
HAL Id: lirmm-00331358
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00331358

Submitted on 16 Oct 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Complex Schema Mapping Discovery and
Validation by Structurally Coherent Frequent

Mini-Taxonomies
Khalid Saleem, Zohra Bellahsene

To cite this version:
Khalid Saleem, Zohra Bellahsene. Automatic Complex Schema Mapping Discovery and Validation by
Structurally Coherent Frequent Mini-Taxonomies. 2008. �lirmm-00331358�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00331358
https://hal.archives-ouvertes.fr


Automatic Complex Schema Mapping Discovery and
Validation by Structurally Coherent Frequent

Mini-Taxonomies

Khalid Saleem
LIRMM - UMR 5506 CNRS

University Montpellier 2
161 Rue Ada, F-34392 Montpellier

saleem@lirmm.fr

Zohra Bellahsene
LIRMM - UMR 5506 CNRS

University Montpellier 2
161 Rue Ada, F-34392 Montpellier

bella@lirmm.fr

ABSTRACT
Match cardinality aspect in schema matching is categorized
as simple element level matching and complex structural level
matching. Simple matching comprises of 1:1, 1:n and n:1
match cardinality, whereas n:m match cardinality is con-
sidered to be complex matching. Most of the existing ap-
proaches and tools give good 1:1 local and global match car-
dinality but lack the capabilities for handling the complex
cardinality issue. In this paper we demonstrate an auto-
matic approach for creation and validation of n:m schema
mappings. Our technique is applicable to hierarchical struc-
tures like XML Schema. Basic idea is to propose an n:m
nodes mapping between children (leaf nodes) of two match-
ing non-leaf nodes of two schemas. The similarity computa-
tion of the two non-leaf nodes is based upon the syntactic
and linguistic similarity of node labels; supported by sim-
ilarity among the ancestral paths from nodes to the root.
The n:m mapping proposition is then verified with the help
of mini-taxonomies extracted from a large set of same do-
main schema trees. The mini-taxonomies are automatically
extracted using frequent sub-tree mining approach; higher
the frequency, higher the confidence of reliability. The ver-
ification algorithm performs comparison between the mini-
taxonomies and the subtrees rooted at non-leaf nodes which
guide the system for authenticity of proposed n:m mapping.

Keywords
Simple Matching, Complex Matching, Mini-taxonomies, Col-
laboration, Tree Mining, Large scale

1. INTRODUCTION
Schema matching relies on discovering correspondences be-
tween similar elements of two schemas. Several different
types of schema matching tools [19, 22] have been studied,
demonstrating their benefit in different scenarios. In data in-
tegration schema matching is of central importance [2]. The

need for information integration arises in data warehousing,
OLAP, data mashups [14], and work flows. Omnipresence
of XML as a data exchange format on the web and the pres-
ence of metadata available in that format force us to focus
on schema matching, and on matching for XML schemas in
particular.

Match cardinality aspect in schema matching is categorized
as simple element level matching [19] and complex structural
level matching. Simple matching comprises of 1:1, 1:n and
n:1 match cardinality, whereas n:m match cardinality is con-
sidered to be complex matching. Research literature shows
numerous works [3, 7, 9, 11, 13, 18, 21] on simple match-
ing. Most of the existing approaches and tools give good
1:1 local and global match cardinality but lack the capabili-
ties for handling the complex cardinality issue. Therefore, in
this paper, we try to propose a technique for complex match
discovery.

In this work, we consider schemas to be rooted, labeled trees.
This supports the computation of contextual semantics in
the tree hierarchy. The contextual aspect is exploited by
tree-mining, making it feasible to use almost automated ap-
proximate schema matching [8], even in a large-scale sce-
nario (schemas have large number of nodes). The individual
semantics of node labels have their own importance. We
utilize linguistic matchers, based on tokenisation, and syn-
onym and abbreviation tables, to extract the concepts hid-
den within them.

Tree mining techniques extract similar subtree patterns from
a large set of trees and predict possible extensions of these
patterns. A pattern starts with one node and is incremen-
tally augmented. There are different techniques [5] which
mine rooted, labeled, embedded or induced, ordered or un-
ordered sub-trees. The function of tree mining [24] is to find
sub-tree patterns that are frequent in the given set of trees.
We have utilised this aspect of tree mining for computing the
mini-taxonomies for domain specific concepts, from a given
set of schemas, input as trees [20]. The method is a combi-
nation of concept terms analysis, using syntactic, lexical and
contextual meanings of terms and tree mining algorithm.

Our Contributions
In this paper, we focus particularly, though not exclusively,
on n:m complex mappings. We present a new methodology



for matching two schemas, covering the element level and
structural level mappings discovery. The main features of
our approach are as follows:

1. The approach is almost automatic and hybrid in na-
ture.

2. It is based on a tree mining technique supporting large
size schema matching. To support tree mining, we
model schemas as rooted ordered (depth-first) labelled
trees.

3. It extends the tree mining data structure proposed in
[24]. It uses ancestor scope properties (integer logical
operations) on schema nodes to enable fast calculation
of contextual (hierarchical) similarity between them.

4. Our methodology discovers semantically approximate
1:1, 1:n, n:1 simple mappings between nodes of the two
schema trees.

5. It suggests perspective n:m complex mappings between
the two schemas and then validates these propositions
using already available mini-taxonomies, representing
schema concepts.

6. It utilises a new ancestor similarity measure for con-
textual matching, which overcomes the problem of in-
verted parent-child mapping (if in source schema a
node xs is parent of node ys and in target schema
node xt is parent of node yt, and there exists matches
from xs to yt and ys to xt).

7. It intuitively highlights the use of automatically ex-
tracted mini-taxonomies from a large set of domain
specific schemas, supporting the collective intelligence
aspect.

