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Abstract. Instead of selling advertisement spots one by one, some French satel-

lite channels decided in 2002 to modify their commercial offer in order to sell 

packages of spots. These new General Conditions of Sale lead to an interesting 

optimization problem that we named the TV-BREAK PACKING PROBLEM 

(TVBP). We establish its NP-hardness and study various resolutions ap-

proaches including linear programming (LP), lagrangian relaxation (LR), con-

straint programming (CP) and local search (LS). Finally we propose a generic 

CP/LS hybridization scheme (Branch & Move) whose application to the TVBP 

obtained the best results in our experiments. Dual upper bounds of the maximal 

revenue are also computed. 

Keywords. Combinatorial Optimization, Constraint Programming, Linear Pro-

gramming, Local Search.  

1. Introduction    

Satellite TV channels draw an increasing audience in France (from 1 million to 12 

millions viewers in 2002). In addition to subscription fees, a large percentage of their 

revenues comes from broadcasted advertisements. Since 2001, accurate audience 

measurements are available for these thematic channels. Share of markets are generally 

smaller than those of hertzian general interest channels, but target groups (house-

wives, upper class, 15-24 year old people� ) are precisely identified what is an interest-

ing feature from an advertiser point of view since it helps designing sharp marketing 

strategies. 

Instead of selling advertisement �spots� (a slot of 30s during a TV break) one by 

one, the marketing department of a bundle of satellite channels decided to modify its 

commercial offer in order to sell packages of spots. Several types of packages are pro-

posed, characterized by their price, size (number of spots) and shape (approximate 

dispatching of spots into keys zones of the week like prime time, week-end, night� ). 

The most innovative aspect of this offer lies in an audience guarantee attached to each 

type of package, namely a lower bound on the total number of (forecasted) spectators 
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collected by spots constituting the package. This feature allows advertisers saving 

time (no need to select each TV-break) without loss of efficiency for the media plan 

(audience is guaranteed). 

For a TV-channel, these packages have to be designed in order to fit the demands 

of the advertising market. Besides, interaction between these packages must also be 

taken into account because of the limited capacity of each TV-break: for instance sell-

ing too many week-end specific packages can prevent selling packages spanning the 

whole week. Due to such interactions, packages need to be prepared beforehand. In 

the above example, building packages on demand may lead to inextricable situations if 

the first clients all choose packages of the �week-end� family. 

The problem considered in this paper takes as input a list of packages (price, size, 

shape and audience requirement) that the marketing department would like to build for 

a given week. The objective is to build all these packages, maximizing the total value of 

those fulfilling their audience constraint. We name it the TV-BREAK PACKING 

PROBLEM (TVBP). We shall point out in section 2.2 that it can be seen a generalization 

of the NP-hard 3-PARTITION problem.  

The problem is defined in Section 2 and its NP-hardness is proven. Section 3 is de-

voted to mathematical programming approaches (linear programming and lagrangian 

relaxation) essentially providing upper bounds of the maximal revenue. In Section 5 a 

Constraint Programming (CP) model of the problem is designed and a Local Search 

(LS) improvement process applicable to a solution is introduced. Finally, an original 

CP/LS hybrid algorithm (Branch&Move) is defined and applied to the TVBP, yielding 

high-quality solutions. After a presentation of computational results we conclude on 

real-world variants of the TVPB. 

2. The TV-Break Packing problem 

In this section we give a formal (linear) description of the TV-BREAK PACKING 

PROBLEM and we establish it NP-hardness. Its underlying flow structure is also em-

phasized. 

2.1. Description 

In a TV channel week there is a fixed number of commercial breaks. The TV-BREAK 

PACKING PROBLEM described below essentially consists in partitioning this limited re-

source into packages, subject to audience collecting constraints. 

Each TV break is characterized by its forecasted audience and by the number of ad-

vertisement messages it  can contain (all messages having equal duration). Instead of 

selling these spots 1 one by one, the marketing department of the TV channel wants to 

prepare several packages of spots. For each package they define its price, size (number 

of spots) and �shape�. This shape is a hierarchical time-zones decomposition of the 

                                                                 
1 What we call �spot� is a slot of 30 seconds during which an advertisement can be broadcasted. 
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week (week-end, prime-time, etc� ) with minimum and maximum number of spots on 

each zone. Each package is also assigned an audience requirement i.e. a minimum to-

tal number of spectators (sum of forecasted audiences). Finally no package can have 

two spots in the same TV break.  

The TV-BREAK PACKING PROBLEM (TVBP) consists in building all these packages, 

satisfying all size and shape constraints and maximizing the total revenue of those ful-

filling their audience requirement.  

With n the number of packages and m the number of TV breaks, we note qi, ri and gi 

the size, audience requirement and price of package i and cj and aj the capacity and 

audience of TV break j. There are pi time-zones for package i. Each zone zi,k (k
th

 zone of 

package i), is a subset of TV breaks and, for the sake of readability of the General 

Condition of Sales, two different zones of a package are always either non-overlapping 

or included in each other (2). Finally qi,k
min 

and  qi,k
max

 are the minimum and maximum 

number of spots of package i in zone zi,k (1). The composition of packages is given by 

binary variables Xij, equal to 1 when a message of package i will be broadcasted during 

TV break j (0 otherwise). Finally a binary variable Yi is attached to each package: Yi 

equals 1 if and only if package i contacts the required number of spectators, in which 

case its price gi can be counted in the global revenue. 

