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PlasmoDraft: a database of Plasmodium faliparumgene funtion preditions based on postgenomidataLaurent Bréhélin∗, Jean-François Dufayard , Olivier GasuelProjet Méthodes et Algorithmes pour la Bioinformatique (www.lirmm.fr/mab), LIRMM, Univ. Montpellier 2, CNRS;161 rue Ada, 34392 MONTPELLIER, FraneEmail: Laurent Bréhélin∗- brehelin�lirmm.fr; Jean-François Dufayard - dufayard�lirmm.fr; Olivier Gasuel -gasuel�lirmm.fr;
∗Corresponding authorAbstratBakground Of the 5 484 predited proteins of Plasmodium faliparum, the main ausative agent ofmalaria, about 60% do not have su�ient sequene similarity with proteins in other organisms to warrantprovision of funtional assignments. Non-homology methods are thus needed to obtain funtional luesfor these unharaterized genes.Method We present PlasmoDraft, a database of Gene Ontology (GO) annotation preditions for P.faliparum genes based on postgenomi data. Preditions of PlasmoDraft are ahieved with a GuiltBy Assoiation method named Gonna. This involves (1) a preditor that proposes GO annotations fora gene based on the similarity of its pro�le (measured with transriptome, proteome or interatomedata) with genes already annotated by GeneDB; (2) a proedure that estimates the on�dene of thepreditions ahieved with eah data soure; (3) a proedure that ombines all data soures to providea global summary and on�dene estimate of the preditions.Results Gonna has been applied to all P. faliparum genes using most publily available transriptome,proteome and interatome data soures. Gonna provides preditions for numerous genes without anyannotations. For example, 2 434 genes without any annotations in the Biologial Proess ontology areassoiated with spei� GO terms (e.g. Rosetting, Antigeni variation), and among these, 841 haveon�dene values above 50%. In the Cellular Component and Moleular Funtion ontologies, 1 905and 1 540 unharaterized genes are assoiated with spei� GO terms, respetively (740 and 329 withon�dene value above 50%). All preditions along with their on�dene values have been ompiledin PlasmoDraft, whih thus provides an extensive database of GO annotation preditions that anbe ahieved with these data soures. The database an be aessed in di�erent ways. A global viewallows for a quik inspetion of the GO terms that are predited with high on�dene, depending onthe various data soures. A gene view and a GO term view allow for the searh of potential GO termsattahed to a given gene, and genes that potentially belong to a given GO term.Availability http://atg.lirmm.fr/plasmo_draft/
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BakgroundMalaria is one of the most prevalent disease in the world, infeting 400 million people every year,and ausing 2.7 million deaths, mainly hildren under 5 years [1℄. Plasmodium faliparum, themain ausative agent of this parasiti disease, develops drug resistane and no e�etive vaine isavailable. Of the 5 484 oding genes of P. faliparum (http://plasmodb.org version 5.4), about 60%do not have su�ient similarity to proteins in other organisms to warrant provision of funtionalassignments. Thus, two-thirds of the proteins appear to be spei� to P. faliparum, a muhhigher proportion than observed in other eukaryotes [2℄. However, this is likely exaerbated by thehigh evolutionary distane between P. faliparum and other sequened eukaryotes, so homologydetetion is a hard task. Beause of the extreme AT bias (80%), the high amino aid bias (six aminoaids aount for more than 50% of the protein omposition) and the presene of a large numberof low omplexity repeat regions that are believed to form non-globular segments [3℄, standardsequene omparison methods based on BLAST [4℄ or HMMER [5℄ may be ine�etive [6℄. Non-homology methods are thus needed to obtain funtional lues for these unharaterized genes [7℄.Methods based on post-genomi data (mainly gene expression and protein interation) havebeen proposed. These are ommonly alled Guilt by Assoiation (GBA) methods. Contrary tosequene homology whih involves inter-speies annotation transfers, i.e. genes haraterized inother speies are used to annotate genes of the newly sequened genome, GBA approahes involveintra-speies annotation transfers: the genes already haraterized in the genome, e.g. by wetexperiments or using sequene homology, are used for the annotation of the other genes (guilt byassoiation priniple). Gene expression data are often used, sine genes with similar transriptomipro�les likely share ommon funtional roles [8, 9℄. In the same way, protein interation data arealso used sine proteins that share ommon interators likely share ommon funtions [10�12℄.These methods provide funtional preditions for the unharaterized genes, and new lues to beompared with the preditions ahieved by homology.Part of these new post-genomi methods work in a non-supervised way: �rst a gene lusteringalgorithm is run on the post-genomi data to luster the genes into several groups. Then, in eahluster and for eah potential funtion, a statistial test is applied to ompare the proportion ofgenes annotated with this funtion in the luster with that in the omplete set of genes. Funtionsthat appear to be over-represented in one luster are used to annotate the unharaterized genesthat belong to this luster. Several genome-sale studies have been onduted on the basis of thispriniple, e.g. [8, 13, 14℄.Some other GBA methods work in a supervised way: �rst, based on the post-genomi dataof already haraterized genes, a supervised learning algorithm is run to learn a preditor, i.e. afuntion that takes post-genomi measurements of a given gene as input, and outputs one or severalfuntional preditions for that gene. This preditor is then used to annotate the unharaterizedgenes. Typial examples of this approah are, e.g. [11, 15, 16℄. Zhou et al. [17℄ presented OPI, asupervised method that predits Gene Ontology annotations on the basis of gene expression pro�lesand was applied on P. faliparum. Alternative methods work in a semi-supervised way [18℄; theseuse gene lustering as in the non-supervised approah, but lustering is not fully unsupervised asthe funtion of the already haraterized genes is used to de�ne the lusters.In this paper, we present PlasmoDraft, a database of Gene Ontology (GO) annotation predi-tions ahieved by applying a GBA preditor named Gonna (forGene Ontology Nearest Neighbor Ap-proah) on several transriptome (miroarray), proteome (mass-spetrometry) and protein-proteininteration data for P. faliparum. The Gonna system involves: (1) a supervised k-nearest-neighborpreditor that proposes preditions on the basis of eah data soure; (2) a ross-validation pro-edure that estimates the on�dene of the preditions ahieved with eah data soure; (3) aproedure that ombines the results ahieved with the di�erent data soures to estimate a globalon�dene value of eah predition for eah gene. The PlasmoDraft database provides all of thesepreditions along with their on�dene values in a friendly interfae that allows easy browsing andquerying. 2