8. The approach is implemented as a prototype. We re-
port on experiments using different real 1 and synthetic
scenarios.

Outline
The remainder of the paper is organized as follows. Section 2
presents the preliminaries of our matching approach, related
definitions and concepts. Section 3 gives the related work
in schema matching, specifically complex schema matching.
In Section 4 we describe our approach for discovering and
validating complex schema matching between schemas pro-
cessed as tree structures. Section 5 demonstrates a running
example to support our approach. Section 6 presents the ex-
perimental evaluation along with discussion on the results.
Section 7 outlines future perspective and concludes.

2. PRELIMINARIES
Schema matching finds similarities between elements in two
or more schemas. We model the schemas as tree structures
for fast contextual semantics extraction.

Definition 1 (Schema Tree): A schema S = (V, E) is a
rooted, labelled tree[24], consisting of nodes V = {0, 1, . . . , n},
1http://www.metaquerier.cs.uiuc.edu/repository/,
http://www.cise.ufl.edu/project/thalia.html

and edges E = {(x, y) | x,y ∈ V }. One distinguished node r
∈ V is called the root, and for all x ∈ V , there is a unique
path from r to x. Further, lab:V → L is a labelling function
mapping nodes to labels in L = {l1, l2, . . . }.•

2.1 Match Cardinality
There can be several types of correspondences between el-
ements of two schemas, depending upon the number of el-
ements participating in a match, as schema match cardi-
nality [19]. The match cardinality is mainly categorized as
global or local. Global cardinality is related to the number
of appearances of an element in the total match results be-
tween two input schemas. Local schema match cardinality
characterises the number of elements participating in a cer-
tain match. Local schema match cardinality can be of four
types.

There are three simple element level match cardinalities and
one structural level complex match cardinality [19]. Since we
are matching schema tree structures (elements are nodes),
where the leaf nodes hold data (XML schemas), we place
more emphasis on leaf node matching. Our categorisation
of node match cardinalities is driven by the node’s leaf or
non-leaf (inner node) status.

i) 1:1 - one node of source schema corresponds to one node
in the target schema; leaf:leaf or non-leaf:non-leaf.
ii) 1:n - one node in the source schema is equivalent to a
composition of n leaves in the target schema; leaf:non-leaf,
where a source leaf node is mapped to a set of n leaf nodes of
the subtree rooted at the non-leaf node in the target schema.
iii) n:1 - n leaves in source schema compositely map to one
leaf in the target schema; non-leaf:leaf, allowing a set of n
leaf nodes of the subtree rooted at the non-leaf node in the
source schema, to be mapped to a target leaf.
iv) n:m - n leaves in source schema compositely map to a
composition of m leaves in the target schema; non-leaf:non-
leaf, allowing a set of n leaf nodes of the subtree rooted at
the non-leaf node in the source schema, to be mapped to a
set of n leaf nodes, of subtree rooted at the non-leaf node in
target schema.

The first three types of local match cardinality are normally
evaluated using the element level information. Whereas the
n:m cardinality also requires structural information of the
input schemas.

Example 1 (Match Cardinality): For 1:1, cardinality is
straightforward. Let us consider Figure 1 for 1:n and n:1
match. A match is found between Ssourcename[2, 2]2, child
of author, and Stargetname[2, 4], child of writer, with chil-
dren first and last. We have a 1:2 mapping
(name)source : (name − first, name − last)target

3.
Also, there is a match between Ssourcepublisher[3, 4] and
Stargetpublisher[6, 6], implying a n:1 mapping of (publisher−
name)source : (publisher)target, i.e, 1:1 mapping.•

Semantically speaking, a match between two nodes is fuzzy.

2In figure 1, for each node [x,y], x denotes the depth-first
traversal number and y denotes the last node number of
subtree rooted at x.
3- delimiter is used to show the downward traversal within
the tree.



Figure 1: Two schemas with Node Scope values for
each node.

It can be either an equivalence or a partial equivalence. In
a partial match, the similarity is partial. It is highlighted in
the example 2.

2.2 Label Semantics
Label semantics correspond to the meaning of the label (ir-
respective of the node it is related to). It is a composition
of meanings attached to the tokens making up the label. As
shown by Examples 3 and 4, different labels can represent
similar concepts.

Definition 2 (Label Semantics)A label l is a compo-
sition of m strings, called tokens. We apply the tokeni-
sation function tok which maps a label to a set of tokens
Tl = {t1, t2, . . . , tm}. Tokenisation [11] helps in establishing
similarity between two labels.
tok : L → P(T ), where P(T ) is a power set over T.

Example 2 (Partial Match): In source schema Name
= ‘John M. Brown’, is partially matched to LastName =
‘Brown’ and FirstName = ‘John’ in the target, because
Name also contains the MiddleInitial = ‘M’. •

Example 3 (Label Equivalence): ‘FirstName’, tokenised
as {first,name}, and ‘NameFirst’, tokenised as {name, first},
are equivalent, with 100 % similarity.•

Example 4 (Synonymous Labels): ‘WriterName’, to-
kenised as {writer,name}, and ‘AuthorName’, tokenised as
{author, name} are equivalent (they represent the same con-
cept), since ‘writer‘ is a synonym of ‘author‘.•

2.3 Node Semantics
Semantics of node are given with combination of the seman-
tics of the node’s label and its contextual placement in the
tree [11]. Contextual placement of a node within the tree is
calculated with the help of the concept Node Scope.

Definition 3 (Node Scope)In schema S each node x ∈ V
is numbered according to its order in the depth-first traver-
sal of S (the root is numbered 0). Let SubTree(x) denote the
sub-tree rooted at x, and x be numbered X, and let y be
the rightmost leaf (or highest numbered descendant) under
x, numbered Y . Then the scope of x is scope(x)=[X,Y]. In-

tuitively, scope(x) is the range of nodes under x, and includes
x itself, see Figure 1. The count of nodes in SubTree(x) is
Y − X + 1.

