
HAL Id: lirmm-00335162
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00335162

Submitted on 11 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Maximum Likelihood Supertrees
Mike Steel, Allen Rodrigo

To cite this version:
Mike Steel, Allen Rodrigo. Maximum Likelihood Supertrees. Systematic Biology, 2008, 57, pp.243-
250. �10.1080/10635150802033014�. �lirmm-00335162�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00335162
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Syst. Biol. 57(2):243–250, 2008
Copyright c© Society of Systematic Biologists
ISSN: 1063-5157 print / 1076-836X online
DOI: 10.1080/10635150802033014

Maximum Likelihood Supertrees

MIKE STEEL1 AND ALLEN RODRIGO2

1Allan Wilson Centre for Molecular Ecology and Evolution, Department of Mathematics and Statistics, University of Canterbury, Christchurch,
New Zealand; E-mail: m.steel@math.canterbury.ac.nz

2The Bioinformatics Institute and the Allan Wilson Centre for Molecular Ecology and Evolution, University of Auckland, New Zealand,
and Laboratoire d’Informatique, de Robotique et de Microelectronique de Montpellier, France; E-mail: a.rodrigo@auckland.ac.nz

Abstract.—We analyze a maximum likelihood approach for combining phylogenetic trees into a larger “supertree.” This is
based on a simple exponential model of phylogenetic error, which ensures that ML supertrees have a simple combinatorial
description (as a median tree, minimizing a weighted sum of distances to the input trees). We show that this approach
to ML supertree reconstruction is statistically consistent (it converges on the true species supertree as more input trees
are combined), in contrast to the widely used MRP method, which we show can be statistically inconsistent under the
exponential error model. We also show that this statistical consistency extends to an ML approach for constructing species
supertrees from gene trees. In this setting, incomplete lineage sorting (due to coalescence rates of homologous genes being
lower than speciation rates) has been shown to lead to gene trees that are frequently different from species trees, and this can
confound efforts to reconstruct the species phylogeny correctly. [Gene tree; maximum likelihood; phylogenetic supertree;
species tree; statistical consistency.]

Combining trees on different, overlapping sets of taxa
into a parent “supertree” is now a mainstream strategy
for constructing large phylogenetic trees. The literature
on supertrees is growing steadily: new methods of su-
pertree reconstruction are being developed (Cotton and
Wilkinson, 2007) and supertree analyses are shedding
light on fundamental evolutionary questions (Bininda-
Emonds et al., 2007). Despite this surge in research ac-
tivity, it is probably fair to say that biologists are still
confused about what supertrees really are and what it is
we do when we build a supertree. Are we, as some main-
tain, simply summarizing the phylogenetic information
contained in a group of subtrees? Or are we trying to de-
rive the best estimate of phylogeny given the information
at hand? Nor is it clear which of these two conceptually
different objectives underpin the various supertree re-
construction methods.

We take the view that what biologists really want a
supertree reconstruction method to deliver is the best
hypothesis of evolutionary relationships that can be in-
ferred from the data available. Obviously, it is not the
case that the supertree constructed as a summary statis-
tic will necessarily be the best estimate of phylogeny.
Nonetheless, if we are prepared to consider supertree re-
construction a problem of phylogenetic estimation, we
have at our disposal an arsenal of phylogenetic tools
and methods that have been tried and tested. Matrix
representation with parsimony (MRP; Baum and Ragan,
1992), weighted MRP (Bininda-Emonds and Sanderson,
2001), matrix representation with compatibility (MRC;
Rodrigo, 1996; Ross and Rodrigo, 2004), and, most re-
cently, Bayesian supertree reconstruction (BSR; Ronquist
et al., 2004) are undoubtedly inspired by standard phy-
logenetic methods. A gap remains, though, as there has
been remarkably little development of likelihood-based
methods for supertree reconstruction.

In this paper, we analyze an approach to obtain maxi-
mum likelihood (ML) estimates of supertrees, based on a
probability model that permits errors in subtree topolo-
gies. The approach is of the type described by Cotton

and Page (2004), and it permits supertrees to be esti-
mated even if there is topological conflict amongst the
constituent subtrees. We show that ML estimates of su-
pertrees so obtained are statistically consistent under
fairly general conditions. By contrast, we show that MRP
may be inconsistent under these same conditions. We
then consider a further complication that arises in the su-
pertree setting when combining gene trees into species
trees—in addition to the possibility that the input gene
trees are reconstructed incorrectly (either a consequence
of the reconstruction method used, or some sampling
error), there is a further stochastic process that leads
to the (true) gene trees differing from their underly-
ing species tree (a consequence of incomplete lineage
sorting). Although simple strategies such as gene con-
catenation have recently been shown to be potentially
misleading (Degnan and Rosenberg, 2006), we show that
an ML supertree approach for combining gene trees is
also statistically consistent.