MethodGonna proposes annotation preditions in the GO framework. The GO Consortium1 has devel-oped a systemati and standardized nomenlature to annotate genes in terms of their assoiatedbiologial proesses (BP), ellular omponents (CC) and moleular funtions (MF), in a speies-independent manner. Eah ontology desribes generalization relationships between hundreds ofterms. The most general term is at the top of the ontology, while the bottom terms are the mostspei� ones. A gene may be annotated with several GO terms of the same ontology. Moreover,due to the generalization relationship, when a gene is annotated with a term t, then it is alsoannotated with all upper terms that generalize t (a priniple known as the �true path rule� in GOontext). In PlasmoDraft, the spei�ity of a term is evaluated by its prior probability, i.e. theproportion of already haraterized genes of P. faliparum that belong to this term. In this way,the leaves of the ontologies are the most spei� terms with low prior probabilities, while the rootof the ontology is the most ommon term with a prior probability of 1. Gonna uses the GO an-notations available on PlasmoDB and provided by GeneDB as prior knowledge database to proposenew annotations. The GO onsortium distinguishes between urator-assigned annotations andautomatially-assigned annotations. Curator-assigned annotations involve annotations that omefrom experimental data (GO evidene odes IDA, IPI, et.), or that have been inferred by sequenesimilarity and urated by an expert (GO evidene ode ISS). Automatially-assigned annotationsinvolve all eletronially inferred annotations (usually by sequene similarity) that have not beenreviewed by an expert (GO evidene ode IEA). Here, due to the sarity of the urator-assignedannotations for P. faliparum (∼ 60% annotations possess IEA evidene ode only), all availableGO annotations are onsidered, without regard to their evidene ode (this hoie is further dis-ussed below). Every gene with an annotation in the onsidered ontology (whatever its evideneode) is then referred as �haraterized�.The preditorGonna uses a k-nearest neighbor approah [19℄. It takes as input two positive integers K and
K ′ ≤ K (e.g. K = 6 and K ′ = 4), one ontology (MF, BP, or CC), and one postgenomi datasoure D (e.g. the miroarray data of [14℄). With this data soure, Gonna omputes a funtion SDthat measures the similarity SD(g, h) of every gene pair (g, h). For example, if D is a transriptomidata set then SD measures the similarity of pro�les using the Pearson orrelation oe�ient. Whenasked for the GO ategories of a gene g, Gonna uses the SD funtion to searh for the K genesalready haraterized in the seleted ontology by GeneDB, whih have the highest level of similaritywith g. Then, for eah GO term t of the ontology, Gonna looks at these K genes, and if at least
K ′ are assoiated with t, then g is predited to be also assoiated with t; otherwise g is notonsidered to be in t. Note that when looking at the terms assoiated with the neighbor genes,Gonna onsiders all the upper terms generalizing the diret annotations (i.e. all terms in the truepath rule).Some hoies are ritial to insure that Gonna provides relevant and aurate preditions. The�rst ritial hoie is related to the similarity measure, whih has to apture the �signature� ofthe gene funtions in the data set at hand. When two genes appear to be similar, this shouldimply that they share ommon funtions. For transriptomi (miroarray) and proteomi (mass-spetrometry) data, we use the Pearson orrelation oe�ient that gives high similarity to geneswith orrelated transriptomi/proteomi pro�les. Other similarity measures, as the lassialEulidean metri, ould be possible, but the Pearson orrelation measure has been shown toperform well to detet funtional links in several analyses [20℄. For the protein-protein interationdata, we use the Czekanovski-Die metri [21℄, whih gives high similarity to pairs of genes thatshare many interators, and has been shown to perform well to predit biologial funtions [10℄.Another ritial hoie is related to the K and K ′ values. K should be neither too large(else some neighbors will not be similar to the studied gene) nor too low (to avoid redued, non-representative gene samples). With K ′ the problem is di�erent. If K ′ is high (lose to K), then1http://www.geneontology.org 3



