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We describe an algorithm for point multiplication on generic elliptic curves, based on a representation of the scalar as a sum of mixed powers of 2 and 3. The sparseness of this so-called double-base number system, combined with some efficient point tripling formulae, lead to efficient point multiplication algorithms for curves defined over both prime and binary fields. Side-channel resistance is provided thanks to side-channel atomicity.

Introduction

Since its discovery by Miller [START_REF] Miller | Uses of elliptic curves in cryptography[END_REF] and Koblitz [START_REF] Koblitz | Elliptic curve cryptosystems[END_REF] in 1985, Elliptic Curve Cryptography (ECC) has been the subject of a vast amount of publications. Of particularly interest is the quest for fast and side-channel resistant implementations. ECC bases its theoretical robustness on the Elliptic Curve Discrete Logarithm Problem (ECDLP), for which no subexponential algorithm is known. The main operation of any ECC protocol is to compute the point [n]P = P + • • • + P (n times), for n ∈ Z and P a point on the curve. This operation, called the point or scalar multiplication, is the most time consuming and must be carefully implemented. Adaptations of fast exponentiation algorithms [START_REF] Gordon | A survey of fast exponentiation methods[END_REF] have been proposed. The double-and-add algorithm, an adaptation of the square-and-multiply exponentiation method, can be used to compute [n]P in log n point doublings and (log n)/2 point additions on average. Since the opposite of a point (-P ) is easily computed, signed digit representations allow one to reduce the number of point additions: the Non Adjacent Form (NAF), also known as the modified Booth recoding, requires (log n)/3 point additions on average. Window methods (w-NAF) can be used to further reduce the number of additions to (log n)/(w + 1), at the extra cost of a small amount of precomputations (one needs to precompute the points jP for j = 1, 3, . . . , 2 w-1 -1; the points ±jP are used in the point multiplication algorithm). Methods based on efficiently computable endomorphisms on special curves, such as Koblitz curves, are also very attractive. Since the original submission of this manuscript, several interesting papers have been published, which merge the properties of the double-base number system and the efficiently computable endomorphisms on these curves [START_REF] Dimitrov | FPGA implementation of point multiplication on Koblitz curves using Kleinian integers, Cryptographic Hardware and Embedded Systems[END_REF][START_REF] Avanzi | Extending scalar multiplication using double bases[END_REF].

In this paper, we propose a scalar multiplication algorithm based on a representation of the scalar n as a sum of mixed powers of two coprime integers p.q, called the double-base number system (DBNS). The inherent sparseness of this representation scheme leads to fewer point additions than other classical methods. For example, let p = 2, q = 3 and n be a randomly chosen 160-bit integer. Then one needs only about 22 summands to represent it, as opposed to 80 in standard binary representation and 53 in the non-adjacent form. Although this sparseness does not immediately lead to algorithmic improvements, it outlines one of the main features of this number system and serves as a good starting point for potential applications in cryptography. Double-base representations have recently attracted curiosity in the cryptographic community: Avanzi, Ciet and Sica have investigated double-bases in the case of Koblitz curves, by letting one of the bases be an algebraic number [START_REF] Ciet | An analysis of double base number systems and a sublinear scalar multiplication algorithm[END_REF][START_REF] Avanzi | Scalar multiplication on Koblitz curves using double bases[END_REF]. In [START_REF] Doche | Efficient scalar multiplication by isogeny decompositions[END_REF], Doche et al. proposed a very efficient tripling algorithm 1 for a particular family of curves by using isogeny decompositions; in this context, finding short double-base expansions is also of primary importance. Very recently, Doche and Imbert proposed an extension of the idea which lead to significant speedups in double-base point multiplications for generic curves [START_REF] Doche | Extended double-base number system with applications to elliptic curve cryptography[END_REF]. This is achieved by considering double-base expansions with digit sets larger than {-1, 0, 1}.

This paper is an extension of the author's paper at Asiacrypt 2005 [START_REF] Dimitrov | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF]. The present version contains a more detailed presentation of the double-base number system, including a theorem on the number of double-base representations for a given positive integer, and some numerical results that illustrate the properties of this encoding scheme, particularly its redundancy and sparseness. It also gives more details on the most important step of the greedy approach used for the conversion from binary, i.e., finding the best approximation of a given integer of the form p a q b . An efficient alternative solution, which requires some precomputed values to be stored in lookup tables, is presented in [START_REF] Doche | Extended double-base number system with applications to elliptic curve cryptography[END_REF].

In order to best exploit the sparse and ternary nature of this representation scheme, we also propose new formulae for some useful point operations (tripling, quadrupling, etc.) for generic elliptic curves. We consider curves defined over F p with Jacobian coordinates, and curves over F 2 m with both affine and Jacobian coordinates. Some of these formulae are already present in [START_REF] Dimitrov | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF]. The derivations are given with more details in the present paper.

Since their discovery by Kocher [START_REF] Kocher | Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems[END_REF][START_REF] Kocher | Differential power analysis[END_REF], side-channel attacks (SCA) have become the most serious threat for cryptographic devices. Therefore, protection against various kinds of SCA (power analysis, electromagnetic attacks, fault attacks, etc.) has become a major issue and an interesting area of research. Several countermeasures have been proposed in the literature. We refer interested readers to [START_REF] Blake | Advances in elliptic curve cryptography[END_REF][START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF] for details. In this work we consider a solution proposed by Chavalier-Mames et al. called side-channel atomicity [START_REF] Chevalier-Mames | Low-cost solutions for preventing simple sidechannel analysis: Side-channel atomicity[END_REF]. The field operations used in the ADD and DBL curve operations are rearranged and divided into small identical groups, called atomic blocks. These blocks all contain the same operations, in the very same order, to become indistinguishable from the side-channel information leaked to the adversary. Therefore, the trace of a computation composed of a series of ADD and DBL looks like a series of atomic blocks; the adversary cannot distinguish which block belongs to which operation from the side-channel information. Thus the sequence of execution of the curve operations is blinded. This effectively resists simple power attacks.