Scope Properties
Scope properties help in discovering the contextual place-
ment of a node [24]. Property testing involves simple integer
comparisons. We utilise these properties in frequent subtree
detection. Example 5 gives an overview of the use of scope
values.

Node Scope Properties
Given x[X, Y ], xa[Xa, Y a], and xr[Xr, Y r].
Property 1 Leaf Node(x): X = Y .
Property 2 Non-Leaf Node(x): X < Y .
Property 3 Ancestor (x, xa): xa is an ancestor of x;
Xa <X and Ya ≥Y.
Property 4 RightHandSideNode (x, xr): xr is Right
Hand Side Node of x with Non-Overlapping Scope; Xr > Y .

Example 5 (Scope Properties Use) : Let us consider
schema tree Ssource in Figure 1. The nodes name[2, 2],
name[4, 4] and title[5, 5] are leaf nodes according to Prop-
erty 1. Whereas book[0, 5],author[1, 2] and publisher[4, 5]
satisfy Property 3, thus these are the non-leaf nodes. There
are two nodes with label name. If we have to check for
the name of author, we can perform the Ancestor check
(Property 3) on each of the two nodes with respect to node
author[1, 2]. The check returns true for node name[2, 2] and
false for node name[4, 4]. Consider node author[1, 2] and
node publisher[3, 4]. The two nodes have non-overlapping
scope according to Property 3, and can be considered as
cousin nodes.

3. RELATED WORK
Previous work on schema matching was developed in the
context of schema translation and integration [3, 1], knowl-
edge representation [11], machine learning, and information
retrieval [8]. All these approaches aimed to provide a good
quality matching but require significant human intervention.
The direct human participation in large scale scenarios re-
quires very user friendly interfaces, and abates the overall
performance of the tool. Therefore we need to automate the
schema matching approaches to the maximum.

Simple matching with quality has been successfully demon-
strated in [1, 11, 17] by utilising element level and structural
level schema knowledge. There has been very limited work
on complex schema mapping. Use of data instance and ma-
chine learning techniques for simple and complex schema
matching has been shown in [8, 6] for relational and XML
schemas. [23] presents a user-centric approach using fixed
point iteration algorithm similarity flooding (SF) [17] and
other linguistic techniques to calculate complex mappings.

Authors in [6] demonstrate a semi-automatic tool called
iMAP, which discovers 1:1 and 1:n mappings between two
relational schemas. The approach utilises machine learning
algorithms on data instances to predict 1:n mapping expres-
sions. It employs knowledge like past complex matches, do-
main integrity constraints, and overlap data. In [12], He et
al. workout a mining technique for integrating a large num-
ber of web query interfaces, considered as schemas. The



Table 1: A brief survey of schema matching techniques with local cardinality
Authors Year Characteristics Card.
Saleem et al. [21] 2008 PORSCHE: Provides a large scale schema matching and integration method using tree mining technique 1:1,1:n
Wang et al. [23] 2007 SCIA: Presents an interactive schema matching tool with the ability to create executable mappings create

executable mappings
n:m

Lee et al. [15] 2006 Computes similarity based upon domain ontology (evolves on user feedback), and ancestral path similarity 1:1,1:n
Boukottaya et al. [4] 2005 The approach exploits the ancestor, child and leaf context of elements to compute similarity 1:1
Do et al. [7] 2007 COMA++:Finds similarities between two large schemas/ontologies, using several lexical and contextual

algorithms, compositely
1:1

Bernstein et al. [3] 2004 PROTOPLASM:Presents a interactive framework to incorporate state of the art matching techniques,
ranging from string similarity to data mining algorithms

1:1

He et al. [12] 2004 MGS/DCM:Proposes automatic correlational data mining techniques for schema matching and integration,
holistically

n:m

Dhamankar et al. [6] 2004 iMAP: Computes complex match expressions using data instance based machine learning techniques n:m
Ehrig et al. [9] 2004 QOM:Matches large ontologies with time performance in view, employing iteratively lexical match algo-

rithms to reduce the search space for an element with each iteration
1:1

Giunchiglia et al. [11] 2004 S-Match is a hybrid matcher, which utilizes Wordnet and tackles schema matching as propositional satis-
fiability problem

1:1

Embley et al. [10] 2004 Utilizes manually constructed small ontology snippets and data ranges to discover schema matchings n:m
Melnik et al. [18] 2003 RONDO:Uses an algorithm which propogates nodes similarity to neighbouring nodes within the iterative

fix point computation
1:1

Doan et al. [8] 2003 GLUE: Provides a composite matcher for ontology taxonomy matching based on data instances exploitation
using machine learning techniques

n:m

Hernedez et al. [13] 2002 CLIO:Utilizes data instances (Naive Byes Learner) and element level schema matching algorithms and
generates SQL based mappings

1:1

proposed framework holistically exploits the set of input
schemas, thus exploring the contextual information beyond
two schemas. The algorithms DCM and MGC makes it fea-
sible to compute the n:m schema matching. The iMAP and
DCM/MGC approaches exploit schemas with low depth for
elements (schema considered as hierarchical structures) and
show a very limited use of structural matchers.

Another interesting work regarding XML documents trans-
formation in [15] presents comprehensively the 1:1, 1:n and
n:1 schema matching approach between two schemas. The
algorithms used in this work are massively dependent on
structural information of schemas. The proposed method
worked in two step. First, preliminary matching between
leaf nodes of the two schemas are computed using an exter-
nal domain ontology and leaf node similarity. In second step
the contextual aspect of nodes is computed as path similar-
ity, i.e., similarity between the ancestor nodes of the cur-
rent node being matched. In the same application domain,
work by Boukottaya and Vnoirbeek [4] further enhances the
contextual aspect of the nodes. The approach takes into ac-
count three levels of context similarity; ancestor, child and
leaf. The two research works help in exploiting the hierar-
chical structures with larger depth.