the proportion of good preditions is likely to be high, but only a few preditions ould be ahievedon the most spei� terms of the ontology, and most of the preditions would involve the mostgeneral (and hene less interesting) terms. Conversely, if K ′ is low, then the proportion of goodpreditions delines, but more preditions are made on the most spei� terms. In PlasmoDraft,we use two pairs of parameters (K, K ′) for eah postgenomi data soure: one stringent pair
(K = 6, K ′ = 4) is used to ahieve, for eah GO term, a �rst set of preditions that usually has ahigh proportion of good preditions (see next setion for an estimate of this proportion). Next, aseond, non-stringent pair (K = 6, K ′ = 2) is used to ome up with, for eah GO term, anotherset of preditions that annot be ahieved with the stringent setting, but whih usually ontainsa lower proportion of good preditions.This k-nearest neighbor preditor has several appealing features. It is a diret and simpleimplementation of the GBA priniple, whih allows the preditions to be explained by exhibitingthe K ′ genes annotated by GeneDB that support eah predition (see Figure 4). In fat, Gonna usesa basi priniple similar to gene expression mining tools as g:pro�ler [22℄, whih help users to maketheir own preditions. These tools searh for genes with expression pro�le orrelated with that ofthe studied gene, look for GO terms enrihed in the neighboring gene list, and then predit theseleted GO terms for the studied gene. Gonna an thus be viewed as a systemati and automatiimplementation of this natural priniple, ombined with on�dene estimation and data soureaggregation (see below). Moreover, Gonna an be used with any present and future postgenomidata soure, as long as there is a relevant similarity measure. Next, Gonna is onsistent with thestruture of the ontology. This important property means that if any gene is predited in a GOterm t, then it must be predited in all terms that generalize t. Finally, Gonna has low omputingtime, whih enables intensive use of the ross-validation proedure to assess the on�dene of thepreditions.Assessing the preditionsCross-validation (CV) is a well known proedure to estimate the error rate of supervised lassi�-ation methods [19℄. The leave-one-out version of CV, whih we use here, involves: (1) runningGonna on eah gene already haraterized in GeneDB as if it were an unharaterized gene, and (2)omparing the preditions to the true annotations. Sine no funtional information on this gene issupplied to Gonna for the preditions, this proedure provides an unbiased estimate of the methodperformane [19℄. For a given GO term t, the orret preditions in CV involve the genes preditedin t, whih are already annotated by this term in GeneDB (or by a speialization of t, f. the truepath rule); the wrong preditions involve the genes predited in t whih are already annotated inthe ontology under onsideration (MF, BP, or CC) but not with t (or one of its speializations).Genes without any annotation in the seleted ontology are not taken into aount. It is onvenientto present all of these quantities in tabular form:predited in not predited inannotated with pa nanot annotated with pn nnFor example, pa denotes the number of genes predited in the GO term t whih are annotatedwith t in GeneDB, while nn denotes the number of genes not annotated with t whih have not beenpredited in t in CV. Then, the True Disovery Rate (TDR) assoiated with this GO term (andfor a given data soure) is estimated by

TDR = pa/(pa + pn). (1)For example, a GO term with a TDR of 80% means that when Gonna predits that a gene belongsto this term, this predition has 80% hane of being orret. Note that due to the inompletenessof the annotations, the above formula may be a onservative estimate of the TDR, beause somepreditions onsidered as wrong may atually be orret. Moreover, when the sample size (pa+pn)4



is low, this TDR estimate may not be fully aurate. So, we also ompute the p-value of ahievingby hane pa or more orret preditions (among pa + pn) if the true TDR were equal to the priorprobability of the term. If this p-value is higher than 5%, then the TDR is not onsidered to besigni�antly higher than the prior probability. PlasmoDraft reports the TDRs of the preditionswith a olor ode that ranges from red (0%) to light green (100%) via yellow (50%), while non-signi�ant TDRs appear in gray (f Figure 1).As desribed above, two sets of preditions are ahieved for eah GO term and data soureusing two parameters K ′. Therefore, one TDR is estimated for eah of these sets: the �rst TDRreports the auray of the preditions ahieved with the stringent preditor, while the seondTDR reports the auray of the preditions ahieved with the non-stringent preditor but whihare not supported by the stringent one. As expeted, the �rst TDR is usually higher than theseond one. When neither the stringent preditor nor the non-stringent one apply, the gene is saidto be �non predited in t�.The advantage of estimating the TDR of eah GO term rather than estimating a global per-formane on the whole ontology is that it allows to di�erentiate GO terms that appear well suitedfor applying a GBA approah with the onsidered data soure. Indeed, all GO terms annot bepredited with the same auray. First beause some terms are more general than others (andthus are a priori more likely). But also beause some funtions (GO terms) have a more apparentsignature than others in the onsidered data soure. For example, while they have a similar priorprobability (∼ 10%), GO terms antigeni variation (GO:0020033) and post-translationalprotein modifiation (GO:0043687) get 90% and 15% TDRs with the miroarray data of [14℄,respetively.Combining the data souresWhen eah data soure has been used to produe preditions, and TDRs have been estimated foreah GO term and eah soure, Gonna ombines all of these results to propose a Global Degree ofBelief (GDB) for eah predition. If gene g has been predited to be assoiated with GO term tby one or several soures, Gonna omputes the GDB of this predition in the following way. Let
1, . . . , n and n + 1, . . . , m denote the data soures that support, and do no support, the preditionof g in t, respetively. We use the notation di and ¬dj to indiate that data soures i and j supportand do not support the predition of g in t, respetively. We �rst ompute a global on�denesore that is a rough estimate of the probability that the predition is orret, given that it issupported by data soures 1, . . . , n but not by data soures n + 1, . . . , m. Using Bayes theorem,this probability an be written as

P (t|d1, . . . , dn,¬dn+1, . . . ,¬dm) =
P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t) × P (t)

P (d1, . . . , dn,¬dn+1, . . . ,¬dm)
.

