology whi
h involves inter-spe
ies annotation transfers, i.e. genes 
hara
terized inother spe
ies are used to annotate genes of the newly sequen
ed genome, GBA approa
hes involveintra-spe
ies annotation transfers: the genes already 
hara
terized in the genome, e.g. by wetexperiments or using sequen
e homology, are used for the annotation of the other genes (guilt byasso
iation prin
iple). Gene expression data are often used, sin
e genes with similar trans
riptomi
pro�les likely share 
ommon fun
tional roles [8, 9℄. In the same way, protein intera
tion data arealso used sin
e proteins that share 
ommon intera
tors likely share 
ommon fun
tions [10�12℄.These methods provide fun
tional predi
tions for the un
hara
terized genes, and new 
lues to be
ompared with the predi
tions a
hieved by homology.Part of these new post-genomi
 methods work in a non-supervised way: �rst a gene 
lusteringalgorithm is run on the post-genomi
 data to 
luster the genes into several groups. Then, in ea
h
luster and for ea
h potential fun
tion, a statisti
al test is applied to 
ompare the proportion ofgenes annotated with this fun
tion in the 
luster with that in the 
omplete set of genes. Fun
tionsthat appear to be over-represented in one 
luster are used to annotate the un
hara
terized genesthat belong to this 
luster. Several genome-s
ale studies have been 
ondu
ted on the basis of thisprin
iple, e.g. [8, 13, 14℄.Some other GBA methods work in a supervised way: �rst, based on the post-genomi
 dataof already 
hara
terized genes, a supervised learning algorithm is run to learn a predi
tor, i.e. afun
tion that takes post-genomi
 measurements of a given gene as input, and outputs one or severalfun
tional predi
tions for that gene. This predi
tor is then used to annotate the un
hara
terizedgenes. Typi
al examples of this approa
h are, e.g. [11, 15, 16℄. Zhou et al. [17℄ presented OPI, asupervised method that predi
ts Gene Ontology annotations on the basis of gene expression pro�lesand was applied on P. fal
iparum. Alternative methods work in a semi-supervised way [18℄; theseuse gene 
lustering as in the non-supervised approa
h, but 
lustering is not fully unsupervised asthe fun
tion of the already 
hara
terized genes is used to de�ne the 
lusters.In this paper, we present PlasmoDraft, a database of Gene Ontology (GO) annotation predi
-tions a
hieved by applying a GBA predi
tor named Gonna (forGene Ontology Nearest Neighbor Ap-proa
h) on several trans
riptome (mi
roarray), proteome (mass-spe
trometry) and protein-proteinintera
tion data for P. fal
iparum. The Gonna system involves: (1) a supervised k-nearest-neighborpredi
tor that proposes predi
tions on the basis of ea
h data sour
e; (2) a 
ross-validation pro-
edure that estimates the 
on�den
e of the predi
tions a
hieved with ea
h data sour
e; (3) apro
edure that 
ombines the results a
hieved with the di�erent data sour
es to estimate a global
on�den
e value of ea
h predi
tion for ea
h gene. The PlasmoDraft database provides all of thesepredi
tions along with their 
on�den
e values in a friendly interfa
e that allows easy browsing andquerying. 2



MethodGonna proposes annotation predi
tions in the GO framework. The GO Consortium1 has devel-oped a systemati
 and standardized nomen
lature to annotate genes in terms of their asso
iatedbiologi
al pro
esses (BP), 
ellular 
omponents (CC) and mole
ular fun
tions (MF), in a spe
ies-independent manner. Ea
h ontology des
ribes generalization relationships between hundreds ofterms. The most general term is at the top of the ontology, while the bottom terms are the mostspe
i�
 ones. A gene may be annotated with several GO terms of the same ontology. Moreover,due to the generalization relationship, when a gene is annotated with a term t, then it is alsoannotated with all upper terms that generalize t (a prin
iple known as the �true path rule� in GO
ontext). In PlasmoDraft, the spe
i�
ity of a term is evaluated by its prior probability, i.e. theproportion of already 
hara
terized genes of P. fal
iparum that belong to this term. In this way,the leaves of the ontologies are the most spe
i�
 terms with low prior probabilities, while the rootof the ontology is the most 
ommon term with a prior probability of 1. Gonna uses the GO an-notations available on PlasmoDB and provided by GeneDB as prior knowledge database to proposenew annotations. The GO 
onsortium distinguishes between 
urator-assigned annotations andautomati
ally-assigned annotations. Curator-assigned annotations involve annotations that 
omefrom experimental data (GO eviden
e 
odes IDA, IPI, et
.), or that have been inferred by sequen
esimilarity and 
urated by an expert (GO eviden
e 
ode ISS). Automati
ally-assigned annotationsinvolve all ele
troni
ally inferred annotations (usually by sequen
e similarity) that have not beenreviewed by an expert (GO eviden
e 
ode IEA). Here, due to the s
ar
ity of the 
urator-assignedannotations for P. fal
iparum (∼ 60% annotations possess IEA eviden
e 
ode only), all availableGO annotations are 
onsidered, without regard to their eviden
e 
ode (this 
hoi
e is further dis-
ussed below). Every gene with an annotation in the 
onsidered ontology (whatever its eviden
e
ode) is then referred as �
hara
terized�.The predi
torGonna uses a k-nearest neighbor approa
h [19℄. It takes as input two positive integers K and
K ′ ≤ K (e.g. K = 6 and K ′ = 4), one ontology (MF, BP, or CC), and one postgenomi
 datasour
e D (e.g. the mi
roarray data of [14℄). With this data sour
e, Gonna 
omputes a fun
tion SDthat measures the similarity SD(g, h) of every gene pair (g, h). For example, if D is a trans
riptomi
data set then SD measures the similarity of pro�les using the Pearson 
orrelation 
oe�
ient. Whenasked for the GO 
ategories of a gene g, Gonna uses the SD fun
tion to sear
h for the K genesalready 
hara
terized in the sele
ted ontology by GeneDB, whi
h have the highest level of similaritywith g. Then, for ea
h GO term t of the ontology, Gonna looks at these K genes, and if at least
K ′ are asso
iated with t, then g is predi
ted to be also asso
iated with t; otherwise g is not
onsidered to be in t. Note that when looking at the terms asso
iated with the neighbor genes,Gonna 
onsiders all the upper terms generalizing the dire
t annotations (i.e. all terms in the truepath rule).Some 
hoi
es are 
riti
al to insure that Gonna provides relevant and a