[21] presents a large scale schema integration framework,
which uses a top down matching approach. The technique
follows the idea that some level of ancestor similarity is must
for an element down the hierarchy. Linguistic and tree min-
ing algorithms are used to compute element level matchings.
Like wise QOM [9] is a robust, time performance method
for RDF based schema and ontology matching. Use of on-
tologies/ontologies for finding complex matchings have also
been demonstrated in some works. [10] uses manually cre-
ated mini-ontologies for domain specific concepts, to gen-
erate n:m correspondences between two schemas. We give
a brief survey of schema matching with reference to local
match cardinality in Table 1 .

4. COMPLEX MATCH DISCOVERY - OUR
APPROACH

In this section we describe our approach toward complex
match discovery. We base our work on some previous re-
search presented in [21, 20]. Our work is based on the
concepts defined as Schema Tree, Label Semantics, Node
Semantics and Scope Properties (Ancestor and Right-hand-
side node) as given in section 2.

4.1 Architecture
The architecture of our approach for complex match dis-
covery is shown in Figure 2. The approach is composed
of four modules: (i) Pre-Phase, (ii) Mini-Taxonomies Gen-
eration, (iii) Simple Schema Matching, and (iv) Complex
Match Proposition Validation, supported by a repository
which houses oracles and concepts’ mini-taxonomies, schemas
and match results for future reuse.

Pre-Phase module processes the input as trees, calculating
the depth-first node number and scope (Figure 6), for each
of the nodes in the input schema trees. At the same time, for
each schema tree a listing of nodes is constructed, sorted in
depth-first traversal order. As the trees are being processed,
a sorted global list of labels over the whole set of schemas is
created by the Terms Extraction sub-module.

In Similar Terms Computation and Clustering sub-module,
label concepts are computed using linguistic techniques. We
tokenise the labels and expand the abbreviated tokens us-
ing an abbreviation oracle. Currently, we utilise a domain
specific user defined abbreviation table. Further, we make
use of token similarity, supported by an abbreviation ta-
ble and a manually defined domain specific synonym table.
Label comparison is based on similar token sets or similar
synonym token sets. The architecture is flexible enough to
employ additional abbreviation or synonym oracles or arbi-
trary string matching algorithms (details in [21]). Similar
labels are clustered together and each cluster is represented
by a label from the respective cluster, which is the most



Figure 2: Architecture for complex matching dis-
covery and validation using automatically generated
mini-taxonomies.

frequent label with in the set of input schemas (details in
[20]).

Mini-Taxonomies Generation module uses a tree mining ap-
proach to extract frequent sub-trees from the set of schema
trees. We use frequent pattern growth mining algorithm
based on research in [24]. During the process all labels with
in a cluster of similar labels are logically replaced by the
cluster representative label. This helps in computing the
right count of frequency for a label concept [20].

Simple Schema Matching module, generates simple match-
ings, along with complex match propositions, based upon
labels’ linguistic similarity and node’s contextual similarity
using node scope values. The node scope criteria is used
to evaluate the ancestor similarity factor with time per-
formance. Complex Match Proposition Validation (CMPV)
module forms the main core of this research work. We use a
novel algorithm to validate the proposed complex matches
with the help of automatically generated domain specific
mini-taxonomies. These two modules form the core of our
work, presented in this paper. Following sections provide a
detail discussion about them.

The Repository is an indispensable part of the system. It
houses oracles: thesauri and abbreviation lists. It also stores
schemas and mappings, and provides persistent support to
the mapping process.

4.2 Simple Match Discovery
In this section we describe the Simple Schema Matching
module. Before we move on, first we give a brief descrip-
tion of Pre-Phase module.

Pre-Phase
Algorithm nodeScope (Figure 3) is a recursive method, for
calculating node scope of each node in the schema, generat-
ing a schema node list V . It takes as input the current node,
its parent reference, and the node list. In its first activation,
reference to the schema root is used as the current node:
there is no parent, and V is empty. A new node list element
is created (L3.2-6)4 and added to V . Next, if the current
node is a leaf, a recursive method update (Figure 4) is called.
This adjusts the rightmost node reference for the current V
element and then goes to adjust its ancestor entries in V .
This method recurses up the tree till it reaches the root,
and adjusts all elements on the path from the current node
to the root. Next, in nodeScope (L3.11-12), the method is
called for each child of the current node. Parameter d gives
the depth level with in the tree during the depth-first traver-
sal. We utilise the node depth value for adjusting the match
confidence related to ancestor mapping. At the start of the
recursive algorithm for node scope calculation, value of d is
0, depicting level 0 or root node level. It is incremented at
L3.10, before the recursive call for next level (L3.12).

Algorithm : NodeScope

Data: p, c, V , d
p: parent node list element, c: current node,
V : nodes list, d: node depth
Result: V
begin1

x ← New nodesListElement(c)2

x.number ← length(V )3

x.parentNode ← p4

x.rightMostNode ← ∅5

x.depth ← d6

Add x to V7

if c has no children then8

update(x, x)9

d ← d + 110

for each child of c do11

nodeScope(x, child, V , d)12

end13

Figure 3: Algorithm for schema tree node scope cal-
culation, along with node depth.

Algorithm : update

Data: xc, xr

xc : Current nodes list element
xr : Right most node element of
current nodes list element
begin1

xc.rightMostNode ← xr2

if xc ¬ Root Node then3

update(xc.parentNode, xr)4

end5

Figure 4: Algorithm for updating scope entries.