P (t) is the prior probability of term t (estimated by the proportion of already haraterized genesof P. faliparum that belong to t). P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t) is the probability that datasoures 1, . . . , n and data soures n + 1, . . . , m support and do not support the predition of gin t when g belongs to t, respetively. We use the onditional independene assumption [19℄ toestimate this latter term and the probability P (d1, . . . , dn,¬dn+1, . . . ,¬dm):
P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t) ≃ P (d1|t) × · · · × P (dn|t) ×

P (¬dn+1|t) × · · · × P (¬dm|t),

P (d1, . . . , dn,¬dn+1, . . . ,¬dm|¬t) ≃ P (d1|¬t) × · · · × P (dn|¬t) ×

P (¬dn+1|¬t) × · · · × P (¬dm|¬t),and
P (d1, . . . , dn,¬dn+1, . . . ,¬dm) = P (d1, . . . , dn,¬dn+1, . . . ,¬dm|t)P (t) +

P (d1, . . . , dn,¬dn+1, . . . ,¬dm|¬t)P (¬t).5



Terms P (di|t), P (¬di|t), P (di|¬t), and P (¬di|¬t) are estimated with the quantities omputedin the CV and presented in a tabular way in the previous setion. For example, P (di|t) is theprobability that data soure i supports t when the gene belongs to t; it is estimated by the ratio
pa/(pa + na). P (¬di|¬t) is the probability that data soure i does not support t when the genedoes not belongs to t; it is estimated with nn/(pn + nn).Thus, from the three above equations, the onditional probability of t an be roughly estimatedand it onstitutes our global on�dene sore. This sore re�ets the likelihood of the preditions:genes with high (near 1) on�dene sores are more likely to be assoiated with t than genes withlow (near 0) on�dene sores. However, due to the independene assumption, this sore annot beinterpreted as the probability of t. Hene, it is disretized in 4 sore ategories (very low [0.0, 0.25],low ]0.25, 0.5], high ]0.5, 0.75], and very high ]0.75, 1.0]). The true disovery rate assoiated witheah ategory is estimated by way of a last ross-validation proedure: this is done by omputingthe proportion of suesses among already haraterized genes that have been predited in theonsidered GO term with a on�dene sore in this ategory. These ross-validated true disoveryrates then represent our GDB. For example, a predition assoiated with a GDB of 80% meansthat 80% of the preditions belonging to the same sore ategory in this GO term are orretin the CV proedure. As for the TDRs, we also ompute the p-value of the GDBs. If this p-value is higher than 5%, then the GDB is not onsidered to be signi�antly higher than the priorprobability of the term, and it appears in gray in PlasmoDraft.The disretization proedure we use, sometimes known as the equal interval width method,ould be replaed by other methods, suh as the equal frequeny interval method or more sophis-tiated methods based on entropy minimization [23℄. However, it is a lassial and simple methodthat has shown to give good performane on numerous data sets [24℄.The independene assumption is often used in statistial mahine learning, and forms thebasis of the "naive Bayes" preditor, whih was shown to be fairly aurate in a number ofappliations [19℄. One interesting feature of this preditor (and hene of the GDB) is that it isnot muh a�eted by irrelevant or poor quality data soures [25℄. Indeed, when a soure i is notrelevant for a spei� GO term t, either beause it has not been designed for sreening this typeof information or beause of the poor quality of the data, terms P (di|t) and P (di|¬t) tend tobe equal. Therefore, the numerial quantities related to this data soure tend to anel in thenumerator and denominator parts of the on�dene sore. This prevents the GDB from pollutionby irrelevant or too noisy data soures.ResultsThe Gonna system has been applied to almost all postgenomi data soures available to date (seebelow) to produe the PlasmoDraft database. The Gene Ontology �le (revision 5.754) and thegene annotations �le (revision 1.54) were downloaded from the GO website.The data usedTo produe the PlasmoDraft database, Gonna has been applied to most publily available postge-nomi data soures we were aware. 9 transriptomi (miroarray), 1 proteomi (mass-spetrometry),and 1 protein-protein interation data sets were used. Below is a short desription of eah dataset, indexed by the name used in PlasmoDraft.