 

NAME: TV-BREAK PACKING PROBLEM  

INSTANCE: Two integers n and m. Six vectors of non-negative integers q,p,r,g of 

length n and c,a of length m. n collections of triplets {(zi,k,qi,k
min

, qi,k
max

) | k  ∈[1,pi]}, such 

that 

max
,

min
,, 0],1[, kikikii qqandmzpkni ≤≤⊆≤∀≤∀  (1) 

{ }likilikii zzzzplkni ,,,, ,,,, ∅∈∩≤∀≤∀  (2) 

OBJECTIVE: Find  X:[1,n]×[1,m]→{0,1} and Y:[1,n]→{0,1}  such that 

i

mj

ij qXni =≤∀ ∑
≤

 (3) 

j

ni

ij cXmj ≤≤∀ ∑
≤

 (4) 

max
,

min
,

,

, ki

zj

ijkii qXqpkni

ki

≤≤≤∀≤∀ ∑
∈

 (5) 

ii

mj

ijj YrXani ≥≤∀ ∑
≤

 (6) 

Maximizing ∑
≤ni

iiYg  (7) 
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Since the capacity of each TV-break cannot be exceeded, TV-break j cannot appear 

in more than cj different packages (4). Each package must have the correct size (3) and 

satisfy shape constraints (5), that is to say that for each zone zi,k, the number of TV-

breaks selected by package i must belong to [qi,k
min

, qi,k
max

]. When a package fulfills its 

audience requirement its Yi variable can be set to 1 in equation (6) and its price gi can 

be added to the objective function (7).  

It is important to note that all packages must be built, even if some audience con-

straints are violated. In other words we consider that package rejection is forbidden in 

our model: if a package has insufficient audience the final decision for this package 

(removal, discount, combination with another package�  ) belongs to the marketing  

department. In the rest of this paper we will focus on feasible instances of the problem, 

namely instances having integer solutions at least with Yi=0 ∀ i. 

2.2. Complexity 

Proposition 1. TV-BREAK PACKING is NP-hard in the strong sense. 

Proof. Let us consider the NP-complete 3-PARTITION problem [Garey & Johnson 

1979]. 

INSTANCE: A finite set X of 3n positively weighted elements such that: 

2
3)(

4
3],3,1[ wiwwni <<∈∀  

(8) 

where w(i) is the weight of the i
th
 item and w  is the average weight. 

QUESTION: Can X be partitioned into n disjoint subsets of equal weight w3 ? (note 

that equation (8) enforces these subsets to contain exactly three elements). 

With any instance of 3-PARTITION, it is possible to associate an instance of TVBP 

by the following polynomial transformation. 

• m=3n,  

• ∀ i≤n qi=3,ri= w3 , pi=0, gi=1, 

• ∀ j≤3n cj=1, aj=w(j),  

The original 3-PARTITION instance is feasible if and only if the optimum of the as-

sociated TVBP instance is n.< 

2.3. Underlying flow structure 

Thanks to property (2), equations (3),(4) and (5) (namely size, capacity and shape 

constraints) can be modelled by a flow [Ahuja et al. 1993] in the following graph, illus-

trated in Fig. 1. 
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Pack 4

Monday 7h6

Sunday 23h15
3

Monday 8h403

Monday 9h55
4

Sunday 20h40
4

Sunday 21h20
4

Sunday 22h15
5

Pack 1

Pack 2

Pack 3 18

24

21

21

Candidate

Packages

Available TV 

breaks

Number of 

messages

Capacities

[14 ,16]

[5 ,7 ]

T ime  zones

spectators

8500

9200

7800

15500

21000

19800

12100

requirements

210000

160000

215000

210000

 

Fig. 1. Flow model 

Each package i is a source node for qi units of flow. One node is also associated to 

each time-zone zi,k with a single incoming arc of minimum and maximum capacities qi,k
min

 

and qi,k
max

. The origin of this arc is the node representing the smallest zone containing 

zi,k if any, or the i
th
  source node otherwise. The uniqueness of this incoming arc is en-

sured by (2) thus zone nodes form a tree for each package. Leaves of these �shape 

trees� are linked with nodes representing contained TV breaks by arcs of capacity 1. 

Each of these TV break nodes has a single outgoing arc of capacity ci toward a com-

mon sink. Note that this flow model allows determining the feasibility of the problem in 

polynomial time. This underlying flow structure also advocates for mathematical pro-

gramming approaches (section 3) or for the use of a flow constraint in a CP model (sec-

tion 4.3). 

Concerning audience constraints (6) they are linear equations whose satisfaction 

brings a revenue gi ∀i≤n. As pointed out in previous section, these constraints are re-

sponsible for the NP-hardness of the problem. 

3. Mathematical Programming 

Linear Programming and Lagrangian Relaxation can be used to build solutions of 

the TVBP or to compute upper bounds of the maximal revenues. We first focus on the 

heuristic use of continuous or lagrangian relaxations to build feasible solutions. Then 

various upper bounds are considered, including those obtained by a lagrangian relaxa-

tion of capacity constraints. 

3.1. Building solutions from relaxations  

The linear model defined by equations (3) to (7) involves O(nm) binary variables. A 

commercial MIP solver like Xpress-MP manages to optimally solve the smallest in-

stances of our TVBP benchmark but fails to provide feasible solutions for many other 
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instances2. Therefore we use a greedy rounding procedure to build feasible packages 

from fractionary ones.  

Integral(i) à VRAI si Y
i  
∈{0,1} et∀j X

i j
∈{0,1} 

greedy à

while ∃ i | (Y
i
 ≠0 and not(integral(i)))

Yi::=1

let ε:=0 in

while not(integral (i)) 

let R := {j | Xij ∈[1- ε,1[ } in

if R=∅ increase ε
else for j in R Xi j := 1

solveLP()

if noLPSolution() backtrack up to statement �Y
i:
=1�and set Y

i
:= 0 

solveMIP()

 
Fig. 2. Greedy rounding algorithm 

In this loop, the choice of the fractional package i to which the rounding procedure 

will apply is based on the fractional Yi value, its reduced cost, the size of the package 

and its gain. Once all packages have been considered the residual problem solveMIP() 

merely consists in finding a feasible flow for discarded packages (Yi=0). 