Simple Schema Matching module matches two schemas for
possible mappings based upon the linguistic and contex-
tual (ancestor) similarities. The method discovers mappings
with 1:1, 1:n and n:1 cardinality and proposes n:m complex

4Lx.y refers to line y of algorithm in figure x



matches between the elements of the two schemas. The pro-
posed n:m mappings are validated with the help of mini-
taxonomies representing possible domain concepts.

During simple match process, a match for every node (L5.8)
from source schema tree list V1 to target schema tree list
V2 is calculated. For each input node x, a set Vt of possi-
ble mappable target nodes in the target schema is created,
producing the target search space for x. The criterion for
the creation of this set of nodes is node label equivalence
or partial equivalence (L5.9,10). Vt can have one or several
(L5.11) candidate target nodes. Next step is the ancestor
map existence check. The method returns a value α based
on the ancestor node mapping and the proximity of the map-
ping node to the current node. If the target search space Vt

has more than one node, method ancestorMap is executed

Algorithm : SimpleMatch

Data: V1, V2 Lists of nodes of Schema 1 and 2
Lx Source list V1 node label1

Lxtl Set of labels of candidate nodes in target list V22

Vt Set of candidate nodes in target list V23

xt Target node4

α Similarity Confidence5

β Match Type6

begin7

for each node x ∈ V1 do8

Lx ← lab(x)9

Lxtl ← similarLabels(Lx, V2)10

if Lxtl ¬ ∅ then11

Vt ← VT(Lxtl)12

αtemp ← 0.013

α ← 0.014

for each node xti ∈ Vt do15

αi ← ancestorMap(x, xti)16

if αi > αtemp then17

αtemp← αi18

α ← αi19

xt ← xti20

if (Leaf(x)∧Leaf(xt)) then21

β ← 1122

else23

if (¬Leaf(x)∧ ¬Leaf(xt)) then24

β ← nn25

else26

if (Leaf(x)∧ ¬Leaf(xt)) then27

β ← 1n28

else29

if (¬Leaf(x)∧ ¬Leaf(xt)) then30

β ← n131

map(x,xt,β,α)32

end33

Figure 5: Algorithm for simple matching between
two schemas.

for each perspective matching node (L5.15-20). The candi-
date target node with the highest α value is selected as the
mappable target node.

In ancestorMap method two functions are executed in par-
allel. Firstly, it checks for map existence for some ancestor
node of current source node and secondly the proximity of
the ancestor node from the current node. Ancestor node
check is performed by utilising the ancestor node scope prop-

erty, and if a map exists, then the proximity is calculated
and returned as α. To proceed further, another added check
is confirmed that the target schema node to which the source
schema ancestor node is mapped to, is also an ancestor of
the candidate target node. This is a variation of upward co-
topy distance discussed in research [16]. The ancestor map
checking also helps us partially solving the inverted node
mapping problem; example 6 describes this advantage. The
following formula shows the proximity calculation.

α = 1/(ddifs+ddift)

where ddifs is the depth difference between the current source
node and the ancestor node for which a mapping exists and
ddift is the depth difference between the candidate target
node and the ancestor node in target schema to which the
source ancestor node is mapped to. The maximum value for
α is 0.5, i.e., when the source schema ancestor node is the
parent of current source node and the target schema node to
which it is mapped to is the parent node of candidate target
node.

Example 6 (Inverted Node Similarity): Consider the
two schema trees S1 and S2 in Figure 6. Top-down depth
first matching traversal guides us to match S1[0,5]book <->
S2[0,5]book, S1[1,5]author <-> S2[1,5]writer (author is syn-
onym of writer). Next, we have S1[2,2]name <-> S2[3,3]name
with alpha = 0.33 and following is the S1[3,5]address <->
S2[2,5]address. Thus overcoming the problem when address
and name have siblings relationship in source schema tree
and parent child relationship in target schema tree.•

Figure 6: Input hierarchical structures with partial
inverted node scenario.

After selecting the best match for the source node, the method
proposes the type of mapping. By default it is a 1:1 map-
ping, since we are comparing one node from source schema
to one node in target schema. Our method is more XML
schema oriented where leaf nodes denote the real data val-
ues. Therefore we propose the type of mapping biased to-
ward the leaf nodes as discussed in section 2.1. This aspect is
handled in simple match algorithm with the help of parame-
ter β (L5.21-31). Finally, the map function creates the pos-
sible mapping from source node to target node (L5.32). The
n:m complex match propositions between non-leaf nodes are
further exploited in the complex match proposition valida-
tion module. The related algorithm is given in Figure 7.

4.3 Mini-Taxonomy Snippets Aspect
Before we move to the complex match proposition validation
part, we present another data structure, Mini-Taxonomy



Snippets, which helps in the validation process. In this sec-
tion we present briefly our approach for detection of these
Mini-Taxonomy Snippets or ontological concepts, as a hi-
erarchical structure, from available domain specific schema
tree structures. A domain concept is considered to be small
tree structure which we call a Mini-Taxonomy. The idea is
similar to research done in [10]. We follow the automatic
approach [20] rather then the manual snippet designing in
[10].

The technique has an iterative nature based on incremen-
tally extracting frequent sub-trees from a given set of trees.
The sub-tree frequency in the forest of trees is user defined
parameter. The algorithm takes as input the list of terms,
with similar terms linked together to form a cluster (each
cluster can have one or more terms). First task performed by
the algorithm is to compute the frequency of each term in the
forest of trees. Next, with in each cluster, the term with the
highest frequency in the forest of trees is taken as the symbol
representing the cluster. The frequency of the cluster sym-
bol is computed by adding frequencies of all the terms in the
cluster. From here on the algorithm executes similar to fre-
quent sub-tree mining algorithm given in [24], with similar
label cluster symbols as the starting labels for the data struc-
ture showing frequent sub-tree patterns. After the process
is complete, and we have a list of sets of mini-taxonomies.
Each list representing set of mini-taxonomies of same size.
Next we replicate this list of sets of mini-taxonomies, by re-
placing the cluster level similar labels in the list. Thus giving
us all possible mini-taxonomies which can be considered as
concept representation, frequently utilised by domain users.