Terminology

Throughout this paper, unless stated otherwise, phy-
logenetic trees may be either rooted or unrooted, and
we will mostly follow the notation of Semple and Steel
(2003). In particular, given a (rooted or unrooted) phy-
logenetic tree T on a finite set X of taxa (which will
always label the leaves of the tree), any subset Y of X
induces a phylogenetic tree on taxon set Y, denoted T |Y,
which, informally, is the subtree of T that connects the
taxa in Y only. In the supertree problem, we have a se-
quence P = (T1, T2, . . . , Tk) of input trees, called a profile,
where Ti is a phylogenetic tree on taxon set Xi . We wish
to combine these trees into a phylogenetic tree T on the
union of the taxon sets (i.e., X = X1 ∪ X2 ∪ · · · ∪ Xk). We
assume that the trees in P are either all rooted or all
unrooted, and that T is rooted or unrooted accordingly.
We will mostly assume that trees are fully resolved (i.e.,
binary trees, without polytomies); in a remark following
Theorem 4, we briefly describe how this restriction can
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be lifted. Furthermore, in this paper we consider just the
tree topology, not the branch lengths.

A special case of the supertree problem arises when
the taxon sets of the input trees are all the same (X1 =
X2 = · · · = Xk). This is the much studied consensus tree
problem. In an early paper, McMorris (1990) described
how, in this consensus setting, the majority-rule consen-
sus tree can be given a maximum likelihood interpre-
tation. However, this approach is quite different from
the one described here (it is restricted to the consen-
sus setting and is based on a very particular probability
model).

In this paper, we will denote the underlying (“true”)
species tree as T0 (assuming that such a tree exists and
that the evolution of the taxa has not involved reticulate
processes such as the formation of hybrid taxa). In an
ideal world, we would like Ti = T0|Xi for each tree Ti
in the profile—that is, we would like each of the recon-
structed trees to be identical to the subtree of the true tree
for the taxa in X0. But in practice, the trees T1, . . . , Tk are
unlikely to even be compatible (i.e., no phylogenetic tree
T exists for which Ti = T |Xi for all i).

AN EXPONENTIAL MODEL OF PHYLOGENETIC ERROR

Species trees that have been inferred from data may
differ from the true underlying species tree for numer-
ous reasons, including sampling effects (short and/or
site-saturated sequences, or poorly defined characters),
model violation, sequencing or alignment errors, and so
forth. In this section, we will assume a simple model
of phylogenetic error in which the probability of ob-
serving a given tree falls off exponentially with its dis-
tance from an underlying generating tree (e.g., the true
species tree T0). This type of model has been described by
Holmes (2003) in the general setting of Bayesian statisti-
cal analysis in phylogenetics. Suppose d is some metric
on resolved phylogenetic trees. There are several possi-
ble choices for d, depending on the biological context and
computational considerations, and we describe some of
these shortly. In the exponential model, the probability,
denoted PT ,Y[T ′] (or more briefly PT [T ′]) of reconstruct-
ing any species tree T ′ on any taxon set Y (where Y ⊂ X),
when T is the generating tree (on taxon set X) is pro-
portional to an exponentially decaying function of the
distance from T ′ to T |Y. In other words,

PT ,Y[T ′] = α exp[−βd(T ′, T |Y)]. (1)

The constant β can vary with Y and other factors (such
as the quality of the data); for example, trees constructed
from long high-fidelity sequences are likely to have a
larger β than trees constructed from shorter and/or nois-
ier sequences. The constant α is simply a normalizing
constant to ensure that

∑
T ′ PT ,Y[T ′] = 1, where the sum

is over all fully resolved phylogenetic trees T ′ on taxon
set Y. When we have a sequence (X1, X2, . . .) of subsets
of X, we will reflect the dependence of α, β on Xi by writ-
ing αi and βi . Note that αi is determined entirely by βi
and |Xi |.

Note that, implicit in (1), the probability of T ′ depends
only on the subtree of T connecting the species in T ′ and
not on the other species in T that are not present in T ′.

Now, suppose we observe the profile of trees P =
(T1, T2, . . . , Tk) as above, where Ti has leaf set Xi . Assume
that, for each i , the tree Ti has been independently sam-
pled from the exponential distribution (1) with β = βi .
Select a phylogenetic X tree T that maximizes the proba-
bility (PT (T1, . . . , Tk)) of generating the observed profile
P—we call this type of a tree T an ML supertree for P .

An ML supertree has a simple combinatorial descrip-
tion as a (weighted) median tree, as the following result
shows. Note that the use of sums of tree-to-tree distances
as optimality criteria has previously been suggested by
Wilkinson et al. (2001).

Proposition 1. For any metric d on phylogenetic trees, an
ML supertree for a profile P under the exponential model (1),
is precisely a tree T that minimizes the weighted sum:

k∑
i=1

βi d(Ti , T |Xi ).

Proof. By the independence assumption,

PT [(T1, T2, . . . , Tk)] =
k∏

i=1

PT , Xi [Ti ],

and, by (1), PT , Xi [Ti ] = αi exp[−βi d(Ti , T |Xi )]. Conse-
quently, PT [(T1, T2, . . . , Tk)] is proportional to

exp

[
−

k∑
i=1

βi d(Ti , T |Xi )

]
,

and this is maximised for any tree T that minimizes∑k
i=1 βi d(Ti , T |Xi ). This completes the proof.