urate predi
tions. The�rst 
riti
al 
hoi
e is related to the similarity measure, whi
h has to 
apture the �signature� ofthe gene fun
tions in the data set at hand. When two genes appear to be similar, this shouldimply that they share 
ommon fun
tions. For trans
riptomi
 (mi
roarray) and proteomi
 (mass-spe
trometry) data, we use the Pearson 
orrelation 
oe�
ient that gives high similarity to geneswith 
orrelated trans
riptomi
/proteomi
 pro�les. Other similarity measures, as the 
lassi
alEu
lidean metri
, 
ould be possible, but the Pearson 
orrelation measure has been shown toperform well to dete
t fun
tional links in several analyses [20℄. For the protein-protein intera
tiondata, we use the Czekanovski-Di
e metri
 [21℄, whi
h gives high similarity to pairs of genes thatshare many intera
tors, and has been shown to perform well to predi
t biologi
al fun
tions [10℄.Another 
riti
al 
hoi
e is related to the K and K ′ values. K should be neither too large(else some neighbors will not be similar to the studied gene) nor too low (to avoid redu
ed, non-representative gene samples). With K ′ the problem is di�erent. If K ′ is high (
lose to K), then1http://www.geneontology.org 3



the proportion of good predi
tions is likely to be high, but only a few predi
tions 
ould be a
hievedon the most spe
i�
 terms of the ontology, and most of the predi
tions would involve the mostgeneral (and hen
e less interesting) terms. Conversely, if K ′ is low, then the proportion of goodpredi
tions de
lines, but more predi
tions are made on the most spe
i�
 terms. In PlasmoDraft,we use two pairs of parameters (K, K ′) for ea
h postgenomi
 data sour
e: one stringent pair
(K = 6, K ′ = 4) is used to a
hieve, for ea
h GO term, a �rst set of predi
tions that usually has ahigh proportion of good predi
tions (see next se
tion for an estimate of this proportion). Next, ase
ond, non-stringent pair (K = 6, K ′ = 2) is used to 
ome up with, for ea
h GO term, anotherset of predi
tions that 
annot be a
hieved with the stringent setting, but whi
h usually 
ontainsa lower proportion of good predi
tions.This k-nearest neighbor predi
tor has several appealing features. It is a dire
t and simpleimplementation of the GBA prin
iple, whi
h allows the predi
tions to be explained by exhibitingthe K ′ genes annotated by GeneDB that support ea
h predi
tion (see Figure 4). In fa
t, Gonna usesa basi
 prin
iple similar to gene expression mining tools as g:pro�ler [22℄, whi
h help users to maketheir own predi
tions. These tools sear
h for genes with expression pro�le 
orrelated with that ofthe studied gene, look for GO terms enri
hed in the neighboring gene list, and then predi
t thesele
ted GO terms for the studied gene. Gonna 
an thus be viewed as a systemati
 and automati
implementation of this natural prin
iple, 
ombined with 
on�den
e estimation and data sour
eaggregation (see below). Moreover, Gonna 
an be used with any present and future postgenomi
data sour
e, as long as there is a relevant similarity measure. Next, Gonna is 
onsistent with thestru
ture of the ontology. This important property means that if any gene is predi
ted in a GOterm t, then it must be predi
ted in all terms that generalize t. Finally, Gonna has low 
omputingtime, whi
h enables intensive use of the 
ross-validation pro
edure to assess the 
on�den
e of thepredi
tions.Assessing the predi
tionsCross-validation (CV) is a well known pro
edure to estimate the error rate of supervised 
lassi�-
ation methods [19℄. The leave-one-out version of CV, whi
h we use here, involves: (1) runningGonna on ea
h gene already 
hara
terized in GeneDB as if it were an un
hara
terized gene, and (2)
omparing the predi
tions to the true annotations. Sin
e no fun
tional information on this gene issupplied to Gonna for the predi
tions, this pro
edure provides an unbiased estimate of the methodperforman
e [19℄. For a given GO term t, the 
orre
t predi
tions in CV involve the genes predi
tedin t, whi
h are already annotated by this term in GeneDB (or by a spe
ialization of t, 
f. the truepath rule); the wrong predi
tions involve the genes predi
ted in t whi
h are already annotated inthe ontology under 
onsideration (MF, BP, or CC) but not with t (or one of its spe
ializations).Genes without any annotation in the sele
ted ontology are not taken into a

ount. It is 
onvenientto present all of these quantities in tabular form:predi
ted in not predi
ted inannotated with pa nanot annotated with pn nnFor example, pa denotes the number of genes predi
ted in the GO term t whi
h are annotatedwith t in GeneDB, while nn denotes the number of genes not annotated with t whi
h have not beenpredi
ted in t in CV. Then, the True Dis
overy Rate (TDR) asso
iated with this GO term (andfor a given data sour
e) is estimated by