4.4 Complex Match Proposition Validation
The basic idea behind the Complex Match Proposition Val-
idation (CMPV) is to some how validate the n:m match
propositions created in simple matching module. Our ap-
proach tries to utilise small conceptual taxonomies already
generated from large number of schemas with in a specific
domain as enumerated above. For simplicity, we structure
these mini-taxonomies as individual XML schema instances
and generate a data structure MiniTax for them, similar to
the input source and target schema, using the same node-
Scope algorithm given in Figure 3.

Algorithm ComplexMatchV alidation takes as input V1, V2

(source and target schema nodes lists respectively) and MiniTax
(list of lists of mini-taxonomies nodes). The algorithm tra-
verses each node x of source schema, V1, with a n:m map
type (depicted as nn) toward xt node of target schema, V2

(L7.6,9). The objective of the algorithm is to certify that
the leaf nodes of the sub-tree rooted at such a node x in the
source schema can form a n:m mapping with the leaf nodes
of sub-tree rooted at node xt in the target schema. The al-
gorithm extracts leaf nodes labels from sub-tree rooted at
x into a temporary set data structure sLeaf and similarly
populates a data structure tLeaf for xt (L7.11,12).

Next, the algorithm traverses the MiniTax data structure
(L7.15) for mini-taxonomies with root node label similar to
node labels of x and xt (L7.17,21). Further, the leaf nodes
labels of these mini-taxonomies are extracted into temporary
set data structures mTsLeaf (root label similar to x label)
and mTtLeaf (root label similar to xt label) at L7.18,22.

Finally, the validation check is executed, i.e., if sLeaf is a
subset of mTsLeaf and tLeaf is a subset of mTtLeaf . If
such mini-taxonomies are found in MiniTax, it certifies that
the concepts at x and xt are similar and their respective leaf
nodes can form a n:m mapping (L7.27-29), since the mini-
taxonomies have been frequently used in the domain. Thus
utilising the collective intelligence over a specific domain.

Algorithm : ComplexMatchValidation

Data: V1, V2, MiniTax
V1, V2 : Lists of nodes of schema 1 (source) and 2(target)
MiniTax : List of lists of mini-taxonomies
Each mini-taxonomy list, mT ,V1 and V2 sorted on
depth-first order
sLeaf : Set of labels of leaf nodes of non-leaf node of V11

tLeaf : Set of labels of leaf nodes of non-leaf node of V22

mTsLeaf , mTtLeaf : Sets of labels of leaf nodes of3

mini-taxonomy4

Fs, Ft : Boolean flags5

begin6

for each node x ∈ V1 do7

Fs ← false8

Ft ← false9

if (¬Leaf(x) ∧ exists(map(x,xt,β,α)) ∧ β= nn) then10

// xt is non-leaf node in V211

sLeaf ← leafNodesLabels(x)12

tLeaf ← leafNodesLabels(xt)13

Lx ← lab(x)14

Lxt ← lab(xt)15

for each mT ∈ MiniTax do16

LmTroot ← lab(mTroot)17

// mTroot is root node of mT18

if (¬Fs ∧ LmTroot = Lx) then19

mTsLeaf ← leafNodesLabels(LmTroot)20

if sLeaf ⊂ mTsLeaf then21

Fs ← true22

if (¬Ft ∧ LmTroot = Lxt) then23

mTtLeaf ← leafNodesLabels(LmTroot)24

if tLeaf ⊂ mTtLeaf then25

Ft ← true26

if Fs ∧ Ft then27

break28

if Fs ∧ Ft then29

β ← nn30

map(leafNodes(x),leafNodes(xt),β)31

end32

Figure 7: Algorithm for validation of complex
matching between two schemas.

5. COMPLEX MATCH VALIDATION
EXAMPLE

Figure 8 shows two schema trees related to books domain. A
list of correspondences is shown in Figure 9 after the execu-
tion of simple matching (Figure 5). Simple match algorithm
discover’s one to one match between two corresponding el-
ements of the two schemas. In parallel, it also proposes
any possible complex match, according to the leaf/non-leaf
status of the elements participating in the mapping. The
possible complex match propositions are shown in brackets.



Figure 8: Two schema (trees) S1 and S2 for complex
match discovery.

The scenario presents one n:1 and four n:m complex match
situations. The n:1 match given by S1.author[12,13]<–>
S2.writer[10,10] proposes that all leaf nodes of S1.author[12,13]
compositely correspond to S2.writer[10,10]. Thus establish-
ing the fact, the data against element S1.name[13,13] matches
to data represented by S2.writer[10,10] element. The general
analysis of the four complex matches (S1.books[0,15]<–>
S2.book[0,12], S1.library[1,7]<–>S2.writer[1,5]) show that
two propositions have relatively large sub-trees rooted at the
non-leaf elements. Therefore presenting a collection of con-
cepts rather than a single concept. This fact is enumerated
by scanning the scope of the non-leaf node. The scrutiny
of other two complex match propositions (S1.date[3,6]<–
>S2.dat[2,4], S1.publisher[9,11]<–>S2.pub[6,9]) show that
small size sub-trees reside at the elements of interest.

Figure 9: Element level mappings between schemas
S1 and S2 after execution of simple match algorithm;
complex match proposition shown in brackets.