An alternative approach consists in dualizing requirements constraints (equations 

(6)) introducing n non-negative lagrangian multipliers µi. The resulting lagrangian 

function to be maximized reads as follows: 

Maximize ∑ ∑∑
≤ ≤≤













−+

ni

ii

mj

ijji

ni

ii YrXaYg µ  (9) 

For a given vector µ, each Yi is only determined by the sign of (gi-µiri). As for Xij 

variables their computation is equivalent to solving a maximum cost flow where each 

arc i→j  has cost µiaj. The intuitive interpretation of this relaxation is that arcs of pack-

ages failing to fulfill their audience requirement will be subsidized by the correspond-

ing µi factor. This relaxation can be used to obtain primal solutions by �freezing� tech-

niques [Rottembourg 1999]. Indeed the primalization of each dual solution is 

straightforward: it merely consists in setting some Yi variables to 0 to ensure the satis-

factions of constraints (6). Therefore we can fix packages one by one with the follow-

ing algorithm, in order to obtain a good primal solution.  
freeze à

A={1,2,� n}    // A is the set of �non-frozen �packages

whileA≠ ∅
solveLagrange(A)  // find the Lagrangian optimal with packages outside of A constrained to keep their cu rrent solution

let S  =  {i ∈ A | ∑a
j
X

ij  ≥ r
i
} in

if S= ∅fin

else A := A - {argmin
S
(∑ajXij)}     // �freeze�the satisfied package with the smallest excess of audience

 

Fig. 3. Freezing algorithm 

Lagrangian primalization (LAGp) and LP rounding (LPr) are compared in Table 2 

(page 16). We note that LAGp is three times slower than LPr and that the obtained 

                                                                 
2 See computational results in section 6.1 
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average qualities are similar (respectively 76% and 78% of the best known upper 

bound). However LAGp is more robust in the sense that the relative difference never 

exceeds 30% when LPr is better, whereas it can reach 400% when LAGp performs 

better. 

3.2. Computing Upper Bounds for the TVBP 

A first way to compute upper bounds for the TVBP consists in using the linear 

model defined in section 2.1. This linear bound can be tightened via the addition of 

knapsack inequalities like those that are automatically computed by a solver like 

Xpress-MP. It is also possible to perform a complete branch and bound on Yi vari-

ables, relaxing only integrality constraints on Xij variables. It shall be noted that the la-

grangian relaxation of audience requirements presented in the previous paragraph is 

ineffective for the computation of stronger bounds than the trivial linear bounds. In-

deed integrality constraints have no incidence on the lagrangian sub-problem. The 

consequence of this Integrality Property [Geoffrion 1974] is that the obtained upper 

bound will equal the continuous optimum of the linear model. 

We consider here the dualization3 of capacity constraints ([Frangioni 1997], [Ge n-

dron et al. 1999]). Relaxing equation (4) introducing one lagrangian multiplier λj for 

each TV-Break j yields the following lagrangian function: 

∑ ∑∑
≤ ≤≤











−+

mj ni

ijjj

ni

ii XcYg λ  (10) 

For any λ, maximizing this function amounts to maximizing for each package i≤n the 

following objective  

maximize ∑
≤

−
mj

ijjii XYg λ subject to equations (3), (5) and (6) 
(11) 

Observation 1. Relaxation (10) is stronger than the continuous relaxation of the 

linear program (strictly on some instances). 

The lagrangian dual optimum is known to be as least as tight as the linear optimum 

[Geoffrion 1974]. The following example establishes that it is strictly stronger on some 

instances of the TVBP. For instance with n=m=2, g1=g2=1, q1=q2=1, r1=r2=2, a1=3, 

a2=1, c1=c2=1, the continuous solution Y1=Y2=1 and ∀ i,j Xij=0.5 satisfies all the con-

straints and has value 2, whilst the lagrangian upper bound obtained with λ1=1 and 

λ2=0 is 1. (max{(Y1 + Y2) + (1 � (X11 + X21))} = 1 because equation  (6) requires Yi ≤ Xi1 

since the audience requirement cannot be fulfilled without the first TV-break (whose 

audience is 3). More precisely the lagrangian bound is the continuous optimum of 

function (7) subject to constraints (4) over the Cartesian product of convex hulls as-

sociated to each package. <  

                                                                 
3 Identical bounds would be obtained using vectors (Yi, Xi1,� , Xim) satisfying (3), (5) 

and (6) as columns in a Dantzig-Wolfe decomposition. 
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Observation 2. The langrangian sub-problems (11) are tractable. 

When Yi=0, equation (6) has no impact and the problem is a minimum cost flow in a 

tree where arc towards leaves have cost λj. On the contrary the case Yi = 1 is NP-hard 

since the minimization of ∑λjXij subject to ∑ajXij  ≥ ri (equation (6)) is a knapsack prob-

lem. Nonetheless, the standard pseudo polynomial dynamic programming approach 

can be adapted to this special knapsack, taking into account constraints (3) and (5).  

