R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows : theory, algorithms and applications, 1993.

N. Beldiceanu and E. Contejean, Introducing global constraints in CHIP, Mathematical and Computer Modelling, vol.20, issue.12, pp.97-123, 1994.
DOI : 10.1016/0895-7177(94)90127-9

URL : https://hal.archives-ouvertes.fr/hal-00442810

T. Benoist and E. Bourreau, Improving Global Constraints Support by Local Search, COSOLV 03, 2003.

T. Benoist, E. Gaudin, and B. Rottembourg, Constraint Programming Contribution to Benders Decomposition: A Case Study, CP-02, pp.603-617, 2002.
DOI : 10.1007/3-540-46135-3_40

C. Bessière and P. Van-hentenryck, To Be or Not to Be ... a Global Constraint, Proceedings CP'03, pp.789-794, 2003.
DOI : 10.1007/978-3-540-45193-8_54

A. Bockmayr, N. Pisaruk, and A. Aggoun, Network Flow Problems in Constraint Programming, CP-01, pp.196-210, 2001.
DOI : 10.1007/3-540-45578-7_14

URL : https://hal.archives-ouvertes.fr/inria-00101102

E. Bourreau, Traitement de contraintes sur les graphes en programmation par contraintes, 1999.

Y. Caseau and F. Laburthe, Heuristics for Large Constrained Vehicle Routing Problems, Journal of Heuristics, vol.5, issue.3, 1999.

T. Fahle and M. Sellmann, Cost Based Filtering for the Constrained Knapsack Problem, Annals of Operations Research, vol.115, issue.1/4, pp.73-94, 2002.
DOI : 10.1023/A:1021193019522

M. L. Fisher, The Lagrangian Relaxation Method for Solving Integer Programming Problems, Management Science, vol.27, issue.1, pp.1-18, 1981.
DOI : 10.1287/mnsc.27.1.1

F. Focacci, F. Laburthe, and A. Lodi, Local search and constraint programming, Handbook of Metaheuristics, pp.369-403, 2003.
DOI : 10.1007/978-1-4419-8917-8_9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Focacci and P. Shaw, Pruning sub-optimal seach branches using local search, Proceedings of CP-AI-OR-02 pages, pp.181-189, 2002.

A. Frangioni, Dual ascent methods and multicommodity fow problems, 1997.

M. R. Garey and D. S. Johnson, Computers and intractability, a guide to the theory of NPcompleteness, 1979.

B. Gendron, T. Crainic, and A. Frangioni, Multicommodity capacitated network de-sign, Telecommunications network planning, pp.1-19, 1999.

A. M. Geoffrion, Lagrangean relaxation for integer programming, Math. Programming Stud, vol.2, pp.82-114, 1974.
DOI : 10.1007/BFb0120690

M. Guignard and S. Kim, Lagrangian decomposition: a model yielding stronger Lagrangian bounds, Mathematical Programming, pp.215-228, 1987.

O. Kamarainen and H. Sakkout, Local Probing Applied to Scheduling, pp.155-171, 2002.
DOI : 10.1007/3-540-46135-3_11

U. Montanari, Networks of constraints: Fundamental properties and applications to picture processing, Information Sciences, vol.7, pp.95-132, 1974.
DOI : 10.1016/0020-0255(74)90008-5

J. Régin, A filtering algorithm for constraints of difference in CSPs, AAAI 94 Twelth National Conference on Artificial Intelligence, pp.362-367, 1994.

B. Rottembourg, Une heuristique basée sur le dual Lagrangien pour un problème combinatoire de gestion de parc de matériel, Journées du groupe MODE, 1999.

F. Sourd and P. Chrétienne, Fiber-to-object assignment heuristics, European Journal of Operational Research, vol.117, issue.1, 1999.
DOI : 10.1016/S0377-2217(98)00193-3

URL : https://hal.archives-ouvertes.fr/hal-01195565

M. Trick, A dynamic programming approach for consistency and propagation for knapsack constraints, Proceedings of CPAIOR-01 pages, pp.113-124, 2001.

C. Triadou, C. Lemaréchal, J. Maeght, and A. Renaud, A bundle method for convex optimization: implementation and illustrations, ISMP 03, 2003.