The validation of of these proposed complex matchings is
done by the ComplexMatchValidation algorithm given in
Figure 7. For this purpose, the set of already acquired
mini-taxonomies (using ExSTax method [20]) are consid-
ered. There are two sets of mini-taxonomies as shown in
Figure 10. Set (a) presents the mini-taxonomy representing

Figure 10: Mini-taxonomies extracted from large in-
put of books domain schemas, using ExSTax method
for complex match validation.

the date concept, which can be represented by date, dat or
some other similar string, as the root node for the concept.
The leaf nodes collection of month, day, year,mm, yy repre-
sent attributes describing the concept. Within one instance
of the mini-taxonomy, the presence of synonymous leaf nodes
is not possible e.g. if month and mm are synonymous then
the two nodes will not exist together in a mini-taxonomy
with root node date or dat.

Figure 11: Mappings between schemas S1 and S2

after execution of complex match validation algo-
rithm.

The execution of the validation algorithm occurs for each
of the four n:m propositions. In case of S1.books[0,15]<–
>S2.book[0,12] and S1.library[1,7]<–>S2 .writer[1,5], no mini-
taxonomy is found with root element similar to books or
book and library or lib− info. As a result the two proposi-
tions are discarded and only 1:1 simple match is considered.
Whereas in the other two cases the algorithm finds frequent
mini-taxonomies in the form of date-month/day/year, dat-
mm/yy, publisher-name/address and pub-nam/street/city5.
The algorithm substantially authenticates the propositions
and creates two more complex mappings as S1.(month[4,4],
day[5,5], year[6,6])<–>S2.(mm[3,3],yy[4,4]) and S1.(name[10,10],
address[11,11])<–>S2 .(nam[7,7], street[8,8],city[9,9]). The
final mappings are shown in Figure 11.

6. EVALUATION
The prototype implementation uses Java 5.0. A PC with In-
tel Xeon, 2.33 GHz processor and 2 GB RAM, running Win-

5- and / delimiters denote downward and upward traversal
within the tree, respectively



Table 2: Characteristics of domain schema trees used in the mini-taxonomy computation experiments.
Domain BOOKS1 BOOKSEARCH JOBS AUTO AIRTRAVEL REALESTATE COURSES
Type Synthetic Real Real Real Real Real Real
Number of Schemas 176 19 20 14 20 14 42
Average nodes per schema 8 6 5 5 14 9 8
Largest schema size 14 12 8 10 21 20 17
Smallest schema size 5 3 4 3 6 4 2
Schema Tree Depth 3 2 2 2 2 2 4
n:m match propositions 2 2 1 1 3 2 2

dows XP was used. We selected several data sets, BOOKS1,
BOOKSEARCH 6, JOBS, AUTO, AIRTRAVEL,
REALESTATE and COURSES, as the input hierarchical
structures for our experiments. Characteristics of these sets
of schemas in given in Tab. 2.

A manual analysis of the above mentioned real domain schemas
showed that there existed very limited possible sets of ele-
ments (set of leaf nodes representing some concept), which
may participate in a complex map. Since such sets are
rare, finding them as frequent mini-taxonomies is even more
scarce. Following is a possible list of concepts against which
n:m mappings may exist in the above schemas.

(i) date/depart/return : month,day,year <–> mm,yy <–
> month,day,time

(ii) address/location : name,address <–> nam,street,city
<–> street1, street2,city <–> address1,address2 <–>
AreaCode,Country <–> city,state

(iii) telephone : tel res,tel off <–> morn tel, even tel,night tel
<–> tel mobile,tel fix

(iv) name : firstName,lastName <–> f name,mi,l name

(v) passengers : adult,child,infant <–> adult,senior,child
<–> adult 12-65,adult 65,child 2-4, child 5-12,infant

(vi) return/depart : month,day <–> month,day,year,time

(vii) schedule : days,time,room <–> DayTime,room <–
>Times, Place <–> TimeBegin,TimeEnd,Room,Building
<–> time,building

(viii) car model : vfrom,vto <–> fyear,tyear

To verify our CMPV method, we induced some of these sets
of elements to several real schemas, to extract them as mini-
taxonomies. Our implementation showed the expected re-
sults, since the overall test scenarios have been synthetically
generated.

Discussion

The idea of using mini-taxonomies works well, if their leaf
nodes can represent some real complex match with a contex-
tual map at ancestor level. And the ancestor level mapping
is highly dependent on label matching. Working with real
world schemas showed (i) the possibility of complex match is
very limited, and (ii) the label matching framework should
be exceptionall good.

6http://metaquerier.cs.uiuc.edu/repository

Considering the first issue of complex match possibility, man-
ual scrutiny of above mentioned schemas showed very lim-
ited number of n:m matches. For example in 20 schemas of
AIRTRAV EL domain (with average of nodes per schema
equal to 14), there were three concepts, passengers, return
and depart, which could be considered for complex match.
But the second issue of good label matching deficiency abates
the matching process. For example, there existed 13 dif-
ferent labels for passenger concept in the domain, i.e., How
many travelers are going, Number of passengers, NumAdults,
adultsChildren, persons, adultnoChildno, passengers, num-
ber of travelers, how many people are going, num-pax, trav-
elers, who is going on this trip, passengers-adults-num. Com-
puting a high frequency of passengers concept (mini-taxonomies)
existence was unaccomplishable because of the multi-word,
cryptic labels also including homonyms.

Our idea has some similarity to Embley et al. [10] work,
which uses manually created concept ontology snippets for
complex match discovery. Our approach tries to show that it
can be done automatically in a scenario, where there is the
availability of large number of domain schemas. Secondly
using the ancestor level contextual map, the simple match
results overcome the inverted parent-child match problem.
Thus making the system more robust and dependable. Al-
though the approach is similar to upward cotopy distance
measure, but it is more flexible in execution. We do a
top-down traversal during match process, i.e. parents are
matched before children. Therefore, the nearest ancestor
with an adequate match in the target schema is enough to
verify the context.