Let us assume, without loss of generality, that TV-breaks are sorted such that each 

zone is an interval. We define a weight α(j) = min(ri,∑{λjXij� | j�≤ j}), η0(j) = ∑{Xij� | j�≤ j} 

and for each zone zi,k a counter ηk(j) = ∑{Xij� | j�∈zi,k ∧  j�≤ j}.  Let 

S(j) = (α(j), η0(j),η1(j), � ηpi(j)) be the state of a dynamic program, after having chosen 

the value of Xij� ∀j�≤ j. When j is the last screen of zone k  then ηk(j) must belong to 

[qi,k
min

, qi,k
max

] and when j=m, both requirement and  size constraints must be satisfied: 

α(m)=ri and η0(m)=qi. From state S(j) = (α,η0,η1,� ) possible transitions are 

(α,η0,η1,� )→ (α,η0,η1,� )  of cost 0 and (α,η0,η1,� )→ (max(ri,α+aj+1),η0,η1,� ) of cost 

λj. In fact the state of counters η0,η1, η2�  can be compressed using the following 

facts: 

1. In state S(j) only counters of zones including j are relevant, 

2. when a zone with tight bounds [q,q] is divided in two zones: [q1
min

,q1
max

] and 

[q2
min

,q2
max

], counters associated to zones z1 and z2 are useless: it is sufficient to re-

strict allowed values for the main counter η0 at the end of z1 to the interval 

[max(q1
min

,q - q2
max

), min(q1
max

,q - q2
min

)], 

3. when a zone with bounds [q
min

,q
max

] is divided into p subzones with bounds 

[q1
min

, q1
max

],[q2
min

, q2
max

] �  [qp
min

, qp
max

], the value of  its counter η after  the i
th
 

subzone necessarily belong to the following interval: 

[max(∑j≤I qj
min

, q
min

-∑j>i qj
max

), min(∑j≤i qj
max

, q
max

 -∑j>i qj
min

)].    

With these properties the maximum number of states needed to represent counters is 

smaller than 70 on all the instances of our benchmark. Finally the total number of pos-

sible transitions in our dynamic program is smaller than 10
9
, a huge but tractable size 

for modern computers. In practice we use a MIP program to solve this  lagrangian sub-

problem. < 

Observation 3. Upper bounds can be improved combining regrets for each pack-

age with current lower and upper bounds. 

Maximizing this sub-problem for both possible values of Yi (obtaining opti(v) for 

v∈{0,1}) we can define the reduced cost ρ  i(v) = max(0,opti(1-v) - opti(v)), representing 

the loss that would result if Yi was to be set to its non-preferred value. The following 

�additive� bound can then be extracted and subtracted from the upper bound: 

minloss=min{∑i≤n∑v∈{0,1} ρ  i(v)Yi subject to lb ≤ ∑i≤n g iYi ≤ ub} where lb and ub denote 

respectively the current best known solution and upper bound4 to the problem. These 

regrets can also be used to filter Yi values in a branch and bound exploration: value v 

for Yi can be removed if  ρ  i(v) > ub-lb. < 

The following table reports upper bounds obtained by linear programming (LP) and 

by our lagrangian relaxation of capacity constraints (LAG) on a benchmark of 20 in-

                                                                 
4 Note the virtuous cycle: when the upper bound is improved it can be used to make it even 

stronger. 
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stances, available from http://e-lab.bouygues.com. These instances involve from 4 to 

100 packages with up to 1500 messages and 500 TV-breaks. As for shape constraints, 

the average number of zones per package (column  p ) varies from 9 to 25 and the nest-

ing depth of these zones is usually 2 or 3 and exceptionally 4. The pure lagrangian 

bound is better than the linear one on 10 instances (in bold font). The following pair of 

columns compares the LP model enriched with Xpress-MP automatically generated 

cuts with the lagrangian relaxation strengthened by the use of regrets, both bounds 

being rounded to the largest smaller subset sum of {gi | i ≤ n}. Finally we improve both 

bounds by a branch and bound limited to selection variables (Y). The last column re-

ports relative gaps with respect to best known solutions (cf. Table 2).  

Table 1. Upper Bounds 

 
Pure Models 

Enriched  

Models 

Branch& Bound 

on Y 

Bench ∑qi n m p  LP LAG LP LAG LP LAG 

Gap 

A1 64 4 208 14 31139 29 735 29 600 29 600 29 600 29 600 0.0% 

A2 544 37 414 13 262966 262 966 262 966 262 966 262 966 262 966 0.8% 

A3 1224 73 458 15 590934 590934 588 465 588 465 588 465 588 465 2.1% 

A4 1492 84 456 15 730298 730298 730 298 730 298 730 298 730 298 0.3% 

B1 85 8 167 9 13474 12 300 12 300 12 300 12 300 12 300 0.0% 

B2 262 16 167 11 44100 43 350 42 600 42 600 42 600 42 600 0.0% 

B3 325 21 172 11 52800 52 800 52 800 52 800 52 800 52 100 0.0% 

B4 448 21 170 13 79000 78 972 79 000 78 300 79 000 78 300 1.8% 

C1 68 4 157 21 18443 16 756 18 300 15 300 15 300 15300 0.0% 

C2 108 7 180 20 31404 29 617 28 200 28 200 28 200 28200 0.0% 

C3 457 31 218 20 127900 127 900 127 900 127 900 127 900 127200 0.0% 

C4 809 50 219 20 238253 237 186 237 600 235 300 235 300 235300 3.2% 

D1 138 13 286 19 36821 32 300 32 600 32 300 32 600 32300 0.0% 

D2 691 52 286 23 185800 185 800 185 800 185 800 185 800 184700 3.9% 

D3 810 56 286 25 216400 216 400 216 400 216 400 216 400 216400 3.8% 

D4 916 63 286 25 244850 244 854 244 850 244 850 244 850 244850 3.6% 

E1 159 16 224 17 28039 25 130 25 130 25 130 25 130 25130 0.0% 

E2 902 96 291 16 163540 163 540 163 540 163 540 163 540 163540 3.9% 

E3 983 99 291 16 179323 179323 179 220 179 040 178 080 176580 7.1% 

E4 1082 100 291 18 196600 196 599 195 940 195 940 195 940 194140 4.1% 

Average CPU time  30s 15mn  2mn  15mn  5mn  3 hours  

The conclusion of this study is that the polyhedron of our lagrangian relaxation is 

tighter (strictly on 5 instances) than the one of the enriched linear model. Both mo dels 

produce better bounds when included in a limited tree search. In order to improve 

these bounds, valid inequalities involving several packages should be design (since 

mono-package facets are implicit in our lagrangian formulation). Concerning CPU 

times, our experiments showed that bundle methods (available in Artelys Dualis library 

[Triadou et al. 2003]) were up to 10 times faster5 than a naïve sub-gradient algorithm on 

these instances. Finally a good initial value for lagrangian multipliers is λj = ε / aj with 

ε > 0 (tend to avoid precious TV-breaks unless necessary).  