• LE03: Le Roh et al. (2003) data set [14℄. A transriptomi data set that overs 9 stagesof the entire yle of strain 3D7: 6 asexual intraerythroyti stages, plus the merozoite,gametoyte, and salivary gland sporozoite stages. Measurements for ∼ 5 100 genes.
• YO3D7: Young et al. (2005) data set [26℄. A transriptomi data set that overs the sexualdevelopmental yle (gametoytes) of strain 3D7. Measurements for ∼ 5 100 genes.
• YONF54: Young et al. (2005) data set [26℄. Same data set as YO3D7, for strain NF54.6



• LLHB3: Llinas et al. (2006) data set [27, 28℄. A transriptomi data set that overs 48 h ofthe intraerythroyti developmental yle of strain HB3. Measurements for ∼ 4 200 genes.
• LLDd2: Llinas et al. (2006) data set [28℄. Same data set as LLHB3, for strain Dd2.
• LL3D7: Llinas et al. (2006) data set [28℄. Same data set as LLHB3, for strain 3D7.
• DA06: Dahl et al. (2006) data set [29℄. A transriptomi data set that overs two 48 h lifeyles of doxyylin treated parasites. Measurements for ∼ 5 300 genes.
• SH07: Shok et al. (2007) data set [30℄. A transriptomi data set analysing mRNA deayduring the intraerythroyti developmental yle. Measurements for ∼ 5 300 genes.
• LE07: A transriptomi data set analysing the parasite response to holine analog T4 duringthe intraerythroyti life yle. See series GSE4582 in the NCBI Gene Expression Omnibus2.Measurements for ∼ 5 100 genes.
• LE04: Le Roh et al. (2004) data set [31, 32℄. A proteomi data set that overs 7 stagesof the entire yle of strain 3D7: the ring, trophozoite, shizont, merozoite, gametoyte,gamete, and salivary gland sporozoite stages. Measurements for ∼ 2 900 genes.
• LA05: LaCount et al. (2005) data set [33℄. A protein-protein interation data set. Measure-ments for ∼ 1 300 genes.Aessing the databaseUsers an aess the preditions by browsing the database or querying for a spei� gene, GOterm, or keyword. Results are displayed using three types of views: a global view, a gene view,and a GO term view. In eah view, TDRs and GDBs are represented with a olor ode thatranges from red (0%) to light green (100%) via yellow (50%); non-signi�ant TDRs or GDBs (seeMethod) are in gray.The global views: There is one global view for eah gene ontology (Moleular Funtion, BiologialProess, and Cellular Component). A global view (see Figure 1) shows all GO terms of the seletedontology where preditions are made. These are represented in a hierarhial way whih respetsthe ontology struture. Eah term is followed by its prior probability, the best GDB found for agene predited in this term, and the best TDR assoiated with eah data soure for this term.The GO term view: The GO term views show all genes that are predited in any given term byGonna (see Figure 2). Two views are available for eah GO term: one for unharaterized genesthat have no annotation in GeneDB for the ontology at hand, and the other one for genes thatare already annotated in this ontology in GeneDB (but not obligatory with this term). For thelatter, a '+' symbol after the gene name indiates that the gene is already annotated by theterm. Additional information about preditions is provided by liking on a spei� TDR. Thisopens a new window presenting the K genes that support, or do not support, the predition forthe orresponding data soure, along with their assoiated pro�les (for the transriptomi andproteomi soures, see Figure 4). A link towards the Amigo website allows the user to quiklyretrieve additional information on this term.The gene view: The gene view displays the di�erent GO terms that are predited for eah geneby Gonna. These terms are shown in a hierarhial way whih follows the ontology struture(see Figure 3). There are three gene views for eah gene, whih orrespond to the three GOontologies. Eah term is followed by its prior probability, the GDB of the predition, and theTDRs assoiated with all data soures that support it. Moreover, for genes that already possessGeneDB annotations in the seleted ontology, a '+' symbol after the term name indiates that thisterm already annotates this gene in GeneDB. As for the term view, liking on a spei� TDRopens a new window that provides additional information about the orresponding predition. A2http://www.nbi.nlm.nih.gov/geo 7



