N

HAL

open science

Guiding Search in QCSP+ with Back-Propagation

Christian Bessiere, Guillaume Verger

» To cite this version:

Christian Bessiere, Guillaume Verger. Guiding Search in QCSP+ with Back-Propagation. CP: Princi-
ples and Practice of Constraint Programming, Sep 2008, Sydney, Australia. pp.175-189, 10.1007/978-

3-540-85958-1_12 . lirmm-00329894

HAL Id: lirmm-00329894
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00329894

Submitted on 20 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00329894
https://hal.archives-ouvertes.fr

Guiding Search in QCSP* with
Back-Propagation*

Guillaume Verger and Christian Bessiere

LIRMM, CNRS/University of Montpellier, France
{verger,bessiere}@lirmm.fr

Abstract. The Quantified Constraint Satisfaction Problem (QCSP) has
been introduced to express situations in which we are not able to con-
trol the value of some of the variables (the universal ones). Despite
the expressiveness of QCSP, many problems, such as two-players games
or motion planning of robots, remain difficult to express. Two more
modeler-friendly frameworks have been proposed to handle this diffi-
culty, the Strategic CSP and the QCSPT. We define what we name
back-propagation on QCSPT. We show how back-propagation can be
used to define a goal-driven value ordering heuristic and we present ex-
perimental results on board games.

1 Introduction

The Constraint Satisfaction Problem (CSP) consists in finding values for vari-
ables such that a set of constraints involving these variables is satisfied. It is a
decision problem, in which all variables are existentially quantified (i.e., Is there
a value for each variable such that all constraints are satisfied?). This framework
is useful to express and solve many real applications.

Problems in which there is a part of uncertainty are hard to model in the CSP
formalism, and/or require an exponential number of variables. The uncertainty
part may come from weather or any external event, which is out of our control.
The Quantified Constraint Satisfaction Problem (QCSP [4]) is a generalisation of
the CSP in which variables can be either existentially (as in CSP) or universally
quantified. We control the existential variables (we choose their value), but we
have no control on universal variables (they can take any value in their domain).
Solving such problems is finding values for existential variables according to the
values taken by the preceding universal variables in the sequence of variables in
order to respect constraints.

The structure of QCSP is such that the domains of universal variables do
not depend on values of previous variables. But in many problems, values taken
by variables depend on what has been done before. For example, if we want to
express a board game like chess, some moves are forbidden, like stacking two
pieces on the same cell.

* Supported by the ANR project ANR-06-BLAN-0383-02.

In [2, 3] this issue has been identified and new formalisms, SCSP and QCSPT,
have been proposed to have symmetrical quantifier behaviors. Both in SCSP
and QCSP™, the meaning of the universal quantifier has been modified, and the
domains of universal variables depend on the values of previous variables. In
the field of Quantified Boolean Formulas, this problem has also been identified.
Ansétegui et al. introduced new QBF formulations and solving strategies for
adversarial scenarios [1].

In this paper, we propose a value ordering heuristic for the QCSP™. After
preliminary definitions (Section 2) and clues for solving QCSPT (Section 3), we
analyse constraint propagation in QCSP™ in Section 4. Based on this analysis,
we derive a value ordering heuristic for QCSPT in Section 5. Finally, in Section
6, we present experimental results on board-games.

2 Definitions

In this section we focus on the two frameworks that have been proposed to tackle
the QCSP modeling issue, Strategic CSPs [3] and QCSP™ [2]. But first of all,
we give some background on CSP and QCSP.

2.1 CSP and QCSP

The constraint satisfaction problem. A constraint network N = (X, D, C)

consists of a finite set of variables X = {z1,...,2,}, a set of domains D =
{D(x1),...,D(xy)}, where the domain D(x;) is the finite set of values that
variable z; can take, and a set of constraints C' = {¢1,...,c.}. Each constraint

¢k is defined by the ordered set var(cy) of the variables it involves, and by the
set sol(cy) of combinations of values on var(cy) satisfying it. A solution to a
constraint network is an assignment of a value from its domain to each variable
such that every constraint in the network is satisfied. A value v; for a variable
x; is consistent with a constraint c¢; involving z; iff there exists an assignment
I of all the variables in var(c;) with values from their domain such that z; is
assigned v; and I satisfies c;.

Given a constraint network N = (X, D, C), the constraint satisfaction prob-
lem (CSP) is the problem of deciding whether there exists an assignment in D
for the variables in X such that all constraints in C' are satisfied. In a logical
formulation, we write, “Jzq ... 3z, ,C?”