                                                                 
5 Another advantage of these methods is that they end with a convex optimality proof within a 

certain window. 
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4. Constraint Programming and Local Search 

4.1. Constraints, support tuples and local search 

Constraint Programming [Montanari 1974] is a problem-solving paradigm in which a 

problem is represented as a set of variables and constraints (see formal definitions in 

section 4.2). A constraint maintains the domain of all attached variables with a filtering 

algorithm removing values that are inconsistent with the mathematical meaning of the 

constraint. Each such inference on a variable can trigger propagation of other con-

straints of this variable. This constraint propagation mechanism allows detecting in-

feasibilities or reaching a fix point with restricted domains. From a branch and bound 

point of view, Constraint Programming is indeed a pruning technique. 

It shall be noted that constraint propagation is based on infeasible values. The fil-

tering algorithm of a constraint aims at removing infeasible values from the domain of 

its variables, i.e. values belonging to no tuple of the relation consistent with current 

domains. When all such inconsistent values are detected, the filtering algorithm is said 

to be complete. In the past few years, in order to perform more accurate filtering on rich 

n-ary constraints, several global filtering algorithms have been developed that are 

usually based on OR polynomial algorithms. Most of these operationally global con-

straints [Bessière & Van Hentenryck, 2003] maintain a feasible tuple consistent with 

current domains of variables. When no such support tuple exists, the constraint fails 

(detects a contradiction), otherwise it is used by the filtering algorithm. For instance 

the reference matching of the AllDifferent constraints [Régin 1994] ensure the feasibil-

ity of the constraint, and the strongly connected component decomposition based on 

this matching offers complete filtering.  

The support tuple maintained by a constraint can be any element of the constraint 

support set, whereas some tuple may be much closer to �full� feasibility (of the whole 

problem) than others. Besides modifying the support tuple of a constraint is generally 

much easier than finding one. For instance moving from one matching to another (All-

Different constraints) is just exchanging two arcs. Likewise, modifying a feasible flow 

requires no advanced knowledge of flow algorithms literature (c.f. 4.4). To the best of 

our knowledge CHOCO�s Flow constraint was the first to give access to its internal ref-

erence flow, used as an oracle in [Benoist et al. 2002]. While keeping internal sophisti-

cated OR algorithms in the constraint black box, we claim that constraint programmers 

can offer safe6 APIs for reading or modifying the support of a constraint, allowing 

�moves� from a valid support to another. 

 Therefore after the presentation of a set of definitions and the description of a CP 

model for the TVBP centered on a flow constraint, we propose in paragraph 4.4 a local 

search approach to the TVBP based on local modifications of a feasible flow. This 

support tuple of a main constraint is the central element of the Branch&Move hybridi-

zation described in section 5. 

 

                                                                 
6 Making sure that no invalid modification is accidentally performed. 
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4.2. Definitions 

Given K an ordered set and D = D1× D2×�  Dn with Di⊆ K for all i∈[1,n] (domains of 

variables), we define the following objects: 

1. Constraint7: a constraint R is a relation on K
n
 (R ⊆ K

n
).  

2. Support set: the support set of relation R on D is supp(R,D)  = R∩D. Omitting D, we 

will note the support set of a constraint R as supp(R)=supp(R,D)  with D equal to 

current domains. 

3. Support tuple: a support of R is a tuple x∈supp(R)  

4. Constraint Satisfaction Problem: A constraint satisfaction problem on K is a triplet 

(n,D,P) where P is a collection of constraints P={R1,R2� .Rm} on K
n
. 

5. Solutions: Solutions of P are sol(P)= R1∩ R2∩ .. Rm∩D. 

6. Potential: With δK a distance on K, we define the potential ∆(R,x) of constraint R 

with respect to tuple x∈K
n
 as the L1 distance from x to the current support set of R. 

∑
≤

∈
=∆

ni

iiK
Rsuppy

yxxR ),(min),(
)(

δ  (12) 

Note that ∆(R,x) equals 0 if x∈supp(R) and +∞ if supp(R)=∅. This potential liter-

ally measures the distance to feasibility of a tuple x for constraint R. For a binary 

constraint R involving two variables of domains D1 and D2, ∆(R,x) can be com-

puted by enumeration in complexity O(|D1|× |D2|). Moreover, the potential of a linear 

constraint like ∑Xi ≥ X0, merely equals max(0, x0 - ∑xi) (slack variable). When a exact 

computation of ∆(R,x) would be too costly, the distance to a feasible tuple of R 

(�empirically close�) is an upper bound of ∆(R,x). 

7. Corrective decision: A corrective decision for a conflicting pair R,x (a pair with 

∆(R,x)>0) is a constraint A such that x∉A and A∩supp(R,D)≠∅. In other words it is 

a constraint discarding x whilst consistent with R. A non-empty support for R is 

sufficient to ensure its existence.   

8. Neighbourhood: A neighbourhood structure for R is a function NR,D associating to 

each support tuple x of R a subset NR,D(x) ⊂ supp(R,D) such that x∈ NR,D(x).  

9. Selection: A function move defined on supp(R,D)  is a selection function for 

neighbourhood NR,D  if and only if move(x) ∈ NR,D(x).  