TDR = pa/(pa + pn). (1)For example, a GO term with a TDR of 80% means that when Gonna predi
ts that a gene belongsto this term, this predi
tion has 80% 
han
e of being 
orre
t. Note that due to the in
ompletenessof the annotations, the above formula may be a 
onservative estimate of the TDR, be
ause somepredi
tions 
onsidered as wrong may a
tually be 
orre
t. Moreover, when the sample size (pa+pn)4



is low, this TDR estimate may not be fully a

urate. So, we also 
ompute the p-value of a
hievingby 
han
e pa or more 
orre
t predi
tions (among pa + pn) if the true TDR were equal to the priorprobability of the term. If this p-value is higher than 5%, then the TDR is not 
onsidered to besigni�
antly higher than the prior probability. PlasmoDraft reports the TDRs of the predi
tionswith a 
olor 
ode that ranges from red (0%) to light green (100%) via yellow (50%), while non-signi�
ant TDRs appear in gray (
f Figure 1).As des
ribed above, two sets of predi
tions are a
hieved for ea
h GO term and data sour
eusing two parameters K ′. Therefore, one TDR is estimated for ea
h of these sets: the �rst TDRreports the a

ura
y of the predi
tions a
hieved with the stringent predi
tor, while the se
ondTDR reports the a

ura
y of the predi
tions a
hieved with the non-stringent predi
tor but whi
hare not supported by the stringent one. As expe
ted, the �rst TDR is usually higher than these
ond one. When neither the stringent predi
tor nor the non-stringent one apply, the gene is saidto be �non predi
ted in t�.The advantage of estimating the TDR of ea
h GO term rather than estimating a global per-forman
e on the whole ontology is that it allows to di�erentiate GO terms that appear well suitedfor applying a GBA approa
h with the 
onsidered data sour
e. Indeed, all GO terms 
annot bepredi
ted with the same a

ura
y. First be
ause some terms are more general than others (andthus are a priori more likely). But also be
ause some fun
tions (GO terms) have a more apparentsignature than others in the 
onsidered data sour
e. For example, while they have a similar priorprobability (∼ 10%), GO terms antigeni
 variation (GO:0020033) and post-translationalprotein modifi
ation (GO:0043687) get 90% and 15% TDRs with the mi
roarray data of [14℄,respe
tively.Combining the data sour
esWhen ea
h data sour
e has been used to produ
e predi
tions, and TDRs have been estimated forea
h GO term and ea
h sour
e, Gonna 
ombines all of these results to propose a Global Degree ofBelief (GDB) for ea
h predi
tion. If gene g has been predi
ted to be asso
iated with GO term tby one or several sour
es, Gonna 
omputes the GDB of this predi
tion in the following way. Let
1, . . . , n and n + 1, . . . , m denote the data sour
es that support, and do no support, the predi
tionof g in t, respe
tively. We use the notation di and ¬dj to indi
ate that data sour
es i and j supportand do not support the predi
tion of g in t, respe
tively. We �rst 
ompute a global 
on�den
es
ore that is a rough estimate of the probability that the predi
tion is 
orre
t, given that it issupported by data sour
es 1, . . . , n but not by data sour
es n + 1, . . . , m. Using Bayes theorem,this probability 
an be written as

P (t|d1, . . . , dn,¬dn+1, . . . ,¬dm) =
P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t) × P (t)

P (d1, . . . , dn,¬dn+1, . . . ,¬dm)
.

P (t) is the prior probability of term t (estimated by the proportion of already 
hara
terized genesof P. fal
iparum that belong to t). P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t) is the probability that datasour
es 1, . . . , n and data sour
es n + 1, . . . , m support and do not support the predi
tion of gin t when g belongs to t, respe
tively. We use the 
onditional independen
e assumption [19℄ toestimate this latter term and the probability P (d1, . . . , dn,¬dn+1, . . . ,¬dm):
P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t) ≃ P (d1|t) × · · · × P (dn|t) ×

P (¬dn+1|t) × · · · × P (¬dm|t),

P (d1, . . . , dn,¬dn+1, . . . ,¬dm|¬t) ≃ P (d1|¬t) × · · · × P (dn|¬t) ×

P (¬dn+1|¬t) × · · · × P (¬dm|¬t),and
P (d1, . . . , dn,¬dn+1, . . . ,¬dm) = P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t)P (t) +

