R. 1. Spellman, P. T. Sherlock, G. Zhang, M. Q. Iyer, V. R. Anders et al., Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization, Molecular Biology of the Cell, vol.9, issue.12, pp.3273-3297, 1998.
DOI : 10.1091/mbc.9.12.3273

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, Cluster analysis and display of genome-wide expression patterns, Proceedings of the National Academy of Sciences, vol.95, issue.25, pp.95-14863, 1998.
DOI : 10.1073/pnas.95.25.14863

S. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, vol.28, issue.2, pp.129-137, 1982.
DOI : 10.1109/TIT.1982.1056489

R. Herwig, A. J. Poustka, C. Muller, C. Bull, H. Lehrach et al., Large-Scale Clustering of cDNA-Fingerprinting Data, Genome Research, vol.9, issue.11, pp.1093-105, 1999.
DOI : 10.1101/gr.9.11.1093

T. Kohonen, Self-Organizing Maps, 1997.

P. Tamayo, D. Slonim, J. Mesirov, Q. Zhu, S. Kitareewan et al., Interpreting patterns of gene expression with selforganizing maps: methods and application to hematopoietic differentiation, Proc Natl Acad Sci, pp.96-2907, 1999.

M. F. Ramoni, P. Sebastiani, and I. S. Kohane, Cluster analysis of gene expression dynamics, Proceedings of the National Academy of Sciences, vol.99, issue.14, pp.9121-9126, 2002.
DOI : 10.1073/pnas.132656399

Z. Bar-joseph, G. K. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon, Continuous Representations of Time-Series Gene Expression Data, Journal of Computational Biology, vol.10, issue.3-4, pp.341-356, 2003.
DOI : 10.1089/10665270360688057

A. Schliep, A. Schonhuth, and C. Steinhoff, Using hidden Markov models to analyze gene expression time course data, Bioinformatics, vol.19, issue.Suppl 1, pp.255-263, 2003.
DOI : 10.1093/bioinformatics/btg1036

L. R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proceedings of the IEEE, vol.77, issue.2, pp.257-285, 1989.
DOI : 10.1109/5.18626

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Royal Stat. Soc. B, vol.39, pp.1-38, 1977.

G. Mclachlan and T. Krishnan, Finite mixture models, 2000.
DOI : 10.1002/0471721182

F. Casacuberta, Some relations among stochastic finite state networks used in automatic speech recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, issue.7, pp.691-695, 1990.
DOI : 10.1109/34.56212

V. R. Iyer, M. B. Eisen, D. T. Ross, G. Schuler, T. Moore et al., The Transcriptional Program in the Response of Human Fibroblasts to Serum, Science, vol.283, issue.5398, pp.83-87, 1999.
DOI : 10.1126/science.283.5398.83