Note that there may exist more than one ML supertree.
This would be more likely if one has a small number
of input trees and the distance metric is “coarse” (e.g.,
the symmetric difference metric) rather than “fine” (e.g.,
SPR: subtree-prune-and-regraft distance) and if the βi
values are all equal.

In the special case where d is the nearest-neighbor in-
terchange (NNI) metric, and the βi values are all equal,
this ML supertree was described by Cotton and Wilkin-
son (2007). Moreover, in the consensus tree setting, and
where d is the symmetric difference (Robinson-Foulds)
metric, the consensus of the ML supertrees is the same
as the usual majority-rule consensus tree. This follows
from earlier results by Barthélemy and McMorris (1986;
see also Cotton and Wilkinson, 2007).

The choice of metric d should be guided by the bio-
logical context and computational expediency—-for ex-
ample, the SPR metric appropriately models horizontal
gene transfer events, whereas the NNI metric may be
appropriate for trees that lack local resolution; however,
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the symmetric difference metric may also be useful as it
is fast to compute.

Note also that the βi values are not regarded as vari-
ables to be optimized in the ML procedure (to do so
would lead to all trees being optimal solutions because
βi = 0 would be the optimal selection for all i). Rather,
they allow other external factors (e.g., how well sup-
ported each input tree is by the data) to be reflected in
the model. As a default option (in the absence of such
knowledge), one might set all the βi values equal.

The use of the exponential error model requires some
explanation. In standard, character-based, or sequence-
based phylogenetic analysis, the probability of obtain-
ing the data is derived using a model of character or
sequence substitution. This “process-based” approach to
calculating the likelihood differs from the “error-based”
approach we have adopted here. With an error-based
approach, we model the probability distribution of out-
comes, in this case the distribution of trees one may ob-
tain from subsets of data. The value of this approach is
that it is independent of process. The choice of an expo-
nential distribution to describe the fall-off in probability
of a tree as one moves further from the true tree is some-
what arbitrary but is due to simplicity and computational
efficiency (Proposition 1). Regardless of the reasons why
subtrees differ from the true supertree (i.e., regardless
of the process), if the distribution of these differences
can be modeled using an exponential distribution, our
results hold.

STATISTICAL CONSISTENCY OF ML SUPERTREES UNDER
THE EXPONENTIAL MODEL

Is the ML procedure statistically consistent as the num-
ber (k) of trees in the profile grows? More precisely, under
what conditions is the method guaranteed to converge
on the underlying generating tree T0 as we add more
trees to the analysis? The problem is slightly different
from other settings (such as the consistency of ML for
tree reconstruction from aligned sequence data) where
one has a sequence of i.i.d. random variables. In the su-
pertree setting, it is perhaps unrealistic to expect that the
data sets are generated according to an identical process,
since the sequence of subsets X1, X2, . . . , of X is generally
deliberately selected.

To formalize the statistical consistency question in this
setting, let X1, X2, . . . , be a sequence of subsets of finite
set X. It is clear that the Xi s must cover X in some rea-
sonable way in order for the ML supertree method to
be consistent—for example, if some taxon is not present
in any Xi , or is present in only a small number of input
trees, then we cannot expect the location of this taxon in
any supertree to be strongly supported.

Thus, we will assume that the sequence of subsets of X
satisfies the following covering property: For each subset
Y of taxa from X of size m (where m = 3 for rooted trees
or m = 4 for unrooted trees), the proportion of subsets
Xi that contain Y does not decay to 0 as the sequence
length (of subsets) increases. More formally, for each such
subset Y of X we assume there is some ε > 0 and some

K sufficiently large for which:

1
k
|{i ≤ k : Y ⊆ Xi }| ≥ ε for all k ≥ K . (2)

If a subset of taxa, Y, is only found in one or a few trees
and is never seen again in trees that are subsequently
added, this property will not hold.

We now establish statistical consistency of ML su-
pertrees under a much more general class of models than
the exponential model. Consider any model M for gen-
erating phylogenetic trees (without branch lengths) on
subsets of X that has a generating phylogenetic X tree
T as its sole underlying parameter. Such a model will
typically derive from a more complex model contain-
ing other parameters (such as branch lengths, population
sizes, and so forth), but we will assume that these have a
prior distribution and that they have been integrated out,
so our model has just one parameter—the tree topology.

Given a sequence (X1, X2, . . . , Xk . . .) of subsets of X
we say that M satisfies the property of centrality if, for
some η > 0, and all i ≥ 1, we have:

PT , Xi [T |Xi ] − PT , Xi [T ′] ≥ η (3)

for all trees T ′ on leaf set Xi that are different from T |Xi .
This condition says that, if T is the generating tree, then
amongst all phylogenetic trees on leaf set Xi , the one that
T induces on Xi is always (strictly) more probable than
any other tree.