P (d1, . . . , dn,¬dn+1, . . . ,¬dm|¬t)P (¬t).5



Terms P (di|t), P (¬di|t), P (di|¬t), and P (¬di|¬t) are estimated with the quantities 
omputedin the CV and presented in a tabular way in the previous se
tion. For example, P (di|t) is theprobability that data sour
e i supports t when the gene belongs to t; it is estimated by the ratio
pa/(pa + na). P (¬di|¬t) is the probability that data sour
e i does not support t when the genedoes not belongs to t; it is estimated with nn/(pn + nn).Thus, from the three above equations, the 
onditional probability of t 
an be roughly estimatedand it 
onstitutes our global 
on�den
e s
ore. This s
ore re�e
ts the likelihood of the predi
tions:genes with high (near 1) 
on�den
e s
ores are more likely to be asso
iated with t than genes withlow (near 0) 
on�den
e s
ores. However, due to the independen
e assumption, this s
ore 
annot beinterpreted as the probability of t. Hen
e, it is dis
retized in 4 s
ore 
ategories (very low [0.0, 0.25],low ]0.25, 0.5], high ]0.5, 0.75], and very high ]0.75, 1.0]). The true dis
overy rate asso
iated withea
h 
ategory is estimated by way of a last 
ross-validation pro
edure: this is done by 
omputingthe proportion of su

esses among already 
hara
terized genes that have been predi
ted in the
onsidered GO term with a 
on�den
e s
ore in this 
ategory. These 
ross-validated true dis
overyrates then represent our GDB. For example, a predi
tion asso
iated with a GDB of 80% meansthat 80% of the predi
tions belonging to the same s
ore 
ategory in this GO term are 
orre
tin the CV pro
edure. As for the TDRs, we also 
ompute the p-value of the GDBs. If this p-value is higher than 5%, then the GDB is not 
onsidered to be signi�
antly higher than the priorprobability of the term, and it appears in gray in PlasmoDraft.The dis
retization pro
edure we use, sometimes known as the equal interval width method,
ould be repla
ed by other methods, su
h as the equal frequen
y interval method or more sophis-ti
ated methods based on entropy minimization [23℄. However, it is a 
lassi
al and simple methodthat has shown to give good performan
e on numerous data sets [24℄.The independen
e assumption is often used in statisti
al ma
hine learning, and forms thebasis of the "naive Bayes" predi
tor, whi
h was shown to be fairly a

urate in a number ofappli
ations [19℄. One interesting feature of this predi
tor (and hen
e of the GDB) is that it isnot mu
h a�e
ted by irrelevant or poor quality data sour
es [25℄. Indeed, when a sour
e i is notrelevant for a spe
i�
 GO term t, either be
ause it has not been designed for s
reening this typeof information or be
ause of the poor quality of the data, terms P (di|t) and P (di|¬t) tend tobe equal. Therefore, the numeri
al quantities related to this data sour
e tend to 
an
el in thenumerator and denominator parts of the 
on�den
e s
ore. This prevents the GDB from pollutionby irrelevant or too noisy data sour
es.ResultsThe Gonna system has been applied to almost all postgenomi
 data sour
es available to date (seebelow) to produ
e the PlasmoDraft database. The Gene Ontology �le (revision 5.754) and thegene annotations �le (revision 1.54) were downloaded from the GO website.The data usedTo produ
e the PlasmoDraft database, Gonna has been applied to most publi
ly available postge-nomi
 data sour
es we were aware. 9 trans
riptomi
 (mi
roarray), 1 proteomi
 (mass-spe
trometry),and 1 protein-protein intera
tion data sets were used. Below is a short des
ription of ea
h dataset, indexed by the name used in PlasmoDraft.

• LE03: Le Ro
h et al. (2003) data set [14℄. A trans
riptomi
 data set that 
overs 9 stagesof the entire 
y
le of strain 3D7: 6 asexual intraerythro
yti
 stages, plus the merozoite,gameto
yte, and salivary gland sporozoite stages. Measurements for ∼ 5 100 genes.
• YO3D7: Young et al. (2005) data set [26℄. A trans
riptomi
 data set that 
overs the sexualdevelopmental 
y
le (gameto
ytes) of strain 3D7. Measurements for ∼ 5 100 genes.
• YONF54: Young et al. (2005) data set [26℄. Same data set as YO3D7, for strain NF54.6



• LLHB3: Llinas et al. (2006) data set [27, 28℄. A trans
riptomi
 data set that 
overs 48 h ofthe intraerythro
yti
 developmental 
y
le of strain HB3. Measurements for ∼ 4 200 genes.
• LLDd2: Llinas et al. (2006) data set [28℄. Same data set as LLHB3, for strain Dd2.
• LL3D7: Llinas et al. (2006) data set [28℄. Same data set as LLHB3, for strain 3D7.
• DA06: Dahl et al. (2006) data set [29℄. A trans
riptomi
 data set that 
overs two 48 h life
y
les of doxy
y
lin treated parasites. Measurements for ∼ 5 300 genes.
• SH07: Sho
k et al. (2007) data set [30℄. A trans
riptomi
 data set analysing mRNA de
ayduring the intraerythro
yti
 developmental 
y
le. Measurements for ∼ 5 300 genes.
• LE07: A trans
riptomi
 data set analysing the parasite response to 
holine analog T4 duringthe intraerythro
yti
 life 
y
le. See series GSE4582 in the NCBI Gene Expression Omnibus2.Measurements for ∼ 5 100 genes.
• LE04: Le Ro
h et al. (2004) data set [31, 32℄. A proteomi
 data set that 
overs 7 stagesof the entire 
y
le of strain 3D7: the ring, trophozoite, s
hizont, merozoite, gameto
yte,gamete, and salivary gland sporozoite stages. Measurements for ∼ 2 900 genes.
• LA05: LaCount et al. (2005) data set [33℄. A protein-protein intera
tion data set. Measure-ments for ∼ 1 300 genes.A