In CSPs, the backtrack algorithm is inefficient when problems are big, and the
most common way to solve CSPs is to combine depth-first search and constraint
propagation. The aim is to use constraint propagation to reduce the size of the
search tree by removing some inconsistent values in domains of variables. An
inconsistent value is a value such that if it is assigned to its variable, the CSP
is unsatisfiable. That is, removing inconsistent values does not change the set of
solutions.

Most CSP solvers use Arc Consistency (AC) as the best compromise between
tree pruning and time consumption. A constraint c¢; is arc consistent iff for any

x; € var(cj), for any v; € D(x;), v; is consistent with ¢;. To propagate AC during
the backtrack, after each instantiation, we remove inconsistent values in domains
of not yet instantiated variables x; until all constraints are arc consistent.

The quantified constraint satisfaction problem. The quantified extension
of the CSP [4] allows some of the variables to be universally quantified. A quanti-
fied constraint network consists of variables X = {x1,...,2,}, a set of domains
D = {D(x1),...,D(z,)}, a quantifier sequence & = (¢p121,...,Pnx,), Where
¢; € {3,V},Vi € 1..n, and a set of constraints C. Given a quantified constraint
network, the Quantified CSP (QCSP) is the question “¢121 ... ¢pxy, C77.

Ezample 1. 3x1Vy1 322, (21 # y1) A (22 < y1) with 21, y1, 22 € {1,2,3}. This can
be read as: is there a value for x; such that whatever the value chosen for yq,
there will be a value for x5 consistent with the constraints?

As in CSP, the backtrack search in QCSP is combined with constraint filter-
ing. Propagation techniques are heavily depending on the quantifiers of variables.
In Example 1 the QCSP is unsatisfiable because for each value of z1, there is a
value of y; violating x1 # y1. As y; is a universal variable and x; is an existen-
tial variable earlier in the sequence, any value in the domain of x; that is not
compatible with a value in the domain of y; is not part of a solution. Constraint
propagation in QCSP has been studied in [4,8,7].

2.2 Restricted quantification

One of the advantages that CSPs have on SAT problems (satisfaction of Boolean
clauses) is that a CSP model is often close to the intuitive model of a problem,
whereas a SAT instance is most of the time an automatic translation of a model
to a clausal form, and is not human-readable. QCSP and QBF can be compared
as CSP and SAT. To model a problem with a QBF, one needs to translate
a model into a formula, and the QBF is not human-readable. QCSP, like CSP,
should have the advantage of readability. But modeling a problem, even a simple
one, with a QCSP, is a complex task. The prenex form of formulas is counter-
intuitive. It would be more natural to have symmetrical behaviors for existential
and universal variables. We describe here two frameworks that are more modeler-
friendly: Strategic Constraint Satisfaction Problem (SCSP), and QCSP*.

The strategic CSP. In SCSP [3], the meaning of the universal quantifier is
different from the universal quantifier in QCSP. It is noted V. Allowed values for
universal variables are values consistent with previous assignments.

Let us change the universal quantifier of Example 1 into the universal quan-
tifier of SCSPs. The problem is now Jx1VyiJza, (v1 # y1) A (22 < y1) with
x1,y1, 22 € {1,2,3}. If 21 takes the value 1, the domain of y; is reduced to
{2, 3} because of the constraint (1 # y1) that prevents y; from taking the same
value as x1. This SCSP has a solution. If z; takes the value 1, y; can take either
2 or 3, and x2 can always take the value 1 that satisfies the constraint (zo < y1).

Solving a SCSP is quite similar to solving a standard QCSP. The difference
is that domains of universal variables are not static, they depend on variables
already assigned in the left part of the sequence (before the universal variable
we are ready to instantiate).

The quantified CSP*. QCSP™ [2] is based on the same idea as SCSP, which
is to modify the meaning of the universal quantifier in order to make it more
intuitive than in QCSP. It uses the notion of restricted quantification, which is
more natural for the human mind than unrestricted quantification used in QCSP.
Restricted quantification adds a “such that” right after the quantified variable.
A QCSP™ can be written as follows:

P = 3X1[Rx,], Wi [Ry,|3X2[Rx,] ... 3X.[Rx,],G

All constraints noted Rx are called rules. They are the restrictions of the quan-
tifiers. Each existential (resp. universal) scope X; (resp Y;) is a set of variables
having the same quantifier. The order of variables inside a scope is not impor-
tant, but two scopes cannot be swapped without changing the problem. The
constraint G is called goal, it has to be satisfied when all variables are instanti-
ated. The whole problem can be read as “Is there an instantiation of variables in
X1 such that the assignment respects the rule Rx, and that for all tuples of val-
ues taken by the set of variables Y7 respecting Ry, , there will be an assignment
for variables in X5... such that the goal G is reached?”