As a related condition, we say that M satisfies the prop-
erty of basal centrality if, for some η > 0, and all i ≥ 1, we
have:

PT , Xi [T |Y] − PT , Xi [T ′] ≥ η (4)

for all trees T ′ on leaf set Y that are different from T |Y,
and all Y ⊆ Xi , of size m (= 3 for rooted trees and = 4
for unrooted trees). This condition says that, if T is the
generating tree, then amongst all the small (m element)
subsets Y of Xi the tree that T induces on Y is (strictly)
more probable that any other tree.

Notice that the exponential model (with the βi val-
ues bounded away from 0) satisfies centrality (take η =
mini≥1[αi (1 − e−βi )]). We will see later that basal central-
ity is a useful concept for another setting (lineage sort-
ing). Note also that basal centrality (for a sequence Xi )
is not a special case of centrality, and, conversely, cen-
trality is not a special case of basal centrality, though of
course the two notions coincide in the special case where
|Xi | = m for all i .

We now show that the selection of an ML supertree
is statistically consistent for any model M that satisfies
either centrality or basal centrality when applied to a se-
quence of subsets of X that obeys the covering property.
Its proof (along with the proofs of all following proposi-
tions and theorems) is given in the Appendix.

Theorem 2. Given a sequence X1, X2, . . . , which satisfies
the covering property (2), consider a profilePk = (T1, . . . , Tk),
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where Ti is generated independently, from a tree T0 with taxon
set X, according to a model M that satisfies either the cen-
trality or basal centrality property for this sequence. Then the
probability that Pk has a unique ML supertree and that this
tree is T0 tends to 1 as k → ∞.

Remarks

• We can easily modify the ML process if some of the
input trees are not fully resolved (due to “soft” poly-
tomies). For a general phylogenetic tree ti (possibly
with polytomies) on taxon set Xi ⊆ X, and a gener-
ating fully resolved phylogenetic tree T on taxon set
X, let φ(ti |T ) be the probability of the event that the
tree Ti that T generates under the exponential model
is a refinement of ti . More precisely,

φ(ti |T ) =
∑
Ti ≥ti

αi exp[−βi d(Ti , T |Xi )]

where Ti ≥ ti indicates that the (fully resolved) tree
Ti contains all the splits present in ti and has the
same leaf set (Xi ). Notice that φ(ti |T ) is not a proba-
bility distribution on phylogenetic trees with the leaf
set Xi (its sum is > 1). Nevertheless, given a profile
P = (t1, . . . , tk) of phylogenetic trees (some or all of
which may have polytomies), one can perform ML to
select the tree T that maximizes the joint probability∏k

i=1 φ(ti |T ) of the events Ti ≥ ti for i = 1, . . . , k.
• We point out an alternative way of viewing this ML

procedure applied to a profileP = (T1, . . . , Tk) when
d is one of two well-known metrics on trees (SPR and
TBR). Suppose that we were to extend each tree Ti
in P to a tree T ′

i on the full set of taxa (X). We could
regard the placement of those taxa that are missing
in Ti (namely the taxa in X − Xi ) to form a tree T ′

i
on the full leaf set X to be “nuisance parameters”
in a maximum likelihood framework (under the ex-
ponential model), and thereby seek to find the tree
T and extensions (T ′

1 , . . . , T ′
k ) to maximize the joint

probability:

PT [(T ′
1 , T ′

2 , . . . , T ′
k )] subject to Ti = T ′

i |Xi for all i .

We call such a tree T an extended ML tree for the pro-
file P ; it turns out to be just the same as the ML trees
we have defined above, as the next result shows.

Proposition 3. For d = SP R or d = T B R, and any
profile P of fully resolved, unrooted phylogenetic trees,
the extended ML tree(s) for P coincides precisely with the
ML tree(s) for P .

RELATION TO MRP AND ITS STATISTICAL
INCONSISTENCY

In the MRP (matrix representation with parsi-
mony) supertree method, the input trees are coded as
characters—one for each interior edge of each tree—
with character states 0, 1, ? depending, respectively, on
whether the taxon in question is on one side, or the other,

of the edge, or is absent from the tree. A most parsimo-
nious tree (or trees) is then reconstructed from this data
matrix. As shown recently by Bruen and Bryant (2007),
there is a close analogy between MRP and consensus tree
methods, which seek a median tree computed using the
SPR (subtree prune and regraft) or TBR (tree bisection
and reconnection) metric d (recall that a median tree for
a profile P = (T1, . . . Tk) of trees that all have same leaf
set X, is a tree T that minimizes the sum

∑k
i=1 d(T , Ti );

cf. Proposition 1). However, the result from Bruen and
Bryant (2007) does not guarantee that MRP produces an
ML supertree even when βi = 1 for all i , as their approach
constructs a median on a space of trees that are defined
by splits rather than particular trees.

We turn now to the question of the statistical consis-
tency of MRP under the exponential model (1). It can
be shown that MRP will be statistically consistent under
the covering property (2) in some special cases. Two such
cases that can be formally established (details omitted)
are (i) when all the subsets Xi are of size m (= 3 for rooted
trees and = 4 for unrooted trees); or (ii) when βi is suffi-
ciently large (in relation to |X|). However, in general, we
have the following result.