essing the databaseUsers 
an a

ess the predi
tions by browsing the database or querying for a spe
i�
 gene, GOterm, or keyword. Results are displayed using three types of views: a global view, a gene view,and a GO term view. In ea
h view, TDRs and GDBs are represented with a 
olor 
ode thatranges from red (0%) to light green (100%) via yellow (50%); non-signi�
ant TDRs or GDBs (seeMethod) are in gray.The global views: There is one global view for ea
h gene ontology (Mole
ular Fun
tion, Biologi
alPro
ess, and Cellular Component). A global view (see Figure 1) shows all GO terms of the sele
tedontology where predi
tions are made. These are represented in a hierar
hi
al way whi
h respe
tsthe ontology stru
ture. Ea
h term is followed by its prior probability, the best GDB found for agene predi
ted in this term, and the best TDR asso
iated with ea
h data sour
e for this term.The GO term view: The GO term views show all genes that are predi
ted in any given term byGonna (see Figure 2). Two views are available for ea
h GO term: one for un
hara
terized genesthat have no annotation in GeneDB for the ontology at hand, and the other one for genes thatare already annotated in this ontology in GeneDB (but not obligatory with this term). For thelatter, a '+' symbol after the gene name indi
ates that the gene is already annotated by theterm. Additional information about predi
tions is provided by 
li
king on a spe
i�
 TDR. Thisopens a new window presenting the K genes that support, or do not support, the predi
tion forthe 
orresponding data sour
e, along with their asso
iated pro�les (for the trans
riptomi
 andproteomi
 sour
es, see Figure 4). A link towards the Amigo website allows the user to qui
klyretrieve additional information on this term.The gene view: The gene view displays the di�erent GO terms that are predi
ted for ea
h geneby Gonna. These terms are shown in a hierar
hi
al way whi
h follows the ontology stru
ture(see Figure 3). There are three gene views for ea
h gene, whi
h 
orrespond to the three GOontologies. Ea
h term is followed by its prior probability, the GDB of the predi
tion, and theTDRs asso
iated with all data sour
es that support it. Moreover, for genes that already possessGeneDB annotations in the sele
ted ontology, a '+' symbol after the term name indi
ates that thisterm already annotates this gene in GeneDB. As for the term view, 
li
king on a spe
i�
 TDRopens a new window that provides additional information about the 
orresponding predi
tion. A2http://www.n
bi.nlm.nih.gov/geo 7



link to PlasmoDB allows the user to qui
kly retrieve additional information on this gene. Note thatTDRs and GDBs asso
iated with the terms usually in
rease when s
rolling toward the top of theontology, be
ause the prior probabilities of the terms in
rease. However, they may also de
reasesometimes: If a GO term t is a generalization of one term t′ with a good postgenomi
 signature(high TDR) and one term t′′ with a poor signature (low TDR), genes predi
ted in t′′ may havean unfavorable impa
t on the TDR estimation of t whi
h may be lower than that of t′.Dis
ussionAnnotation qualityQuantity and quality of the available annotations used in the prior knowledge database to gen-erate the predi
tions is a key point of any GBA approa
h. For P. fal
iparum, both quantity andquality are questionable. For example, in the BP ontology, of the 1799 genes (35%) possessing an-notations, only 228 (13%) have annotations with experimental eviden
e; annotations of the 1571remaining genes 
ome from sequen
e similarity with proteins of other organisms (ISS and IEAeviden
e 
odes), and for 1067 genes (68%) these annotations have IEA 
ode, indi
ating that theyhave not been reviewed by a 
urator. Moreover, of the 431 di�erent BP GO terms asso
iated withthe P. fal
iparum genes when 
onsidering all annotations, 172 (40%) are asso
iated with IEA an-notations only. For example, all annotations involving BP GO terms ATP biosyntheti
 pro
ess(GO:0006754), immune response (GO:0006955) or methylation (GO:0032259), as well as theirdes
endants terms, possess IEA 
ode only. Hen
e, we de
ided to 
onsider all available GO anno-tations when generating the PlasmoDraft database. Removing all non-
urated annotations fromthe prior knowledge database would eliminate not only numerous 
hara
terized genes, but alsonumerous GO terms, whi
h would render impossible any new predi
tion in these parts of theontology.Experiments on a well annotated organismIn these 
onditions, it was relevant to 
he
k the method on a well annotated organism, usingonly experimental eviden
e 
ode annotations as input for the predi
tions and for estimating theTDRs. To this end, we applied Gonna on the trans
riptomi
 data set published by Spellmanet al. (1998) [34℄, whi
h monitors the expression level of yeast genes along the 
ell 
y
le. Thesame parameters as for P. fal
iparum were used, i.e. neighbor genes were sele
ted using thePearson 
orrelation 
oe�
ient and we used two sets of parameters (K, K ′): (K = 6, K ′ = 4) and
(K = 6, K ′ = 2). All annotations di�erent from IEA, ISS and RCA were used, whi
h involves 4 165genes 
hara
terized in the BP ontology, and a total of 1 220 di�erent GO terms. The TDRs wereestimated for ea
h GO term by 
ross-validation. Figure 5 represents the TDRs asso
iated with allBP GO terms where predi
tions are proposed by Gonna, as a fun
tion of the prior probability ofthe terms. We see that for numerous terms, predi
tions are made with a TDR signi�
antly higherthan the prior probability of the term, whi
h shows the potential of the approa
h to de
ipherbiologi
al fun
tions from gene expression data. For 
omparison purpose, the same experiment wasa
hieved on P. fal
iparum with the time series of Bozde
h et al. (2003) [27℄ using all available BPannotations (see Figure 6). While, as expe
ted, the number of GO terms where predi
tions aremade is lower than for yeast, numerous GO terms are also predi
ted with high TDRs. Thoughthe reliability of these predi
tions 
ould depends on the prior (IEA) annotations, the similarityof Figures 5 and 6 is quite en
ouraging and shows that P. fal
iparum annotations are globally
onsistent, as they are mostly re
overed using a trans
riptomi
 data set.Contents of the databaseBy browsing the PlasmoDraft database, several predi
tions 
learly involve rare GO terms (i.e. withlow prior probability) with high TDRs or GDBs. For example, in the BP ontology, 16 un
hara
-terized genes are predi
ted in establishment of lo
alization (GO:0051234) (prior probabil-8