A QCSPT can be expressed as a QCSP. The difference between QCSP and
QCSPT is the prenex form of QCSP. The QCSP™ P is defined by the formula
X1 (Rx, AN(VY1(Ry, — 3X2(Rx, A(... 3X,(Rx, ANG)))))). The prenex form of
Pis3dX3VY13X, ... dX,, (RX1 /\(—|Ry1 \/(RX2 /\(. .. (RXn /\G))))) We see that,
in this formula, we lose all the structure of the problem because all information
is merged in a big constraint. Furthermore, disjunctions of constraints do not
propagate well in CSP solvers. Finally the poor readability of this formula makes
it hard to deal with for a human user.

The example of SCSP derived from Example 1 (see above) is modelled as
a QCSPTas follows: 321y [y1 # 213wz < 11], T with 21, 91,22 € {1,2,3},
where T is the universal constraint.

The difference between SCSP and QCSPT is mainly the place where con-
straints are put. A constraint of a SCSP containing a set X of variables should
be placed in the rules of the rightmost variable of X in a QCSP™ modeling the
same problem.

In the rest of the paper, we will only consider the QCSP¥, but minor modi-
fications of our contributions should be enough to adapt them to SCSPs.

3 Solving a QCSPT

In this section, we focus on solving QUSP™. First, we show how we use a back-
tracking algorithm with universal and existential variables. Then we focus on
constraint propagation in QCSP™.

As with classical CSPs or QCSPs, one can solve a QCSP™ by backtracking.
For each variable, we choose a value consistent with the rules attached to the
variable, and we go deeper in the search tree. At the very bottom of the tree,
we need to check that the assignments are consistent with the goal.

For existential variables, we do as for classical CSPs. If it is possible to assign
the current existential variable according to the rules, then we can go deeper in
the tree. But if there is no value consistent with the rules, it means that the
current branch failed. Then we jump back to the last existential variable we
instantiated and make another choice. If there is no previous existential variable,
the QCSP™ has no solution. Another case for which the branch can fail is when
we instantiated all variables, but the assignments are not consistent with the
goal.

On the other hand, if we instantiated all variables such that it is consistent
with the goal, we just found a winning branch of the QCSPT. In this case we
jump back to the last universal variable instantiated, we assign another value of
its domain consistent with its rules and we try to find another winning branch.
When all values of the universal variable have been checked and lead to winning
branches, we can go back to the previous universal variable. When there is no
previous universal variable, the QCSP™T has a solution. If at any moment, the
current universal variable we want to instantiate has an empty domain, it is a
winning branch. For example if it is a game, it means that the adversary cannot
play because we blocked him, or because we just won before his move.

Ezample 2. Let P = Ja1Vy1[y1 # x1]3x2, 20 = y1, D(x1) = D(y1) = {1,2,3},
D(z3) = {1,2} be a QCSP™. In this QCSP™, z1 can play any of the moves 1,2,
or 3. Then y; can play a move different from the move of z1, and x5 can play 1
or 2. At the end, in order to win, x5 and y; must have the same value.

T

/ 2& If 21 plays 1 or 2, y; will be able to play 3
and will win because x5 cannot play 3 (this
Y1 Y1 Y1 value is not in its domain). The only way for
/3 ‘3 1\% the F-player to win is to play 3 at the first
move to forbid y; to play 3. Then whatever
1 1 T2 T2 the value taken by y; (1 or 2), xzo will be
1 9 able to play the same value. The QCSPT

has a solution.

T T

Note that in Example 2, the goal could have been a rule for x5. When the last
variable is an existential one, its rules and the goal have the same meaning.
Propagating the constraints in QCSP+t

We try to identify how it is possible to use constraint propagation to reduce the
domains of variables.

Ezample 3. Let P = Jx1Vy1[y1 < 21], L. D(z1) = D(y1) = {1,2,3}. 21 has to
choose a value, then y; has to take a lower value.

In Example 3, a standard CSP-like propagation of y; < x; would remove the
value 1 for z; and the value 3 for y;. Like in CSPs, the value 3 in the domain
of 1 is inconsistent because whatever the value taken by x1, y; will never be
able to take this value.! But contrary to the CSP-like propagation, the QCSP+
propagation should not remove the value 1 for x: if 21 takes the value 1 he will
win because y; will have no possible move.