Theorem 4. A β > 0 exists for which MRP is statistically
inconsistent even in the special (consensus) case where, for all
i , Xi is the same set of six taxa and βi = β. More precisely, for
this value of β and with unrooted fully-resolved phylogenetic
trees on these (equal) taxon sets, the probability that T0 is an
MRP tree (for a profile of trees generated under (1)) converges
to 0 as k tends to infinity.

Remarks

• The formal proof of Theorem 4 is given in the Ap-
pendix. However, the intuition behind the proof is
that if β is sufficiently small (but still positive), then
trees generated by the exponential model are close to
a uniform random distribution on trees. For such in-
put there is a slight bias of MRP towards unbalanced
trees. This shape bias property of MRP has been ex-
plored (in related settings) by Wilkinson et al. (2005).

• The exact condition (on the βi s) at which inconsis-
tency of MRP occurs is not clear, though some gen-
eral comments can be made. For large values of βi ,
the decay of the exponential function is rapid, and
the probability of producing an incorrect subtree
some distance away from the true tree is small. In
these cases, MRP is likely to work well. However,
when βi is small, the probability of producing an
incorrect subtree is relatively high, even when this
subtree is some distance away from the true tree. An
interesting theoretical question is whether a value
s ∈ (0, 1) exists for which MRP is statistically consis-
tent (for arbitrarily large taxon sets) under the con-
ditions of Theorem 4, whenever βi = β ≥ s.

STATISTICAL CONSISTENCY OF ML SPECIES SUPERTREES
FROM MULTIPLE GENE TREES

A current problem in phylogenetics is how best to in-
fer species trees from gene trees (Degnan and Rosenberg,
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2006; Gadagkar et al., 2005; Liu and Pearl, 2007). Even in
the consensus setting (i.e., when the set of taxa for each
gene tree is the complete set of taxa under study), Deg-
nan and Rosenberg (2006) have demonstrated how in-
complete lineage sorting on gene trees can mean that the
most likely topology for a gene tree can differ from the
underlying species tree (for certain rooted phylogenetic
trees on four taxa and for all rooted phylogenetic trees
on five or more taxa). This surprising result implies that
simplistic majority-rule approaches to finding a consen-
sus species tree can be problematic.

The phenomenon described by Degnan and Rosen-
berg (2006) is based on the coalescent model for studying
lineage sorting in evolving populations. The surprising
behavior arises only when the effective population sizes
and the branch lengths of the species tree are in appro-
priate ranges. Moreover, for rooted three-taxon trees, the
most probable gene tree topology always agrees with the
species tree topology. Nevertheless, the fact that larger
gene trees can favor an incorrect species tree might eas-
ily complicate some standard statistical approaches.

In this section, we show how, despite the phenomena
described above (from Degnan and Rosenberg, 2006),
and even in the more general supertree setting (where
some gene trees may have some missing taxa), a maxi-
mum likelihood approach to supertree construction of a
species tree from gene trees is statistically consistent.

Consider first a somewhat idealist situation where we
have a sequence of rooted gene trees, each correctly in-
ferred (but possibly differing from the species tree due to
lineage sorting) for a sequence of (arbitrary size) subsets
of X that satisfy the covering property. The statistical con-
sistency of ML under this scenario follows immediately
from Theorem 2 (using basal centrality, not centrality)
because lineage sorting (regarded as an error model M
for deriving gene trees from species trees under the coa-
lescent model) satisfies basal centrality. This is because,
under the coalescent model, P

c
T ,Y[T |Y] = 1 − 2

3 e−λ,
whereas P

c
T ,Y[T ′′] = 1

3 e−λ for the two other choices of
T ′′ 
= T |Y, where λ is (up to a factor of 2) the ratio of time
(measured in generations) to the effective population size
(see, e.g., Rosenberg, 2002; Tajima, 1983). Consequently,

PT ,Y[T |Y] − PT ,Y[T ′] ≥ 1 − e−λ > 0,

for all subsets Y of Xi of size 3. The limitation of this con-
sistency result is that it invokes the unrealistic assump-
tion that the gene trees have all been correctly inferred.
We thus consider a more realistic scenario; however, in
order to prove a consistency result, we must restrict the
input trees to have just 3 leaves each. We thus consider
the following situation:

Triplet-based supertree with dual error: a sequence of rooted gene trees
inferred, possibly with error, on subset of X of size 3 that satisfy the
covering property, provided the error in the reconstructed gene tree
(differing from the true gene tree) is described by the exponential
model.

The statistical consistency of ML supertrees under this
scenario (Triplet-based supertree with dual error) is due

to the following result (where M1 is the lineage sort-
ing model that derives a gene tree from a species tree,
whereas M2 models the error in reconstructing the gene
tree correctly).

Proposition 5. Given a sequence X1, X2, . . . , of subsets of
X of size 3 that satisfies the covering property (2), consider a
profile Pk = (T1, . . . , Tk), where tree Ti is generated indepen-
dently, from a tree T0 with taxon set X, by first generating a
tree on taxon set Xi under some central model, M1, and then,
independently, using this tree to generateTi according to an ex-
ponential model, M2. Then the probability thatPk has a unique
ML supertree and that this tree is T0 tends to 1 as k → ∞.