10.Improvement: Given a strict order < on K
n
, move is an improving selection function 

if and only if ∀ x, move(x)= x ∨  move(x) < x. For instance the potential order <P 

defined by x <P y ⇔ ∑R∈P∆(R,x) <  ∑R∈P∆(R,y) is a strict order on K
n
. For optimiza-

tion problems a second criteria based on the objective function can be added. 

11. Descent: A descent from x ∈ supp(R,D) is the iteration of an improving selection 

function move until a fix point is reached8:  
descent(x) à while (move(x) ≠ x) x := move(x), return x 

 

Example with relations on K
n 
={0,1,2}

2
: 

•  D1=D2={0,1}, R={(0,0),(0,1),(1,0),(2,2)},. 

                                                                 
7 Without loss of generality we extend constraints of smaller arity to relations on Kn. 
8 such a fix point is necessarily reached since Kn is finite and <P is a strict order. 
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•  The support set of R is supp(R,D)=R∩(D1×D2) = {(0,0),(0,1),(1,0)} 

•  (0,1) is a support of R (among the three possible ones). 

•   With R�={(0,0),(1,1),(2,2)} a second relation on {0,1,2}
2
, solutions of problem 

P={R,R�} are sol(P)= R∩R�∩(D1×D2)={(0,0)}. 

•  The potential of R with respect to tuple (1,1) is ∆(R,(1,1))=1 because the clos-

est support is (0,1)∈supp(R,D)  and δ((0,1),(1,1))=1. 

•  A possible corrective decision for pair R,(1,1) is A={(0,x) ∀ x} since (1,1)∉A 

and A∩supp(R,D)={(0,0),(0,1)}≠∅.   

•     A possible neighbourhood for R is NR,D: (x,y) → {(x,0),(0,y),(x,y)}.  

•  For this simple neighbourhood, move: (x,y) → (0,0) is a possible selection 

function since (0,0) belongs to the neighbourhood of any tuple of supp(R,D).   

•  This selection function is strictly improving with respect to the potential or-

der <P, since (0,0) is the only solution of P.  

4.3. Constraint Programming Model for the TVBP 

Our CP model for the TVBP uses the same variables and domains are our MIP model 

(section 2.1). However we use the following global constraints rather than linear con-

straints in order to ensure stronger propagations. 

The underlying flow problem described in 2.3 can be embedded in a single flow 

constraint. This constraint [Benoist et al. 2002] ensures local consistency around each 

node propagating flow conservation rules. It also maintain a feasible flow consistent 

with current domains (using a highest-label preflow-push algorithm), throwing a con-

tradiction as soon as no such support exists. It shall be noted that this support en-

compasses all decisions variables of the problem: once flow variables are set, setting Yi 

to their resulting upper bounds (if consistent) leads to a feasible (but not necessarily 

optimal) solution.  

Linear constraints would be semantically sufficient to model requirements equa-

tions (6), but would poorly interact with (3). For instance if m=5, a=[30,11,6,4,1] and 

q1=2, the initial upper bound of r1Y1 would be 30+11+6+4+1=52. Therefore we intro-

duce a complete filtering algorithm instead, detecting the exact upper bound and nec-

essary or impossible TV-breaks. For instance the best upper bound in our exa mple is 

30+11=41, and event r1Y1≥20 triggers X11=1. This constraint (selection of the q best ob-

jects among m) is similar to the one described in [Fahle & Sellmann 2002] for 0-1 knap-

sack constraints, without the difficulty of considering the last critical item (since all ob-

jects have equal sizes). The amortized complexity of this cost-based filtering equals the 

number of involved 0-1 variables. 

Finally our CP model consists of a single flow constraint covering equations (3), 

(4)(5) and a set of n �trivial knapsack constraints� covering equations (3) and (6). As 

for the optimization criteria, it is  modeled with a variable whose initial domain is [0,∑gi] 

and linked with the linear combination (7) by an equality constraint.  
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4.4. Local moves for the TVBP 

Our improvement process is based on 1-opt and 2-opt moves. The support flow 

gives a certain number of spectators to each package. Some packages receive more 

spectators than their objective, others not. Thus we try to give good TV breaks (i.e. 

those with many spectators) to non satisfied packages possibly through exchanges 

with satisfied packages. For i ≤ n, we note Γi the number of spectators granted to 

package i in the support flow. When Γi < gi , the potential of the i
th
 audience constraint 

with respect to the support flow is gi-Γi.  

Given package i and TV-breaks α and β, we name 1-opt the following modification 

of the support flow. Remove one unit of flow on the path from source i to node α and 

add one unit of flow on the path from souce i to node β. This move is feasible if the 

obtained flow still respects capacities. It is an improving move if Γi < gi (before the 

move) and aβ > aα, that is to say if it decreases the potential of package i. 

Given packages i and j and TV-breaks α and β, we name 2-opt the following modifi-

cation of the support flow. Remove one unit of flow on paths from source i to node α 

and from source j to node β; add one unit of flow on the path from source i to node β 

and from source j to node α. This move is feasible if the obtained flow still respects 

capacities. It is an improving move if Γi < gi (before the move), aβ  > aα and 

Γj  - gj  > aβ  - aα, that is to say if it decreases the potential of package i whilst package j 

remains satisfied. 

α

β

α

β

ri

rj

ri

1-opt 2-opt  
Fig. 4. Local moves 

Both 1-opt and 2-opt moves can be specified to the flow constraint as a list of arcs 

forming a cycle in the non-directed graph. Scanning the cycle in the direction of the 

first arc, one unit of flow is added or removed to arcs depending on their direction, 

checking on the fly that capacities remain respected. This API is available in CHOCO�s 

flow constraint, with an additional parameter for the desired amount of circulating flow. 