link to PlasmoDB allows the user to quikly retrieve additional information on this gene. Note thatTDRs and GDBs assoiated with the terms usually inrease when srolling toward the top of theontology, beause the prior probabilities of the terms inrease. However, they may also dereasesometimes: If a GO term t is a generalization of one term t′ with a good postgenomi signature(high TDR) and one term t′′ with a poor signature (low TDR), genes predited in t′′ may havean unfavorable impat on the TDR estimation of t whih may be lower than that of t′.DisussionAnnotation qualityQuantity and quality of the available annotations used in the prior knowledge database to gen-erate the preditions is a key point of any GBA approah. For P. faliparum, both quantity andquality are questionable. For example, in the BP ontology, of the 1799 genes (35%) possessing an-notations, only 228 (13%) have annotations with experimental evidene; annotations of the 1571remaining genes ome from sequene similarity with proteins of other organisms (ISS and IEAevidene odes), and for 1067 genes (68%) these annotations have IEA ode, indiating that theyhave not been reviewed by a urator. Moreover, of the 431 di�erent BP GO terms assoiated withthe P. faliparum genes when onsidering all annotations, 172 (40%) are assoiated with IEA an-notations only. For example, all annotations involving BP GO terms ATP biosyntheti proess(GO:0006754), immune response (GO:0006955) or methylation (GO:0032259), as well as theirdesendants terms, possess IEA ode only. Hene, we deided to onsider all available GO anno-tations when generating the PlasmoDraft database. Removing all non-urated annotations fromthe prior knowledge database would eliminate not only numerous haraterized genes, but alsonumerous GO terms, whih would render impossible any new predition in these parts of theontology.Experiments on a well annotated organismIn these onditions, it was relevant to hek the method on a well annotated organism, usingonly experimental evidene ode annotations as input for the preditions and for estimating theTDRs. To this end, we applied Gonna on the transriptomi data set published by Spellmanet al. (1998) [34℄, whih monitors the expression level of yeast genes along the ell yle. Thesame parameters as for P. faliparum were used, i.e. neighbor genes were seleted using thePearson orrelation oe�ient and we used two sets of parameters (K, K ′): (K = 6, K ′ = 4) and
(K = 6, K ′ = 2). All annotations di�erent from IEA, ISS and RCA were used, whih involves 4 165genes haraterized in the BP ontology, and a total of 1 220 di�erent GO terms. The TDRs wereestimated for eah GO term by ross-validation. Figure 5 represents the TDRs assoiated with allBP GO terms where preditions are proposed by Gonna, as a funtion of the prior probability ofthe terms. We see that for numerous terms, preditions are made with a TDR signi�antly higherthan the prior probability of the term, whih shows the potential of the approah to deipherbiologial funtions from gene expression data. For omparison purpose, the same experiment wasahieved on P. faliparum with the time series of Bozdeh et al. (2003) [27℄ using all available BPannotations (see Figure 6). While, as expeted, the number of GO terms where preditions aremade is lower than for yeast, numerous GO terms are also predited with high TDRs. Thoughthe reliability of these preditions ould depends on the prior (IEA) annotations, the similarityof Figures 5 and 6 is quite enouraging and shows that P. faliparum annotations are globallyonsistent, as they are mostly reovered using a transriptomi data set.Contents of the databaseBy browsing the PlasmoDraft database, several preditions learly involve rare GO terms (i.e. withlow prior probability) with high TDRs or GDBs. For example, in the BP ontology, 16 unhara-terized genes are predited in establishment of loalization (GO:0051234) (prior probabil-8



ity 15%, GDB 78%), 25 unharaterized genes are predited in Rosetting (GO:0020013) (priorprobability 2%, GDB 78%), and 50 unharaterized genes are in Pathogenesis (GO:0009405)(prior probability 4%, GDB 75%). Similarly (but with lower GDBs), 13 unharaterized genes arepredited in Ubiquitin-dependent protein ataboli proess (GO:0006511) (prior proba-bility 2%, GDB 50%), and 12 unharaterized genes are in Biopolymer ataboli proess(GO:0043285) (prior probability 3%, GDB 56%). Moreover the best TDRs are not always ahievedwith the same data soure. For example, for the Antigeni variation (GO:0020033) term, theLE03 data [14℄ provides more aurate preditions than the LLHB3/LLDd2/Ll3D7 series [27,28℄,may be beause this funtion has a more apparent expression signature when onsidering the en-tire life yle of the organism. For funtions suh as DNA pakaging (GO:0006323) however, thehighest TDR is ahieved with the LLHB3 data set [27℄ beause the funtion is better monitoredat the ell yle level.We estimated the amount of new information provided by PlasmoDraft in a systemati way.For the BP ontology, PlasmoDraft proposes signi�ant annotations on GO terms of low priorprobability (below 25%) for 3 900 genes, among whih 2 434 have no BP annotations in GeneDB.With CC and MF ontologies, 1 905 and 1 540 unharaterized genes are annotated by Plasmo-Draft on low prior probability GO terms, respetively. The interest of these annotations of oursedepends on the assoiatedGDB. Thus, given a GDB threshold (e.g. 75%) and an ontology, for eahunharaterized gene in this ontology we searhed the GO term with the lowest prior probabilitywherein the gene is predited with a statistially signi�ant GDB above the threshold. Figure 7summarizes these results on the three ontologies. From this �gure we see, for example, that forthe BP ontology 290 unharaterized genes in GeneDB are predited with a GDB above 75% (redurve) on a GO term with a prior probability below 0.10. In the same manner, above 1 025unharaterized genes are predited with a GDB above 50% (blue urve) on a GO term with aprior probability below 0.25. For the CC and MF ontologies, 740 and 329 genes are preditedwith a GDB above 50% on a GO term with a prior probability below 0.25, respetively. Notethat only genes without any annotation in GeneDB in the seleted ontology are onsidered in thismeasure, while the PlasmoDraft database also provides additional annotations for many genesthat are already annotated in this ontology.By omparing the results ahieved on the di�erent ontologies, we see that the BP ontologyprovides the best results. This is not surprising, as the signature deteted in the postgenomi databy GBA methods are mostly harateristi of biologial proesses [8℄. However, by an informationpropagation phenomenon, the BP signatures may sometimes help for prediting annotations inthe two other ontologies. This happens, for example, when many genes with a given moleularfuntion (or exported in a partiular ellular omponent) are involved in a biologial proess with astrong signature. For example, GO term host ell plasma membrane (GO:0020002) in the CContology is assoiated with high GDB (72%), beause most genes belonging to this term are alsoassoiated with the biologial proess Defense response (GO:0006952)whih is well reognized.A similar approah an be used to estimate the amount of new information provided by eahdata soure independently. For example, Figure 8 reports the number of unharaterized genes inthe BP ontology that an be annotated with a TDR above 75%, 50% and 25% by the transriptomidata of Bozdeh et al. (2003) [27℄, and by the interatomi data of LaCount et al. (2005) [33℄. Forexample, we an see that more than 73 are assoiated with a GO term of prior probability below
10% with a TDR above 50% using the transriptomi data, while 10 genes only are predited withthe same thresholds using interatomi data. This indiates that the interatome tends to provideless funtional signal than the transriptome, partly beause less genes are monitored.Assessment of the GDBsTDRs and GDBs are estimated by ross-validation by applying Gonna on the already haraterizedgenes. This proedure produes unbiased estimates of the method auray, provided that theunharaterized genes share approximately the same distribution as the haraterized ones [19℄.However, sine TDRs and GDBs are sometimes estimated on small numbers of preditions, usersshould be aware that for some spei� GO terms, the auray on the unharaterized genes9