DISCUSSION

To develop a likelihood-based supertree reconstruc-
tion method, it is necessary to define a model that deliv-
ers the probability of obtaining a series of subtree topolo-
gies, given a hypothesized supertree. We have chosen a
very simple yet intuitive probability function whereby
the probability of observing a wrong subtree (i.e., one
where the topology differs from that of a pruned su-
pertree) decreases exponentially as its topology becomes
increasingly distant from that of the hypothesised su-
pertree. Consequently, the ML supertree can be esti-
mated even when the constituent subtrees have conflict-
ing topological signals.

Our approach is model based, but one may reasonably
ask whether the model described here is a biologically
realistic one. We suggest that it is. For one thing, we ex-
pect, for a variety of reasons, to see conflicts between the
topologies of subtrees and the reconstructed supertree.
With gene sequences obtained from different species, for
instance, incomplete lineage sorting and ancestral het-
erozygosity frequently lead to differences between gene
trees and species trees. Convergent and parallel evolu-
tion can confound phylogenetic reconstruction, as can
long-branch attraction. We have chosen to use the ex-
ponential distribution to describe this steady decrease
in probabilities as the distances between subtrees and
supertrees increase. The value of using the exponential
distribution lies in the ease with which it can be ma-
nipulated when we compute log-likelihoods. Addition-
ally, we have noted that our model is an error-based
model; i.e., it describes the distribution of subtree-to-
supertree distances without regard for the underlying
processes that cause topological conflicts. However, we
suggest that one fruitful research project may be to
explore other possible probability distributions, other
tree-to-tree distance metrics, as well as process-based
models of topological conflict. In this respect, coalescent-
based models of incomplete lineage sorting (Carstens
and Knowles, 2007) may hold some promise. As with
the original phylogenetic likelihood methods designed
for character and sequence data, we hope to see new
models emerge as other researchers explore the use
of ML supertrees. Even if one is reluctant to use the
exponential distribution, the statistical consistency of
ML supertrees is nonetheless guaranteed, provided the
probability distribution of subtree-to-supertree distances
assigns the highest probability to a distance of zero.
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The likelihood framework provides an additional ben-
efit: a rich body of statistical and phylogenetic methods
already use likelihood. Moreover, statistical consistency
holds for maximum likelihood supertrees under weak
conditions, in contrast to MRP, which can be incon-
sistent in some cases. We also show that the ML su-
pertree approach developed here provides a statisti-
cally consistent strategy for combining gene trees even
when there is the possibility that these trees may be
different from the true species tree. An obvious ap-
plication of ML supertrees will be their use in statis-
tical tests of topological hypotheses, and we already
know how to do this with standard ML phylogenies
(Goldman et al., 2000).

We also recognize that our particular likelihood im-
plementation is closely related to the Majority-Rule(−)
Supertree construction proposed by Cotton and Wilkin-
son (2007). More precisely, when the tree metric is the
symmetric difference (Robinson-Foulds) metric, then the
Marjority-Rule(−) Supertree is, in effect, the strict con-
sensus of our ML supertrees. However, the approach in
Cotton and Wilkinson (2007) is quite different: they show
how to extend majority rule from the consensus to the su-
pertree setting. Nonetheless, they converge on the same
optimality criterion that we use; i.e., a supertree that min-
imizes the sum of distances to a set of trees. One should
not be surprised that the same optimality criterion can
emerge from different conceptual bases. With standard
phylogenetic reconstruction, choosing the tree that min-
imizes the number of evolutionary changes can be jus-
tified philosophically (with the principle of maximum
parsimony) as a consensus method (Bruen and Bryant,
2007) or by using an explicitly statistical approach such
as likelihood (Steel and Penny, 2000).

We have not discussed algorithms to search for ML su-
pertrees. As with classical phylogenetic likelihood meth-
ods, maximum likelihood supertrees will be obtained
using a variety of approaches, including heuristic meth-
ods, genetic algorithms, simulated annealing, and so on.
We also direct readers to the discussion in Cotton and
Wilkinson (2007), because the criterion we use is similar
to theirs.
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APPENDIX

PROOFS OF MAIN RESULTS

In this section we collect together the proofs of the main results. We
start by stating a general sufficient condition for the consistency of ML
in non-i.i.d. settings.

Consistency of ML for General (non-i.i.d.) Sequences
Here we describe a convenient way to establish the statistical consis-

tency of maximum likelihood when we have a sequence of observations
that may not be independent or identically distributed. We frame this
discussion generally, as the result may be useful for other problems.
In particular, in this result, we do not need to assume the sequence
samples are independent (though in our applications, they are), nor
identically distributed (in our applications, they are not). Suppose we
have a sequence of random variables Y1, Y2, . . . , that takes values in
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some finite set W and are generated by some process that depends on
an underlying discrete parameter a that can take values in some finite
set A. In our setting, the Yi s are trees constructed from different data
sets (e.g., gene trees), whereas a is the generating species tree topol-
ogy. We assume that the model specifies the probability distribution of
(Y1, . . . , Yk ) given (just) a—for example, in our tree setting this would
mean specifying prior distributions on the branch lengths and other
parameters of interest (e.g., ancestral population sizes) and integrating
with respect to these priors.