7. CONCLUSION AND FUTURE WORK
In this paper, we have presented an automatic approach for
discovering complex match. It is based on a tree mining
technique supporting large size schema matching. It ex-
tends the tree mining data structure proposed in [24] and
exploites ancestor scope properties (integer logical opera-
tions) on schema nodes to enable fast calculation of contex-
tual (hierarchical) similarity between them. It originality
lies in the use of mini-taxonomies in complex match discov-
ery. Mini-taxonomies are frequent subtrees within this forest
of schema trees. Furthermore, our approach is implemented
as a prototype and validated by experiments using different
real schemas.

Firstly, the method computes simple element level match-
ings between two schemas. The algorithm linguistically matches
nodes labels and ancestor level match existence (in ontol-
ogy matching called upward cotopy distance) for this pur-
pose. At this point, the matches have 1:1 cardinality, but our
method also proposes the possible complex matches intrinsi-
cally. Our approach is based on the leaf or non-leaf status of



the node, putting forward the match proposition that when
a non-leaf node is matched to a non-leaf node, there is the
probability of n:m match between the leaf nodes of the two
non-leaf nodes. The algorithm CMPV certifies this propo-
sition, indirectly utilising the collective intelligence of the
domain users. This is achieved by using mini-taxonomies
snippets, extracted from large number of input schemas de-
veloped and used over the specific domain by users.

The work presented in this paper has lots of prospective ap-
plications. Our approach can provide an automatic match-
ing environment, supported by the collective intelligence of
the domain users. In future, we plan to extend the label
level matching techniques. We intend to utilize state of the
art lexical matchers and linguistic dictionaries. Secondly, we
will be extending the idea to evolving schemas matching in
the large scale scenario. Finally, our aim is to fully incorpo-
rate our technique for web based interface forms (contain-
ing hierarchical nested fields) matching and collaboration
among different metadata based virtual social environments.

8. REFERENCES
[1] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm.

Schema and ontology matching with coma++. In
ACM SIGMOD, 2005.

[2] C. Batini, M. Lenzerini, and S. B. Navathe. A
Comparitive Analysis of Methodologies for Database
Schema Integration. ACM Computing Surveys,
18(4):323–364, 1986.

[3] P. A. Bernstein, S. Melnik, M. Petropoulos, and
C. Quix. Industrial-Strength Schema Matching.
SIGMOD Record, 33(4):38–43, 2004.

[4] A. Boukottaya and C. Vanoirbeek. Schema matching
for transforming structured documents. In ACM
DocEng, 2005.

[5] Y. Chi, R. R. Muntz, S. Nijssen, and J. N. Kok.
Frequent subtree mining - an overview. Fundamenta
Informaticae, 66(1-2):161–198, 2005.

[6] R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and
P. Domingos. imap: Discovering complex semantic
matches between database schemas. In ACM
SIGMOD, pages 383–394, 2004.

[7] H.-H. Do and E. Rahm. Matching large schemas:
Approaches and evaluation. Information Systems,
32(6):857–885, 2007.

[8] A. Doan, J. Madhavan, R. Dhamankar, P. Domingos,
and A. Y. Halevy. Learning to match ontologies on the
Semantic Web. VLDB J., 12(4):303–319, 2003.

[9] M. Ehrig and S. Staab. QOM – Quick Ontology
Mapping. In ISWC, pages 683–697, 2004.

[10] D. W. Embley, L. Xu, and Y. Ding. Automatic direct
and indirect schema mapping: Experiences and lessons
learned. ACM SIGMOD Record, 33(4):14–19, 2004.

[11] F. Giunchiglia, P. Shvaiko, and M. Yatskevich.
S-Match: an Algorithm and an Implementation of
Semantic Matching. In ESWS, pages 61–75, 2004.

[12] B. He, K. C.-C. Chang, and J. Han. Discovering
complex matchings across web query interfaces: a
correlation mining approach. In KDD, pages 148–157,
2004.

[13] M. A. Hernedez, R. J. Miller, and L. M. Haas. Clio: A
semi-automatic tool for schema mapping. In ACM

SIGMOD, 2002.

[14] A. Jhingran. Enterprise Information Mashups:
Integrating Information, Simply – Keynote Address.
In VLDB, pages 3–4, 2006.

[15] J.-S. Lee and K.-H. Lee. Computing simple and
complex matchings between xml schemas for
transforming xml documents. Information and
Software Technology - Elsevier, 48:937–946, 2006.

[16] A. Maedche and S. Staab. Measuring similarity
between ontologies. In EKAW, 2002.

[17] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versitile graph matching algorithm and its
application to schema matching. In ICDE, 2002.

[18] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A
Programming Platform for Generic Model
Management. In SIGMOD, pages 193–204, 2003.

[19] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB J.,
10(4):334–350, 2001.

[20] K. Saleem and Z. Bellahsene. Automatic extraction of
structurally coherent mini-taxonomies. In ER, 2008.

[21] K. Saleem, Z. Bellahsene, and E. Hunt. Porsche:
Performance oriented schema mediation. Information
Systems - Elsevier, 33:637–657, 2008.

[22] P. Shvaiko and J. Euzenat. A Survey of Schema-Based
Matching Approaches. J. Data Semantics IV, pages
146–171, 2005.

[23] G. Wang, V. Zavesov, R. Rifaieh, A. Rajasekar,
J. Goguen, and M. Miller. Towards user centric
schema mapping platform. In VLDB Workshop
Semantic Data and Semantic Integration, 2007.

[24] M. J. Zaki. Efficiently Mining Frequent Embedded
Unordered Trees. Fundamenta Informaticae,
66(1-2):33–52, 2005.