Let x; be a variable in a QCSPT, with a rule R,,. If we only propagate
the constraint R, on the domain of z;, we remove from its domain all values
inconsistent with what is happening before. This propagation is allowed, because
values removed this way cannot appear in the current search tree (when the solver
will have to instantiate z;, the allowed values are values consistent with R,).

Let x; be another variable in a scope before the scope of x;. Now suppose
that the rule R,, involves z; too (i.e., the values that x; can take depend on the
values taken by x;). If the CSP-like propagation of the constraint R,, removes
some values in the domain of z;, it does not mean that x; cannot take the values
removed, but that, if z; takes one of these values, then when it will be z;’s turn
to play, he will not be able to take any value. Hence a QCSP* propagation
should not remove these values.

Briefly speaking, it is allowed to propagate constraints from the left of the
sequence to the right, but not to propagate from the right to the left. Benedetti
et al. proposed the cascade propagation, a propagation following this principle.

Cascade propagation. In [2], cascade propagation is proposed as a propaga-
tion mechanism. The idea is that propagating a rule can modify the domains of
variables of its scope, but not the domains of variables of previous scopes.

In [2], cascade propagation is implemented by creating a sequence of sub-
problems. Each sub-problem P; represents the restriction of problem P to its
scopes from the first to the ith. That is, each P; contains all rules belonging
to scopes 1...i. If there are n scopes in P, P, will be the problem excluding
the goal, and P, 1 = P. In a sub-problem, propagation is used as in a classical
CSP. Each P; can be considered as representing the fact that we will be able to
instantiate variables from the first one of the first scope to the last one of scope
1 according to the rules. Let P be the problem described in Example 2. Cascade
propagation creates 4 sub-problems:

Pl = 31‘1, T

P2 = EIa:Nyl [yl 75 1‘1], T

P3 = EIa:Nyl [yl 75 1‘1]31‘2, T

Py = 321Vy1[y1 # 1]320, 2 = 11

! Note the difference with the QCSP case for which a removal of value in a universal
domain means a fail of the whole problem.

For each sub-problem P; to Ps, the goal is T because we say a sub-problem has
a solution if we can instantiate all its variables, without thinking of the goal of
P. Propagation in each sub-problem can be done independently, but to speed
up the process, if a value is removed from the domain of a variable, it can safely
be removed from the deeper sub-problems. Furthermore if the domain of any
variable in a sub-problem P becomes empty with propagation, it means that
it is impossible to do the k** move. So, from there it is no longer necessary
to check the problems {Pyi1,..., Pyt1} since they are inconsistent too. If the
scope k is universal and if Py_; can be completely instantiated, then the current
branch is a winning branch. If the scope k is an existential one and if P;_; can
be completely instantiated, the current branch is a losing branch.

4 Back-Propagation

In this section we present what we name back-propagation, a kind of constraint
propagation which uses the information from the right part of the sequence. We
also show that this propagation may not work properly in general.

4.1 Removing values in domains

The aim of constraint propagation in CSPs is to remove every value for which
we know that, if we assign this value to the variable, it leads to a fail. In QCSPT,
the aim of constraint propagation is to remove values in domains too. But values
we can remove without loss of solution depend on the quantifiers. In the case of
existential variables, the values we can remove are values that do not lead to a
solution (as we do in CSPs). Intuitively, it means that the 3-player will not play
this value because he knows that he will lose with this move. If all values are
removed, it is impossible to win at this point. In the case of universal variables,
the values we can remove are values that lead to a solution. Intuitively, it means
that the V-player will not play this value because he knows that it means a loss
for him. If all values are removed, it means that the V-player cannot win, so it
is considered as a win for the 3-player.

4.2 An illustrative example

We will see how to propagate information from right to left. Back-propagation
adds some redundant constraints inside the rules of variables. These constraints
will help to prune domains.

Consider the Example 2 from Section 3. Let us propagate the goal (x5 = y1).
It removes the value 3 in the domain of y;. It means that if y; = 3, we cannot
win. So x7 has to prevent y; from taking the value 3. If y; is able to take this
value, the 3-player will lose. The way to prevent this is to make sure that the
rule belonging to y1, y1 # x1, will force the V-player not to take the value 3.
In other terms, the rule must be inconsistent for y; = 3. We can express it
as (—(y1 # z1) Ay1 = 3), or =(3 # z1), that is (r;y = 3). This constraint

can be posted as a rule for 2. The problem is now P = Jx;[x; = 3]Vyi[y1 #
x1]3xe, 22 = y1,D(z1) = D(y1) = {1,2,3}, D(z2) = {1,2}. The new rule we
just added removes the inconsistent values 1 and 2 for ;.