ity 15%, GDB 78%), 25 un
hara
terized genes are predi
ted in Rosetting (GO:0020013) (priorprobability 2%, GDB 78%), and 50 un
hara
terized genes are in Pathogenesis (GO:0009405)(prior probability 4%, GDB 75%). Similarly (but with lower GDBs), 13 un
hara
terized genes arepredi
ted in Ubiquitin-dependent protein 
ataboli
 pro
ess (GO:0006511) (prior proba-bility 2%, GDB 50%), and 12 un
hara
terized genes are in Biopolymer 
ataboli
 pro
ess(GO:0043285) (prior probability 3%, GDB 56%). Moreover the best TDRs are not always a
hievedwith the same data sour
e. For example, for the Antigeni
 variation (GO:0020033) term, theLE03 data [14℄ provides more a

urate predi
tions than the LLHB3/LLDd2/Ll3D7 series [27,28℄,may be be
ause this fun
tion has a more apparent expression signature when 
onsidering the en-tire life 
y
le of the organism. For fun
tions su
h as DNA pa
kaging (GO:0006323) however, thehighest TDR is a
hieved with the LLHB3 data set [27℄ be
ause the fun
tion is better monitoredat the 
ell 
y
le level.We estimated the amount of new information provided by PlasmoDraft in a systemati
 way.For the BP ontology, PlasmoDraft proposes signi�
ant annotations on GO terms of low priorprobability (below 25%) for 3 900 genes, among whi
h 2 434 have no BP annotations in GeneDB.With CC and MF ontologies, 1 905 and 1 540 un
hara
terized genes are annotated by Plasmo-Draft on low prior probability GO terms, respe
tively. The interest of these annotations of 
oursedepends on the asso
iatedGDB. Thus, given a GDB threshold (e.g. 75%) and an ontology, for ea
hun
hara
terized gene in this ontology we sear
hed the GO term with the lowest prior probabilitywherein the gene is predi
ted with a statisti
ally signi�
ant GDB above the threshold. Figure 7summarizes these results on the three ontologies. From this �gure we see, for example, that forthe BP ontology 290 un
hara
terized genes in GeneDB are predi
ted with a GDB above 75% (red
urve) on a GO term with a prior probability below 0.10. In the same manner, above 1 025un
hara
terized genes are predi
ted with a GDB above 50% (blue 
urve) on a GO term with aprior probability below 0.25. For the CC and MF ontologies, 740 and 329 genes are predi
tedwith a GDB above 50% on a GO term with a prior probability below 0.25, respe
tively. Notethat only genes without any annotation in GeneDB in the sele
ted ontology are 
onsidered in thismeasure, while the PlasmoDraft database also provides additional annotations for many genesthat are already annotated in this ontology.By 
omparing the results a
hieved on the di�erent ontologies, we see that the BP ontologyprovides the best results. This is not surprising, as the signature dete
ted in the postgenomi
 databy GBA methods are mostly 
hara
teristi
 of biologi
al pro
esses [8℄. However, by an informationpropagation phenomenon, the BP signatures may sometimes help for predi
ting annotations inthe two other ontologies. This happens, for example, when many genes with a given mole
ularfun
tion (or exported in a parti
ular 
ellular 
omponent) are involved in a biologi
al pro
ess with astrong signature. For example, GO term host 
ell plasma membrane (GO:0020002) in the CContology is asso
iated with high GDB (72%), be
ause most genes belonging to this term are alsoasso
iated with the biologi
al pro
ess Defense response (GO:0006952)whi
h is well re
ognized.A similar approa
h 
an be used to estimate the amount of new information provided by ea
hdata sour
e independently. For example, Figure 8 reports the number of un
hara
terized genes inthe BP ontology that 
an be annotated with a TDR above 75%, 50% and 25% by the trans
riptomi
data of Bozde
h et al. (2003) [27℄, and by the intera
tomi
 data of LaCount et al. (2005) [33℄. Forexample, we 
an see that more than 73 are asso
iated with a GO term of prior probability below
10% with a TDR above 50% using the trans
riptomi
 data, while 10 genes only are predi
ted withthe same thresholds using intera
tomi
 data. This indi
ates that the intera
tome tends to provideless fun
tional signal than the trans
riptome, partly be
ause less genes are monitored.Assessment of the GDBsTDRs and GDBs are estimated by 
ross-validation by applying Gonna on the already 
hara
terizedgenes. This pro
edure produ
es unbiased estimates of the method a