may di�er from the reported TDRs and GDBs. Nonetheless, these measures provide valuableindiations on the potential funtions of genes by pointing out the most likely GO terms. Toassess this point, we ompared the PlasmoDraft preditions proposed for the unharaterizedgenes to the annotations of their homologous genes in yeast when these are known. We looked onthe 986 genes without BP annotations that have been predited with high GDB (above 50%) onspei� BP terms (prior probability below 25%). As expeted, few genes among these 986 an beassoiated with a haraterized orthologous gene in S. erevisiae. However, a reiproal best hitproedure using BLASTP with an e-value uto� of 10−5 allows to �nd S. erevisiae orthologuesfor 141 genes. Among these 141 orthologous pairs, 63 (45%) have �onordant� annotations withthe high GDB preditions. Here we onsider that annotations are onordant if at least half of theterms with prior probability below 25% are shared by the S. erevisiae orthologue. As expeted,this proportion dereases when using PlasmoDraft preditions with lower GDBs. For example,
2 271 genes without BP annotations are predited with a GDB between 25% and 50% on a GOterm with prior probability below 25%. Among these, 245 an be assoiated with S. erevisiaeorthologues by reiproal best hit, and 71 (29%) have onordant annotations.Comparison with the preditions of Zhou et al. (2008) [35℄During the writing of this artile, another database [35℄ of gene funtion preditions based on theOPI method desribed in referene [17℄ was published. Brie�y, OPI is a supervised method thatworks as follows. For eah GO term, OPI uses a set of �seed� genes already annotated with thisterm to onstrut an average expression pro�le. Next, all genes (annotated or not) are rankedaording to their similarity to this average pro�le and a statistial test is used to identify the rankuto� that inludes the largest number of seed genes within the smallest luster size. All genesbefore this uto� are then onsidered as potentially related to the GO term under onsideration.The database [35℄ exploits a single new transriptomi data set overing all life yle stages ofthe parasite and ombining gene expressions from both P. yoelii and P. faliparum. As boththe methods and data soures are di�erent, this database and PlasmoDraft provide di�erent andomplementary information. OPI provides BP annotations for 1 902 di�erent genes, among whih
1 036 have no BP annotations in GeneDB. When looking at the PlasmoDraft preditions with GDBabove 50% (whih involves 1 111 unharaterized genes in BP), only 230 also have BP preditionsin OPI. However, when both methods propose BP preditions for a gene, the preditions are oftensimilar. Indeed, of the 230 ommon genes, 94 have onordant preditions�i.e. at least half ofthe preditions of one of the methods involving terms with a prior probability below 25% are alsopredited by the other method.Di�erenes in spei�ity of OPI and PlasmoDraft an also be observed by omparing theGDB and FDR (false disovery rate) estimates assoiated with a given GO term by PlasmoDraftand OPI, respetively. Reall that the GDB is atually the TDR assoiated with the predi-tor that ombines all data soures. Moreover, by de�nition, the FDR equals 1 minus the TDRon this term. While FDRs of OPI are not estimated by ross-validation, we an neverthelessget a rough idea of whih method provides the best results for a given GO term. For example,OPI obtains the highest TDRs on terms like Entry into host (GO:0044409), or Mitohodrionorganization and biogenesis (GO:0007005) (∼ 90% and ∼ 30% vs. 36% and ∼ 5%), whilefor terms like Interation between organisms (GO:0044419) or Rosetting (GO:0020013),PlasmoDraft obtains the best results (77% and 78% vs. 25% and no statistially signi�ant TDR).On the whole, it thus appears that the two databases use quite di�erent data soures and provideinteresting information on di�erent types of funtions and di�erent genes, so the ommunity willlikely bene�t from both.ConlusionWe presented PlasmoDraft, an extensive database of GO annotation preditions that are ahievedby Guilt By Assoiation using most postgenomi data available to date for P. faliparum. All pre-10