4.3 General behavior

First we know that if v is inconsistent with the rules of the scope of x, we can
remove it from the domain of x. Then, we can look ahead in the sequence of
variables. Consider a QCSP*containing the sequence with ¢ = V and ¢ = 3
or ¢ = 3 and ¢ = V: ¢u;[Ra,), by C; (1,47, dri[Cr(wx. y7)). Suppose that
propagating Cj(zk,y;) removes the value v; in the domain of y;. As we said
before, it means that if we assign v; to y;, x; will not be able to play. Then the
¢-player will have to forbid the ¢-player to play v;. If he is not able to forbid it,
then he will lose. He can reduce the domain of y; with the rules belonging to y;
and involving x;.

To ensure that y; will not forbid any move for xj, we have to make sure
that the constraint C;(x;,y;) will remove the value v;. It is equivalent to forc-
ing ~C;(x;,y;) to let the value v; in the domain of y;, or equivalently forcing
(=Cj(wi,y;) A yj = vj). Hence, we can add to R,, the constraint ~Cj(z;,v;),
so that the ¢-player is assured to have chosen a move that prevents the ¢-player
from doing a winning move.

4.4 Back-propagation does not work in general

In the case where there are variables between x; and xj, our previous treatment
is not correct: imagine that the game always ends before x;’s turn and we are
unable to detect it with constraint propagation, we should not take into account
the constraints on xy. For example, consider the following problem:

Ezample 4. P = 3x1\Vz122[# (21, 21, 22)|Ft2Vy1[y1 # x1]3x2, 20 = y1. D(x1) =
D(t2) = D(y1) = {1,2,3},D(z1) = D(z2) = {0,1,2}, D(z2) = {1,2}. The
constraint # (x1,21,22) is a clique of binary inequalities between the different
variables. The variable t5 is here only to separate the two scopes of universal
variables. This problem is the same as the problem in Example 2 in which we
added the variables z; and the variable ¢s.

From Example 4 we can add the same constraint z; = 3 as we did for
Example 2 in Section 4.2. Doing this, we forbid z; to take either the value 1 or
the value 2. But if 27 would take any of these two values, we would win since it
is not possible to assign values for the different z;.

In the general case the back-propagation may remove values that are con-
sistent, so it cannot be used as a proper propagation for QCSP™. But from the
back-propagation, we can make a value ordering heuristic that will guide search
towards a win, or at least prevent the adversary to win.

2 the constraint C' in which we replaced the occurrences of y; with the value v,

5 Goal-Driven Heuristic

In this section we present our value ordering heuristic for QCSP*. The behavior
of the heuristic is based on the same idea as back-propagation. The difference
is that, as it is a heuristic, it does not remove values in domains, but it orders
them from the best to the worst in order to explore as few nodes as possible.

In the first part of the section, we discuss value ordering heuristics on QCSP™,
and the difference with standard CSP. Afterwards, we present our contribution,
a goal-driven value ordering heuristic based on back-propagation.

5.1 Value heuristics

In CSPs, a value ordering heuristic is a function that helps the solver to go
towards a solution. When the solver has to make a choice between the different
values of a variable, the heuristic gives the value that seems the best for solving
the problem. The best value is a value that leads to a solution. If we are able
to find a perfect heuristic that always returns a value leading to a solution, it
is possible to solve a CSP without backtracking. But, when there is no solution
or when we want all the solutions of a CSP, the heuristic, even perfect, does
not prevent from backtracking. In the case of QCSP™, value ordering heuristics
can be defined too. But the search will not be backtrack-free, even with a good
heuristic, because of the universal quantifiers.

In QCSP*, a good value for an existential variable (like for CSP) is a value
that leads to a solution (i.e., the I-player wins). A good value for a universal
variable is a value that leads to a fail (i.e., we quickly prove that the V-player
wins). If the QCSP™ is satisfiable, the heuristic helps to choose values for ex-
istential variables, and if it is unsatisfiable, the heuristic helps to choose values
for universal variables.

In the rest of the section, we describe the value ordering heuristic we propose

for QCSP™.

5.2 The aim of the goal-driven heuristic

Our aim, with the proposal of our heuristic, is to explore the search tree looking
ahead to win as fast as possible, to avoid traps from the adversary, and of course
not to trap ourselves. For example, in a chess game, if you are able to put your
opponent into checkmate this turn, you do not ask yourself if another move
would make you win in five moves. Or if your adversary is about to put you into
checkmate next turn unless you move your king, you will not move your knight!