ura
y, provided that theun
hara
terized genes share approximately the same distribution as the 
hara
terized ones [19℄.However, sin
e TDRs and GDBs are sometimes estimated on small numbers of predi
tions, usersshould be aware that for some spe
i�
 GO terms, the a

ura
y on the un
hara
terized genes9



may di�er from the reported TDRs and GDBs. Nonetheless, these measures provide valuableindi
ations on the potential fun
tions of genes by pointing out the most likely GO terms. Toassess this point, we 
ompared the PlasmoDraft predi
tions proposed for the un
hara
terizedgenes to the annotations of their homologous genes in yeast when these are known. We looked onthe 986 genes without BP annotations that have been predi
ted with high GDB (above 50%) onspe
i�
 BP terms (prior probability below 25%). As expe
ted, few genes among these 986 
an beasso
iated with a 
hara
terized orthologous gene in S. 
erevisiae. However, a re
ipro
al best hitpro
edure using BLASTP with an e-value 
uto� of 10−5 allows to �nd S. 
erevisiae orthologuesfor 141 genes. Among these 141 orthologous pairs, 63 (45%) have �
on
ordant� annotations withthe high GDB predi
tions. Here we 
onsider that annotations are 
on
ordant if at least half of theterms with prior probability below 25% are shared by the S. 
erevisiae orthologue. As expe
ted,this proportion de
reases when using PlasmoDraft predi
tions with lower GDBs. For example,
2 271 genes without BP annotations are predi
ted with a GDB between 25% and 50% on a GOterm with prior probability below 25%. Among these, 245 
an be asso
iated with S. 
erevisiaeorthologues by re
ipro
al best hit, and 71 (29%) have 
on
ordant annotations.Comparison with the predi
tions of Zhou et al. (2008) [35℄During the writing of this arti
le, another database [35℄ of gene fun
tion predi
tions based on theOPI method des
ribed in referen
e [17℄ was published. Brie�y, OPI is a supervised method thatworks as follows. For ea
h GO term, OPI uses a set of �seed� genes already annotated with thisterm to 
onstru
t an average expression pro�le. Next, all genes (annotated or not) are rankeda

ording to their similarity to this average pro�le and a statisti
al test is used to identify the rank
uto� that in
ludes the largest number of seed genes within the smallest 
luster size. All genesbefore this 
uto� are then 
onsidered as potentially related to the GO term under 
onsideration.The database [35℄ exploits a single new trans
riptomi
 data set 
overing all life 
y
le stages ofthe parasite and 
ombining gene expressions from both P. yoelii and P. fal
iparum. As boththe methods and data sour
es are di�erent, this database and PlasmoDraft provide di�erent and
omplementary information. OPI provides BP annotations for 1 902 di�erent genes, among whi
h
1 036 have no BP annotations in GeneDB. When looking at the PlasmoDraft predi
tions with GDBabove 50% (whi
h involves 1 111 un
hara
terized genes in BP), only 230 also have BP predi
tionsin OPI. However, when both methods propose BP predi
tions for a gene, the predi
tions are oftensimilar. Indeed, of the 230 
ommon genes, 94 have 
on
ordant predi
tions�i.e. at least half ofthe predi
tions of one of the methods involving terms with a prior probability below 25% are alsopredi
ted by the other method.Di�eren
es in spe
i�
ity of OPI and PlasmoDraft 
an also be observed by 
omparing theGDB and FDR (false dis
overy rate) estimates asso
iated with a given GO term by PlasmoDraftand OPI, respe
tively. Re
all that the GDB is a
tually the TDR asso
iated with the predi
-tor that 
ombines all data sour
es. Moreover, by de�nition, the FDR equals 1 minus the TDRon this term. While FDRs of OPI are not estimated by 
ross-validation, we 
an neverthelessget a rough idea of whi
h method provides the best results for a given GO term. For example,OPI obtains the highest TDRs on terms like Entry into host (GO:0044409), or Mito
hodrionorganization and biogenesis (GO:0007005) (∼ 90% and ∼ 30% vs. 36% and ∼ 5%), whilefor terms like Intera
tion between organisms (GO:0044419) or Rosetting (GO:0020013),PlasmoDraft obtains the best results (77% and 78% vs. 25% and no statisti
ally signi�
ant TDR).On the whole, it thus appears that the two databases use quite di�erent data sour
es and provideinteresting information on di�erent types of fun
tions and di�erent genes, so the 
ommunity willlikely bene�t from both.Con
lusionWe presented PlasmoDraft, an extensive database of GO annotation predi
tions that are a
hievedby Guilt By Asso
iation using most postgenomi
 data available to date for P. fal
iparum. All pre-10