Given an actual sequence (y1, . . . , yk ) of observations, the maximum
likelihood (ML) estimate of the discrete parameter is the value a that
maximizes the joint probability

Pa [Y1 = y1, . . . , Yk = yk ]

(i.e., the probability that the process with parameter a generates
(y1, . . . , yk )). Now suppose that the sequence Y1, . . . Yk, . . . , is generated
by a0. We would like the probability that the ML estimate is equal to a0

to converge to 1 as k increases. If this holds for all choice of a0 ∈ A, then
ML is statistically consistent. The following result provides a convenient
way to establish this; indeed, it characterises the statistical consistency
of ML.

Proposition 6. In the general setup described above, ML is statistically
consistent if and only if the following condition holds: for any two distinct
elements a , b ∈ A, we can construct a sequence of events E1, E2, . . ., where
Ek is dependent on (Y1, . . . Yk), for which, as k → ∞:

(i) the probability of Ek under the model with parameter a converges to 1.
(ii) the probability of Ek under the model with parameter b converges to 0.

Proof. The “only if” direction is easy: Suppose ML is statistically
consistent and a, b ∈ A are distinct. Let Ek be the event that a is the
unique maximum likelihood estimate obtained from (Y1, . . . , Yk ). Then
Ek satisfies conditions (i) and (ii).

For the converse direction, recall that the variation distance between
two probability distributions p, q on any finite set W is

max
E⊂W

|P p(E) − Pq (E)|

where P p(E) = ∑
w∈E p(w) is the probability of event E under distribu-

tion p (similarly for Pq (E)). This variation distance can also be written
as 1

2 ‖p − q‖1, where ‖p − q‖1 = ∑
w∈W |p(w) − q (w)| is the l1 distance

between p and q . Thus, if we let d (k)(a, b) denote the l1 distance between
the probability distribution on (Y1, . . . , Yk ) induced by a and by b, then
conditions (i) and (ii) imply that

lim
k→∞

1
2

d (k)(a, b) = 1. (5)

Now, by the first part (equation 3.1) of Theorem 3.2 of Steel and Szekely
(2002), the probability that the ML estimate is the value of A that gen-
erates the sequence (Y1, . . . , Yk ) is at least 1 − ∑

b 
=a [1 − 1
2 d (k)(a, b)] and

so, by (5), this probability converges to 1 as k → ∞.

Proof of Theorem 2. To establish the theorem, using Proposition 6
(stated above) it is enough to specify for each choice of distinct resolved
phylogenetic X-trees T0 and T , a sequence of events Ek (dependent on
Pk ) for which, as k grows, Ek has a probability that tends to 1 under
the distribution obtained from T0 and tends to 0 under the distribution
obtained from T . Since T differs from T0 a subset Y exists of size m (= 3
for rooted trees and = 4 for unrooted) for which T |Y 
= T0|Y. Notice
that the covering property (2) implies that

1
k
|{i ≤ k : T |Xi 
= T0|Xi }| ≥ ε for all k ≥ K . (6)

Let Ek be the event that among all those i ∈ {1, . . . , k} for which
T |Xi 
= T0|Xi , we have Ti = T0|Xi more often than Ti = T |Xi . Now, for
a profile generated byT0 according to the model satisfying the centrality

property, we have, for each i for which T |Xi 
= T0|Xi ,

PT0 , Xi [Ti = (T0|Xi )] ≥ PT0 , Xi [Ti = (T |Xi )] + η. (7)

Similarly, for a profile generated by T according to a model satisfying
the centrality property, and for each i for which T |Xi 
= T0|Xi , we have

PT , Xi [Ti = (T |Xi )] ≥ PT , Xi [Ti = (T0|Xi )] + η. (8)

By condition (6), there is a positive limiting proportion (ε > 0)
of i for which T |Xi 
= T0|Xi . By independence (and the law of large
numbers) it follows from inequality (7) that event Ek has a probability
that tends to 1 as k → ∞ for a profile generated by T0. Similarly, by (8),
event Ek has a probability tending to 1 as k → ∞ for a profile generated
by T . Statistical consistency of ML now follows by Proposition 6.

For a model M satisfying basal centrality the same argument applies
if we select Y as above and modify event Ek to be the event that among
all those i ∈ {1, . . . , k} for which Y ⊆ Xi we haveTi |Y = T0|Y more often
than Ti = T |Y.