In terms of QCSP™ checking that a move is considered as good or bad is a
question of constraint satisfaction. We will use the same mechanisms as back-
propagation, i.e., checking classical arc consistency of rules.

Let see how to choose good values on different examples. In each of these
example, the aim is to detect what would be a good value to try first for the first
variable. In these examples, ¢ and ¢ will we the quantifiers 3 and V or V and 3.

Self-preservation. In Example 5, a rule from a scope with the same quantifier
removes some values in the domain of the current variable. The ¢-player tries
not to block himself.

Ezample 5. P = ¢x1 ... px2[xe < 21]...,D(x1) = D(x2) = {1,2,3}. AC on the
rule of x5 removes the value 1 in the domain of x;. As the ¢-player wants to
be able to play again, it could be a better choice to try the values z; = 2 and
x1 = 3 at first. If ;1 = 1 is played, the player knows that he will not be able to
play for zs.

Blocking the adversary. In Example 6, a rule from a scope with the opposite
quantifier removes some values in the domain of the current variable. The ¢-
player tries to block the ¢-player.

Ezample 6. P = ¢x1...¢y1[y1 < x1] ..., D(z1) = D(y1) = {1,2,3}. AC on the
rule of y; removes the value 1 in the domain of x;. As the ¢-player wants to
prevent the ¢-player from playing, it could be a better choice to try the value
xy = 1 first. If 2; = 2 or 2; = 3 is played, the ¢-player could be able to keep

playing.

If two rules are in contradiction, the heuristic will take into account the
leftmost rule, because it is the rule which is the more likely to happen. We will
implement this in our algorithm by checking the rules from left to right.

Annoying the adversary. Now imagine the other player finds a good value for
his next turn with the same heuristic. Your aim is to prevent him from playing
well, so the above process can be iterated.

This point is illustrated with the problem from Example 2:
P = J1Vir[yr # x1]Fwa, 20 = y1, D(x1) = D(y1) = {1,2,3}, D(x2) = {1,2}.
The heuristic for finding values for y; detects that the value 3 is a good value
(zo will not be able to win). x; is aware of that, and will try to avoid this case.
His new problem can be expressed as P’ = Jx1Vy;[y1 # x1], L with D(xy) =
{1,2,3}, D(y1) = {3}. (If the I-player lets y; take the value 3, he thinks he will
lose. There may be a value for z; such that the 3-player will prevent the V-player
from making him lose). The heuristic for finding values for z; in P’ detects that
21 should choose to play 3 first to prevent y; from playing well.

In the next section, we will discuss on the algorithm for choosing the best
values for variables.

5.3 The algorithm

In this section, we describe the algorithm GDHeuristic (Goal-Driven Heuristic)
used to determine what values are good choices for the current variable. The
algorithm takes as input, the current variable and the rightmost scope that we
consider. Note that we consider the goal as a scope here. It returns a set of values
which are considered better to try first as defined in the above part.

Note that the aim of an efficient heuristic is to make the exploration as short
as possible. If we try to instantiate a variable of the 3-player, this means finding
a value that leads to a winning branch. If we try to instantiate a variable of the
V-player, this means finding a value that proves the V-player can win, that is, a
losing branch. We see that in both cases, the best value to choose is a value that
leads the current player to a win. Thus, in spite of the apparent asymmetry of
the process, we can use the same heuristic for both players.

Algorithm 1 implements the goal driven value ordering heuristic. It is called
when the solver is about to assign a value to the current variable. The aim is to
give the solver the best value to assign to the variable. In fact, it is not more
time consuming to return a set of equivalent values than a single value, so we
return a set of values for which we cannot decide the best between them.

In this algorithm, we use different functions we explain here:

saveContext() saves the current state (domains of variables)
restoreContext() restores to the last state.

AC(P;) runs the arc consistency algorithm on the problem P;

quant(var) returns the quantifier of var (3 or V)

scope(var) returns the scope containing var

dom(var) returns the current domain of var

initDom(var) returns the domain of var before the first call to GDHeuristic ().

We now describe the algorithm’s behavior. The first call to it is done with
GDHeuristic(current variable, goal). We try to find the best value for the
current variable, for the whole problem (the rightmost scope to consider is the
goal). Note that we could bound the depth of analysis by specifying another
scope as the last one.

First of all, we save the context (line 1) because we do not want our heuristic
to change the domains. The context will be restored each time we return a set
of values (lines 5, 14, 17 and 19).