di
tions 
ome with a 
on�den
e estimate 
omputed by 
ross-validation. The database is presentedin a friendly interfa
e that allows easy browsing and querying, and proposes high 
on�den
e an-notations for several hundreds of genes without any annotations, as well as additional annotationsfor many already 
hara
terized genes.One prospe
t is the integration of 
ompendiums of gene expression data sets as new data sour
esin PlasmoDraft. These data, obtained by 
on
atenation of several data sets of diversi�ed biolog-i
al 
onditions, have shown to often provide strong biologi
al fun
tion signatures [36℄. However,predi
tions based on these data may be di�
ult to interpret for biologists, and their integrationopens new issues in data sele
tion and 
ombination.As mentioned in the Methods, one advantage of Gonna 
on
erns its generi
ness that allows itsuse on any new data, as long as a relevant similarity measure 
an be 
omputed; a set of s
ripts thenenables regeneration of the database to integrate the new data set in a fully automated way. Thisalso holds for the GO annotations used as prior knowledge, and the new annotations providedby the 
ommunity in the future will be easily integrated. Most notably, we are aware that a
ollegiate e�ort for re-annotating P. fal
iparum proteins should provide new/
urated fun
tionalannotations in the near future. This should improve both the quantity and the quality of thePlasmoDraft predi
tions. In the same way, while in the 
urrent version of PlasmoDraft all GOannotations are 
onsidered (i.e. in
luding automati
ally-assigned annotations) due to the s
ar
ityof 
urated annotations, it is possible that the re-annotation e�ort will enable the use of only
urator-assigned annotations in the subsequent versions of PlasmoDraft. Thanks to these newadvan
es, PlasmoDraft should be
ome more and more a

urate and useful to the 
ommunity.Authors' 
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Figure 1 � An extra
t of the Biologi
al Pro
ess global view. This view presents a summary ofall of the best GDBs and TDRs that are asso
iated with ea
h GO term and data sour
e. Cli
king onany term opens the 
orresponding GO term view.
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Figure 2 � An extra
t of the predi
tions a
hieved in term �adhesion to other organism duringsymbioti
 intera
tion� (GO:0051825). The �no� entry indi
ates that the data sour
e does notsupport the predi
tion, while �-� means that no data are available in the sour
e for this gene. By
li
king on a TDR, the K 
hara
terized nearest neighbors that support/do not support this predi
tionare shown (see Figure 4). Cli
king on any gene opens the 
orresponding gene view.
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Figure 3 � An extra
t of predi
tions a
hieved for gene PFD1015
 in the BP ontology. The�no� entry indi
ates that the data sour
e does not support the predi
tion, while �-� means that no dataare available in the sour
e for this gene. By 
li
king on a TDR, the K 
hara
terized nearest neighborsthat support/do not support this predi
tion are shown (Figure 4). Cli
king on any term opens the
orresponding GO term view.

Figure 4 � The neighbors view. Pro�les of the K nearest 
hara
terized neighbors that sup-port (white), or does not support (gray), the predi
tion of gene PFL0020w in term Adhesion toother organism during symbioti
 intera
tion (GO:0051825) for the Lero
h et al. (2003)data sour
e [14℄. For 
omparison purpose, pro�les of the K nearest un
hara
terized neighbors (yellow)are also reported. 17
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S. cerevisiae − Spellman et al.

Figure 5 � Gonna performan
e on yeast. Gonnawas applied to the trans
riptomi
 data set publishedby Spellman et al. (1998) [34℄ using experimental eviden
e 
ode annotations only as prior knowledgedatabase. TDRs of all BP GO terms where predi
tions are proposed by Gonna are plotted as a fun
tionof the prior probability of the terms. Red and bla
k points indi
ate signi�
ant and non-signi�
antTDRs, respe
tively.
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P. falciparum − Bozdech et al.

Figure 6 � Gonna performan
es on the trans
riptomi
 data set published in Bozde
h et al.(2003) [27℄. TDRs of all BP GO terms where predi
tions are proposed by Gonna are plotted asa fun
tion of the prior probability of the terms. Red and bla
k points indi
ate signi�
ant and non-signi�
ant TDRs, respe
tively.
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Figure 7 � Estimate of the amount of new information supplied in PlasmoDraft. Estimatesfor the BP (up) CC (middle) and MF (down) ontologies. Red, blue and green lines represent theresults a
hieved with GDB thresholds of 75%, 50% and 25%, respe
tively. The x-axis gives the priorprobabilities of the terms, while the y-axis (in log s
ale) reports the number of un
hara
terized genesin the ontology that have been predi
ted with a GDB above the threshold, on a GO term with priorprobability below x. 20
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Figure 8 � Estimate of the amount of new information supplied by the trans
riptomi
 datasour
e of Bozde
h et al. (2003) [27℄ and the intera
tomi
 data sour
e of LaCount et al.(2005) [33℄. Red, blue and green lines represent the results a
hieved with TDR thresholds of 75%,
50% and 25%, respe
tively. The x-axis gives the prior probabilities of the terms, while the y-axis (inlog s
ale) reports the number of un
hara
terized genes in the ontology that have been predi
ted witha TDR above the threshold, on a GO term with prior probability below x.
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