It defines a neighborhood structure for the flow constraint. Cycles for 1-opt and 2-opt 

moves are illustrated on Fig. 4, with one unit of flow removed on dotted arcs and 

added on others. 

5. The Branch and Move Algorithm 

For problems where a principal constraint can be identified (namely an underlying 

structure for which a polynomial algorithm can be embedded in a constraint), we pro-

pose a support -guided branching scheme and an associated cooperation between 

Constraint Programming and Local Search. We name this procedure Branch and 

Move. In this section we define this algorithm and apply it to the TVPB. 
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5.1. Definition and motivations 

Let R0 be the main constraint of a problem P and x an element of its support. If the 

potential of x with respect to all other constraints is null (∀R∈P, ∆(R,x)=0) then x is a 

solution of P. Otherwise we decide to select among all additional constraints the one 

with highest potential and to branch on an associated corrective decision9. More pre-

cisely we select R maximizing ∆(R,x) and A a corrective decision for R,x. Then we suc-

cessively consider sub problems P∪A and P∪A, with A=K
n
-A (complementary deci-

sion). In order to make this branching strategy more efficient, the global 

appropriateness of the support tuple x is improved by local search before each choice: 

according to a neighbourhood structure suitable for constraint R0, a descent proce-

dure is applied on x. The resulting Branch and Move algorithm reads as follows: 

solve(P) à // returns true if P is feasible, false otherwise

if not (propagate(P)) return false, // constraints propagation, returns false in case of inconsistency
else 

let x := descent(getSupport(R0)),                   // improvement of the support tuple of R 0 by local search

Rmax := argmax{∆(R,x), R∈P}  in // selection of the most unhappy constraint w.r.t . x

(if (∆(Rmax,x) = 0) return true                  // if x satisfies all constraints it is a solution of P
else 

let A = selectCorrective(R
max

,x) in // selection of a corrective decision for R
max

return (solve(P∪A) or solve(P∪A)) // recursive exploration

 
Fig. 5. The Branch and Move algorithm 

It is important to note that the improvement of the support by local search is com-

pletely non-destructive: it has no impact at all on current domains since only the sup-

port tuple is modified. Instead of jumping to another node of equal depth, modifying 

already instantiated variables as in Incremental Local Optimization [Caseau & Labur-

the 1999], we modify the values taken by remaining variables  in the support tuple. 

This absence of impact on current domains keeps the search tree complete whilst the 

embedded problem-specific local search algorithm avoids wasting time in a costly sub 

tree searching for a solution laying just a few moves far from current support tuple, or 

trying the ensure the satisfaction of constraints that are consistent with a nearby sup-

port tuple. The latter case points out that the improvement process helps identifying 

critical points: constraints remaining in conflict with the obtained support (�resisting 

to local moves�) may be the most critical ones. The Branch and Move algorithm can 

be compared to the Branch and Greed [Sourd & Chrétienne 1999] and Local Probing 

techniques [Kamarainen & El Sakkout 2002] that are also based on heuristic computa-

tions at each node, searching for possible extension of the current partial assignement. 

From a more general point of view these algorithms belong to the family of CP/LS hy-

brids [Focacci et al 2003], [Focacci & Shaw 2002]. 

From Local Search point of view, the whole process can be seen as the systematic 

exploration of the support set of the main constraint. In this context, the initial im-

                                                                 
9 This approach is directly inspired from what can be done in a MIP branch and bound when a 

continuous solution is found: a violated integrality constraint is selected, and a decision is 

taken to bring the LP solver to modify this best continuous solution accordingly. 
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provement process is a standard greedy descent starting from the support tuple. Now 

the local optimum escaping strategy significantly differs from tabu or simulated an-

nealing paradigms. Instead of changing the solution by non-improving moves, the 

landscape itself is modified thanks to a corrective decision. The propagation of this 

decision removes many tuples from the landscape, including the current one. The fil-

tering algorithm computes a new support tuple close to the discarded one. Then a new 

greedy descent is applied from this new starting point to reach the closest local opti-

mum in this new filtered landscape. Since these decisions are embedded in a CP 

search tree, a complete enumeration of possible landscapes is performed yielding to an 

exact local search algorithm. When such a complete enumeration would be too costly, 

the CP framework gives us the opportunity to use well-tried partial tree search tech-

niques developed in the last decade. Restricted Candidate Lists, discrepancy based 

search, credit search, barrier limit, etc�  are likely to guide the enumeration through a 

diversified set of promising landscapes [Focacci et al 2003]. 

For a more comprehensive description of Branch and Move principles and related 

work, we refer the reader to [Benoist & Bourreau, 2003]. 

5.2. Applying the Branch and Move algorithm to the TVBP 

Only improving moves are performed, starting with the pass of 1-opt moves. Pack-

ages with the largest negative Γi - ri (closest to 0) are served first. Symmetrically, pack-

ages with the largest positive Γi - ri are �robbed� first10 during the 2-opt pass.  

At each node of the search tree, this local search descent is performed and the re-

sulting support flow is evaluated, summing the prices of satisfied packages (Γi - ri ≥ 0). 

If this evaluation is greater than the current best, this solution is registered. Then the 

least unsatisfied package is considered. Values 1 and 0 are successively tried for vari-

able Xij, where j is the best TV-break not given to package i in the support flow. Note 

that Xij=1 is a corrective decision for the audience constraint of package i. However 

this constraint is not the one with highest potential as suggested in 5.1 since in this 

Weighted CSP context we prefer to fulfill one constraint rather than decreasing the po-

tential of two constraints.   