For each future sub-problem (i.e., containing the variables at the right of the
current variable), we will try to bring back information in order to select the
best values for the current variable. This is the purpose of the loop (line 2). If no
information can be used, it will return the whole domain of the current variable
(line 20) since all its values seem equivalent.

For each sub-problem Py, , . containing all variables from scope 1 to scope
#5cope; we enforce AC (line 3). If the domain of any variable in Py, .1 is
reduced, we will decide the aim of our move: self-preservation (line 6), blocking
the adversary (line 7) or annoying the adversary (line 13). The heuristic performs
at most ¢° calls to AC, where ¢ is the number of scopes. It appears when all
recursive calls (line 13) are done with scope(Var) = LastScope — 1.

The rest of the main loop is made of two main parts. The first part, from line
4 to line 8, describes the case where the domain of the current variable is modified
by the scope #gcope. (Note that we know it is not modified due to an earlier
scope because we have not exited from the main loop ~line 2— at a previous turn.)
If the current variable has the same quantifier as the scope #scope, the heuristic
returns values consistent with the scope #scope (self-preservation line 6). If the

Algorithm 1: GDH euristic
input: CurrentVar, LastScope
Result: set of values
begin

1 saveContext ()

2 for #scope < scope(CurrentVar) + 1 to LastScope do

3 AC (P#Swpe)

4 if dom(CurrentVar) # initDom(CurrentVar) then

ReducedDomain < dom(CurrentVar)
restoreContext ()
6 if quant (CurrentVar) = quant(#scope) then
I return ReducedDomain
7 else
| return initDom(CurrentVar) \ ReducedDomain

8 else

9 if any domain has been reduced before scope #scope then
10 Var « leftmost variable with reduced domain in Pgg, , -1
11 if quant(Var) # quant(#scope) then
12 dom(Var) + initDom(Var) \ dom(Var)
13 values «— GDHeuristic (CurrentVar, scope(Var))
14 restoreContext ()
15 return values
16 else
17 restoreContext ()
18 return initDom(CurrentVar)
19 restoreContext ()
20 return initDom(CurrentVar)

end

quantifiers are different, the heuristic returns values that block any move for the
scope #Scope, i-€., values inconsistent with the rules of scope #gcope (blocking
the adversary line 7). The second part of the main loop, from line 9 to line 18,
represents the case where a variable (Var), between the current variable and the
scope #scope has a domain reduced (line 9). If Var and the scope #scope have
different quantifiers (annoying the adversary line 11), Var will try to block any
move for the scope #scope by playing one of the values not in its reduced domain
(line 12). We then try to find a good value for the current variable according
to this new information that we have for Var (line 13). If Var and the scope
5cope have the same quantifier (self-preservation line 16), Var will try to play
values in its reduced domain, that is, those that do not block its future move at
scope #scope.- But we know that arc consistency has not removed any value in
the domain of the current variable. This means that whatever the value selected
by the current variable, Var will be able to play in its reduced domain (i.e.,

good values). As a result, the heuristic cannot discriminate in the initial domain
of the current var (line 18).

If no domain is modified (except the domains in scope #scope), we will have
to check the next sub-problem (returning to the beginning of the loop).

Note that at lines 6 and 16, we immediately return a set of values for the
current variable. We could imagine continuing deeper to try to break ties among
equally good values for the current variable. We tested that variant and we
observed that there were not much difference between the two strategies, both
in terms of nodes exploration and cpu time. So, we chose the simpler one.

6 Experiments

We implemented a QCSP™T solver on top of the constraint library Choco [5].
Our solver accepts all constraints provided by Choco, and uses the classical con-
straint propagators already present in the library. In this section, we show some
experimental results on using either our goal-driven heuristic or a lexicograph-
ical value ordering heuristic. We compare the performance of this solver with
QeCode [2], the state-of-the-art QCSP™ solver, built on top of GeCode, which
uses a fail-first heuristic by default. This value ordering heuristic first tries the
value inconsistent with the earliest future scope. We also tried our solver with
the promise heuristic [6], but it was worse than Lexico. The effect of a heuristic
trying to ensure that constraints will still be consistent is that a player does not
want to win as early as possible (by making the other player’s rules inconsistent).
In all cases, the variable ordering chosen is the same: we instantiate variables in
order of the sequence.

We implemented the same model of the generalized Connect-4 game for our
solver and for QeCode.

Connect-4 is a two-player game that is played on a vertical board with 6
rows and 7 columns. The players have 21 pieces each, distinguished by color.
The players take turns in dropping pieces in one of the non-full columns. The
piece then occupies the lowest empty cell on that column. A player wins by
placing 4 of his own pieces consecutively in a line (row, column or diagonal),
which ends the game. The game ends in a draw if the board is filled completely
without any player winning. The generalized Connect-4 is the same game with
a board of m columns and n rows, where the aim is to place k pieces in a line.