Proof of Theorem 4. For two unrooted fully-resolved phylogenetic X-
trees T , T ′, let L(T , T ′) denote the total parsimony score on T ′ of the
set of splits of T . That is,

L(T , T ′) =
∑

σ∈�(T )

l(σ, T ′), (9)

where �(T ) is the set of splits of T and l(σ, T ′) is the parsimony score
of the split σ on T ′ (treating σ as a binary character; Semple and Steel,
2003). For any fully resolved phylogenetic X tree T ′, let e(T ′;T0) be the
expected total parsimony score on T ′ of the set of splits of a tree T ran-
domly generated by T0 according to the exponential model (1). Then,

e(T ′;T0) =
∑
T

α exp[−βd(T , T0)] · L(T , T ′). (10)

To establish Theorem 4, it is enough to show, for some β > 0 and
for two unrooted fully resolved trees T0, T1 on X = {1, . . . , 6}, that
e(T0;T0) − e(T1;T0) > 0, because if T0 is the generating tree, then T1

will be favored over T0 by MRP. We first show that this can occur when
β = 0. In that case, α exp[−βd(T , T0)] = 1/105 for all T (there are
105 unrooted fully-resolved phylogenetic trees on X) and so, by (10),
we have

e(T0;T0) − e(T1;T0) = 1
105

∑
T

[L(T , T0) − L(T , T1)].

Applying (9) and interchanging the order of summation gives:

e(T0;T0) − e(T1;T0) = 1
105

∑
σ

n(σ ) · [l(σ, T0) − l(σ, T1)], (11)

where n(σ ) is the number of unrooted fully resolved phylogenetic
X trees containing split σ and the summation is over all the splits
of X = {1, . . . , 6}. Moreover, if any difference l(σ, T0) − l(σ, T1) is
non-zero in (11), then σ is necessarily a split that partitions the taxa
into sets of sizes either 2, 4 or 3, 3, and for such a split σ we have
n(σ ) = 15 and 9, respectively.

Now suppose T0 has a symmetric shape (i.e., an unrooted fully re-
solved tree of six leaves with three cherries) andT1 has a pectinate shape
(i.e., an unrooted fully resolved tree of six leaves with two cherries).
Then, by using earlier results (Steel et al., 1992, table 3) concerning the
number of splits that partition the taxa into sets of size 2, 4 and 3, 3 and
have parsimony score 1, 2, 3 in these two trees, it can be shown from
(11) that

e(T0;T0) − e(T1;T0) > 0
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So far, we have assumed that β = 0; however, e(T0;T0) − e(T1;T0) is a
continuous function of β, so a strictly positive value of β exists for
which

e(T0;T0) − e(T1;T0) > 0.

This completes the proof.
Proof of Proposition 3. For d = SPR or d = TBR, and for any resolved

unrooted phylogenetic trees T on taxon set X, and TY on taxon set
Y ⊆ X we claim that:

min{d(T ′, T ) : T ′|Y = TY} = d(TY, T |Y). (12)

where T ′ ranges over the set of all unrooted resolved phylogenetic tree
on taxon set X that induce TY when restricted to Y. To establish this
claim, note firstly that, for any T ′ with taxon set X, and Y ⊆ X, we have
d(T ′|Y, T |Y) ≤ d(T ′, T ) and so the ≥ inequality holds in (12). To estab-
lish equality induction on k (starting with the base case k = 1) shows
that if TY and T |Y are k SPR (or TBR) moves apart, then there exists an
unrooted resolved phylogeneticT ′ on taxon set X that inducesTY when
restricted to Y, and which is at most k SPR (or TBR, respectively) moves
apart from T . Having established (12), Proposition 3 now follows by
Proposition 1.

Note that Equation (12) does not necessarily hold for other tree met-
rics such as the NNI (nearest-neighbor interchange) or the partition
(Robinson-Foulds) metric.

Proof of Proposition 5. By Proposition 2 it suffices to show that the
composite model satisfies centrality. Given a rooted phylogenetic tree
T on taxon set X, and a subset Y of X of size 3, label the three rooted
binary trees on Y, T1, T2, T3, so that T1 = T |Y. We need to show that, for
some η′ > 0, PT ,Y(T1) ≥ PT ,Y(T j ) + η′ for j = 2, 3. By the independence
assumption,

PT ,Y(Tk ) =
3∑

j=1

P
(1)
T ,Y(T j )P

(2)
T j ,Y(Tk ),

where P
(1)
T ,Y(T j ) is the probability of generating T j under model M1

from generating tree T , and P
(2)
T j ,Y(Tk ) is the probability of gener-

ating Tk under model M2 with generating tree T j . Now, P
(2)
T j ,Y(Tk)

takes the value α for j = k, and the value αe−β for j 
= k. Thus,
PT ,Y(T1) = αP

(1)
T ,Y(T1) + αe−β [P(1)

T ,Y(T2) + P
(1)
T ,Y(T3)], whereas PT ,Y(T2) =

αP
(1)
T ,Y(T2) + αe−β [P(1)

T ,Y(T1) + P
(1)
T ,Y(T3)]. Consequently,

PT ,Y(T1) − PT ,Y(T2) = α(1 − e−β )
[
P

(1)
T ,Y(T1) − P

(1)
T ,Y(T2)

]
.

A similar expression holds for other difference PT ,Y(T1) − PT ,Y(T3) and
because M1 is central, we can take η′ to be the minimal value of α(1 −
e−β )[PT ,Y(T1) − PT ,Y(Tk )] over k = 2, 3.
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