6. Conclusions 

6.1. Computational results 

In the following table we compare solutions obtained by solving approaches de-

scribed in this paper. For the sake of readability, results are expressed as percentages 

of the best known upper bounds (obtained in section 3.2). Therefore 100 always de-

                                                                 
10  Packages whose audience constraints cannot be satisfied (Yi = 0) are treated as if their audi-

ence objective was null (ri = 0). A third pass is also added to distribute spectators from the 

most unsatisfied packages to the least unsatisfied ones.  
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notes an optimal solution11, and for open instances the relative gap between the best 

solution and the best upper bound is �100-bestSol�. Bold font is used for the best so-

lution on each line and for the names of closed benchs. Finally 300 seconds12 have 

been granted to each algorithm (line �CPU� reports averages times for best solution).  

Table 2. Comparative results 

Bench ∑qi n m MIP CP LS LAGp LPr BM 

A1 64 4 208 100 100 66.9  59.5  52.0  100 

A2 544 37 414 87.7  64.0  76.2  68.9  89.1  99.2  

A3 1224 73 458 0 64.2  75.8  71.9  89.1  98.0  

A4 1492 84 456 0 59.4  80.1  73.7  94.2  99.7  

B1 85 8 167 100 100 85.4  100 20.3  100 

B2 262 16 167 100 64.6  72.5  76.3  100 95.8  

B3 325 21 172 100 52.8  65.3  71.6  84.6  98.5  

B4 448 21 170 97.2  56.2  70.0  66.4  86.8  97.1  

C1 68 4 157 100 60.1  4.6  100 79.7  100 

C2 108 7 180 100 65.2  48.2  69.9  97.5  100 

C3 457 31 218 97.6  65.7  66.8  73.1  94.7  97.6  

C4 809 50 219 92.1  56.7  72.4  77.9  96.0  95.3  

D1 138 13 286 100 100 75.4  100 24.0  100 

D2 691 52 286 83.2  47.7  65.2  68.7  91.0  96.3  

D3 810 56 286 0 51.5  75.3  66.5  90.9  96.3  

D4 916 63 286 81.5  52.3  68.7  70.0  89.9  96.6  

E1 159 16 224 100 77.8  100 100 19.1  100 

E2 902 96 291 71 60.0  64.3  68.9  80.6  96.2  

E3 983 99 291 0 62.9  73.7  70.0  89.0  93.4  

E4 1082 100 291 0 64.2  70.1  70.8  90.1  94.9  

Average result 71 66 69 76 78 98 

Average CPU time 90s 50s 0.1s 100s 30s 13s 

A commercial solver like Xpress-MP (column MIP) is very efficient to solve small 

instances but obtains poor results on larger instances, even sometimes no solution at 

all (on fives instances). LP-based greedy algorithms LAGp and LPr of section 3.1 per-

form better on those large problems. The CP column lists results obtained using the CP 

model of section 4.3 in a tree search, tending to give the best possible TV-break to the 

least unsatisfied package at each node. This approach is robust but never manages to 

prove optimality even when the best solution is found. Solutions �LS� result from the 

application of our greedy descent with the initial support flow as starting point. These 

local optimums have medium quality. No optimal solution is found even on small in-

stances like C1. 

Finally combining Constraint Programming and Local Search in our Branch & Move 

hybrid leads to a robust and efficient algorithm: the gap with the best known upper 

bound never exceeds 5%. Thanks to local search performed on the flow support and to 

our branching strategy, these excellent solutions are found very quickly (13s in aver-

age). Besides, the focus on critical packages (remaining non-satisfied after the LS 

pass) seems to be a very good first-fail heuristic. The resulting decrease of the number 

of nodes allows completing the search on four of the smallest instances whilst these 

                                                                 
11 This figure is underlined when the solving algorithm proves the optimality 
12 Note that granting 6 hours to Xpress-MP leads to better solutions for problems B4, C3, C4 

and E4 (respectively 98.6, 100, 96.9, 96.1) while some others remain without any solution. 

This extended computation time in not acceptable in the operational context anyway. 
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optimality proofs were not obtained by an exploration based on the same CP model but 

deprived of the LS oracle.  

This successful use of the support of the main constraint of a problem raises the is-

sue of the generalization of this idea to problems where no such central constraint can 

be identified. In such cases, the support tuples of several constraints would have to 

be synchronized, possibly through lagrangian decomposition [Guignard & Kim, 1987]. 

6.2. Hard and easy extensions of the TVBP 

A first easy extension of the TVBP consists in taking into account mutual exclusion 

between advertisements: for instance several car advertisements cannot coexist in a 

single TV-break. These protected commercial sectors (cars, perfumes, mobile phones, 

etc� ) can be represented by colors in our model. In the list of candidate packages, the 

marketing department can mark some packages with one of these colors to specify the 

economic sector to which this package is intended to be sold. With k i the color of 

package i (0 coding for �non-protected�), these additional constraints read as follows: 

10, ≤>∀≤∀ ∑
=≤

→
γ

γ
ikni

jiXmj  (13) 

In our flow model (section 2.3) this is equivalent to the insertion of one collecting node 

per color before each TV-break node. Therefore all approaches listed in this paper ap-

ply to this case. 

A second aspect ignored in this paper is audience segmentation. In practice, the 

forecasted audience of a TV-break is detailed by target groups and the audience re-

quirement of different packages may be focused on different target groups. When 

each package is limited to one target group this extension tends to make the problem 

easier since a TV-breaks exchange (2-opt) between packages with different targets can 

increase the collected audience of both packages. However algorithms need to be 

adapted when several requirements constraints are allowed for each package (for in-

stance guaranteed audiences on children and housewives).   

Finally our model could also help the marketing department in the choices of prices 

for each package. Indeed the price of a family of packages depends on the audience 

constraint stated for these packages: if the guaranteed audience is set too high it will 

be difficult to satisfy (very few precious packages will be built), but if it is set too low 

the corresponding price will be too small to yield high revenues (many cheap pack-

ages). Finding the optimal price for each family of packages is a bi-level optimization 

problem whose second stage is the TVBP.   
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