At first we tried our solver on 4x4 grids, with alignments of 3 pieces. We ran
QeCode and our solver with Lexicographical heuristic (Lexico) or with Goal-
Driven heuristic on problems with different number of allowed moves, from 5 to
15. We compare the time taken to solve instances.

The results are presented in Figure 1 (note the log scale). There is a solution
for 9 allowed moves and more. As we can see, our solver with lexicographical
value ordering solves these instances faster than QeCode. It can be explained
by different ways. First, it is possible that Choco works faster in propagating
constraints defined as we did. The second reason is that QeCode uses cascade
propagation (propagation on the whole problem for each instantiation), whereas

our solver propagates only the rules of the current scope. Thus, our solver spends
less time in propagation. We can see that the Goal-Driven heuristic speed up
the resolution. It is about twice as fast as with Lexico.

100

CPU Time (5)

10000

1000 |

100 |

CPU Time (5)
5

Lexico —+—

Goal-Driven -3~

Number of Moves

10

Fig. 1. Connect-3, on 4x4 grid

Number of Moves

Fig. 2. Connect-4, on 7x6 grid

In next experiments, we only compare our solver with Lexicographical value
ordering and with Goal-Driven value ordering because QeCode was significantly
slower and the aim is to test the accuracy of our heuristic.

In Figure 2, the real Connect-4 game is solved. We vary the number of moves
from 1 to 13 and compare the performance in terms of running time. For a
number of moves less than 9, Goal-Driven heuristic does not improve the per-
formance, but from this point, the heuristic seems to be useful. In this problem,
all instances we tested are unsatisfiable.

CPU Time (s)

100000

10000

1000 F

100 |

10 £

T T
Lexico —+—

L
8 10
Number of Moves

Fig. 3. Noughts and Crosses, on 5x5 grid

In Figure 3, we solve the game of Noughts and Crosses. This is the same
problem except the gravity constraint which does not exist in this game. It

is possible to put a piece on any free cell in the board. Instead of having n
choices for a move, we have nxm choices. In the problem we tested, the aim
is to align 3 pieces. This problem has a solution for 5 moves. We see that the
Goal-Driven heuristic is very efficient here for solvable problems. Adding allowed
moves (increasing the depth of analysis) has not a big influence on the running
time of our solver with the Goal-Driven heuristic. The heuristic seems to be
efficient when there are more allowed moves than necessary to finish the game.

Discussion. More generally, when can we expect our Goal-Driven heuristic to
work well? As it is based on information computed by AC, it is expected to work
well on constraints that propagate a lot, i.e., tight constraints. Furthermore, as
it actively uses quantifier alternation and tries to provoke wins/losses before the
end of the sequence, it is expected to work well in problems where there exist
winning /losing strategies that do not need to reach the end of the sequence.

7 Conclusion

In QCSP*, we cannot propagate constraints from the right of the sequence to
the left. Thus, current QCSP™ solvers propagate only from left to right. In
this paper, we have analyzed the effect of propagation from right to left. We
have derived a value ordering heuristic based on this analysis. We proposed an
algorithm implementing this heuristic. Our experimental results on board games
show the effectiveness of the approach.

References

1. C. Ansétegui, C. Gomes, and B. Selman. The Achille’s heel of QBF. In Proceedings
AAATI05, 2005.

2. M. Benedetti, A. Lallouet, and J. Vautard. QCSP made practical by virtue of
restricted quantification. In Proceedings of IJCAI’07, pages 3843, 2007.

3. C. Bessiere and G. Verger. Strategic constraint satisfaction problems. In Proceedings
CP’06 Workshop on Modelling and Reformulation, pages 17,29, 2006.

4. L. Bordeaux and E. Montfroy. Beyond NP: Arc-consistency for quantified con-
straints. In Proceedings CP’02, pages 371-386, 2002.

5. Choco. Java constraint library, http://choco.sourceforge.net/.

6. P.A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems.
In Proceedings ECAI’92, pages 31-35, 1992.

7. LP. Gent, P. Nightingale, A. Rowley, and K. Stergiou. Solving quantified constraint
satisfaction problems. Artif. Intell., 172(6-7):738-771, 2008.

8. N. Mamoulis and K. Stergiou. Algorithms for quantified constraint satisfaction
problems. In Proceedings CP’04, pages 752-756, 2004.