ditions ome with a on�dene estimate omputed by ross-validation. The database is presentedin a friendly interfae that allows easy browsing and querying, and proposes high on�dene an-notations for several hundreds of genes without any annotations, as well as additional annotationsfor many already haraterized genes.One prospet is the integration of ompendiums of gene expression data sets as new data souresin PlasmoDraft. These data, obtained by onatenation of several data sets of diversi�ed biolog-ial onditions, have shown to often provide strong biologial funtion signatures [36℄. However,preditions based on these data may be di�ult to interpret for biologists, and their integrationopens new issues in data seletion and ombination.As mentioned in the Methods, one advantage of Gonna onerns its generiness that allows itsuse on any new data, as long as a relevant similarity measure an be omputed; a set of sripts thenenables regeneration of the database to integrate the new data set in a fully automated way. Thisalso holds for the GO annotations used as prior knowledge, and the new annotations providedby the ommunity in the future will be easily integrated. Most notably, we are aware that aollegiate e�ort for re-annotating P. faliparum proteins should provide new/urated funtionalannotations in the near future. This should improve both the quantity and the quality of thePlasmoDraft preditions. In the same way, while in the urrent version of PlasmoDraft all GOannotations are onsidered (i.e. inluding automatially-assigned annotations) due to the sarityof urated annotations, it is possible that the re-annotation e�ort will enable the use of onlyurator-assigned annotations in the subsequent versions of PlasmoDraft. Thanks to these newadvanes, PlasmoDraft should beome more and more aurate and useful to the ommunity.Authors' ontributionsLB oneived, designed and implemented the method, arried out the analyses, designed thedatabase and drafted the manusript. JFD designed and developed the database. OG designedthe method, partiipated in the analyses, designed the database and revised the manusript. Allauthors read and approved the �nal manusript.AknowledgementsThis researh was supported by the Frenh National Researh Ageny (ANR-06-CIS6-MDCA-14).We thank all members of the PlasmoExplore projet for useful disussions.Availability and requirementsPlasmoDraft is freely available at http://atg.lirmm.fr/plasmo_draft/Referenes1. Sahs J, Malaney P: The eonomi and soial burden of malaria. Nature 2002,415(6872):680�685.2. Gardner M, Hall N, Fung E, White O, Berriman M, Hyman R, Carlton J, Pain A, Nelson K,Bowman S, Paulsen I, James K, Eisen J, Rutherford K, Salzberg S, Craig A, Kyes S, ChanM, Nene V, Shallom S, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D,Mather M, Vaidya A, Martin D, Fairlamb A, Fraunholz M, Roos D, Ralph S, MFadden G,Cummings L, Subramanian G, Mungall C, Venter J, Carui D, Ho�man S, Newbold C, DavisR, Fraser C, Barrell B:Genome sequene of the human malaria parasite Plasmodiumfaliparum. Nature 2002, 419(6906):498�511.3. Pizzi E, Frontali C: Low-omplexity regions in Plasmodium faliparum proteins.Genome Res 2001, 11(2):218�229. 11
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Figure 1 � An extrat of the Biologial Proess global view. This view presents a summary ofall of the best GDBs and TDRs that are assoiated with eah GO term and data soure. Cliking onany term opens the orresponding GO term view.
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Figure 2 � An extrat of the preditions ahieved in term �adhesion to other organism duringsymbioti interation� (GO:0051825). The �no� entry indiates that the data soure does notsupport the predition, while �-� means that no data are available in the soure for this gene. Byliking on a TDR, the K haraterized nearest neighbors that support/do not support this preditionare shown (see Figure 4). Cliking on any gene opens the orresponding gene view.
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Figure 3 � An extrat of preditions ahieved for gene PFD1015 in the BP ontology. The�no� entry indiates that the data soure does not support the predition, while �-� means that no dataare available in the soure for this gene. By liking on a TDR, the K haraterized nearest neighborsthat support/do not support this predition are shown (Figure 4). Cliking on any term opens theorresponding GO term view.

Figure 4 � The neighbors view. Pro�les of the K nearest haraterized neighbors that sup-port (white), or does not support (gray), the predition of gene PFL0020w in term Adhesion toother organism during symbioti interation (GO:0051825) for the Leroh et al. (2003)data soure [14℄. For omparison purpose, pro�les of the K nearest unharaterized neighbors (yellow)are also reported. 17
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Figure 5 � Gonna performane on yeast. Gonnawas applied to the transriptomi data set publishedby Spellman et al. (1998) [34℄ using experimental evidene ode annotations only as prior knowledgedatabase. TDRs of all BP GO terms where preditions are proposed by Gonna are plotted as a funtionof the prior probability of the terms. Red and blak points indiate signi�ant and non-signi�antTDRs, respetively.
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Figure 6 � Gonna performanes on the transriptomi data set published in Bozdeh et al.(2003) [27℄. TDRs of all BP GO terms where preditions are proposed by Gonna are plotted asa funtion of the prior probability of the terms. Red and blak points indiate signi�ant and non-signi�ant TDRs, respetively.
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Figure 7 � Estimate of the amount of new information supplied in PlasmoDraft. Estimatesfor the BP (up) CC (middle) and MF (down) ontologies. Red, blue and green lines represent theresults ahieved with GDB thresholds of 75%, 50% and 25%, respetively. The x-axis gives the priorprobabilities of the terms, while the y-axis (in log sale) reports the number of unharaterized genesin the ontology that have been predited with a GDB above the threshold, on a GO term with priorprobability below x. 20
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Figure 8 � Estimate of the amount of new information supplied by the transriptomi datasoure of Bozdeh et al. (2003) [27℄ and the interatomi data soure of LaCount et al.(2005) [33℄. Red, blue and green lines represent the results ahieved with TDR thresholds of 75%,
50% and 25%, respetively. The x-axis gives the prior probabilities of the terms, while the y-axis (inlog sale) reports the number of unharaterized genes in the ontology that have been predited witha TDR above the threshold, on a GO term with prior probability below x.
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