The sequel of the paper is organized as follows: In Section 2, we introduce the double-base number system, its main properties, and some related problems in number theory and combinatorics. We briefly recall the basics of elliptic curve cryptography and the costs of the classical curve operations in Section 2.2. In Section 3, we present several new curve formulae for the operations that arise in the DBNS point multiplication algorithm presented in Section 4. Finally, we compare our algorithm with several other methods in Section 5.

Background

2.1. The double-base number system. In this section, we present the main properties of the double-base number system, along with some numerical results in order to provide the reader with some intuitive ideas about this representation scheme and the difficulty of some underlying open problems. We have intentionally omitted the proofs of previously published results. The reader is encouraged to check the references for more details.

We will need the following definitions.

Definition 1 (S-integer). Given a set of primes S, an S-integer is a positive integer whose prime factors all belong to S.

Definition 2 (double-base number system). Given p, q, two relatively prime positive integers, the double-base number system (DBNS) is a representation scheme into which every positive integer n is represented as the sum or difference of {p, q}integers, i.e., numbers of the form p a q b :

(1)

n = l i=1 s i p a i q b i , with s i ∈ {-1, 1} and a i , b i ≥ 0.
The size, or length, of a DBNS expansion is equal to the number of terms l in (1). In the following, we will only consider expansions of n as sums of {2, 3}-integers; i.e., DBNS with p = 2, q = 3.

Whether one considers signed (s i = ±1) or unsigned (s i = 1) expansions, this representation scheme is highly redundant. For instance, if we assume unsigned double-base representations only, we can prove that 10 has exactly 5 different DBNS representations, 100 has exactly 402 different DBNS representations, 1, 000 has exactly 1, 295, 579 different DBNS representations, etc. The following theorem holds.

Theorem 1.

Let n be a positive integer. The number of unsigned DBNS representations of n is given by the following recursing function.

f (1) = 1 and for n ≥ 1, (2) f (n) = f (n -1) + f (n/3) if n ≡ 0 (mod 3), f (n -1) otherwise.
Proof. Let us consider the diophantine equation

(3) n = h 0 + 3h 1 + 9h 2 + • • • + 3 k h k ,
where k = log 3 (n) and

h i ≥ 0 for i = 0, . . . , k. Let h (m) = (h (m) 0 , . . . , h (m)
k ) be the m-th solution of [START_REF] Avanzi | Extending scalar multiplication using double bases[END_REF]. By substituting each h (m) i into (3) with its (unique) binary representation, we obtain a specific partition of n as the sum of numbers of the form 2 a 3 b . Our problem thus reduces to counting the number of solutions g(n) of (3). This is a very classical integer partition problem, which is known to be associated with the following generating function (see [START_REF] Wilf | Generatingfunctionology[END_REF] for example):

(4) G(z) = 1 (1 -z)(1 -z 3 ) . . . (1 -z 3 k ) .
We will prove that (2) admits the same generating function; i.e., that

f (n) = g(n) = [z n ]G(z), where the symbol [z n ]G(z) denotes the coefficient of degree n in the series G(z). Let F (z) = ∞ n=1 z n f (n)
be the generating function associated with [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]. We find that

F (z) = ∞ n=1 z 3n f (3n) + ∞ n=1 3 n z n f (n) = ∞ n=1 z 3n (f (3n -1) + f (n)) + ∞ n=2 3 n z n f (n -1) + zf (1) = z + ∞ n=2 z n f (n -1) + ∞ n=1 z 3n f (n) = z + zF (z) + F (z 3 ). Thus (5) F (z) = z 1 -z + z 3 (1 -z)(1 -z 3 ) + z 9 (1 -z)(1 -z 3 )(1 -z 9 ) + • • • .
By noticing that, for n ≥ 1, the coefficient of z n in the series z/(1z) is equal to the coefficient of z n in the series 1/(1z) and by expressing all terms in (5) with denominator i (1z 3 i ), we obtain that

(6) [z n ] F (z) = [z n ] 1 (1 -z)(1 -z 3 ) . . . (1 -z 3 k ) = [z n ] G(z),
which concludes the proof.

It is quite clear that the above theorem also applies to numbers of the form 2 a s b , where s is an odd integer greater than 1. In this case, the number of solutions of the corresponding partition problem is given by a function similar to [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF], where 3 is replaced by s. f (1) = 1 and for n ≥ 1,

f (n) = f (n -1) + f (n/s) if n ≡ 0 (mod s), f (n -1) otherwise.
Apparently, Mahler was the first to consider the problem of finding good approximations of f (n) in his work from 1940 on the Mordel's functional equation [START_REF] Mahler | On a special functional equation[END_REF].

He proved that log f (n) ≈ (log n) 2 2 log s .
In 1953, Pennington [START_REF] Pennington | On Mahler's partition problem[END_REF] obtained a very good approximation of log f (sn), which gives us an extremely accurate estimation of the number of partitions of n as the sum of {2, s}-integers:

f (sn) = e O(1) n C 1 log n n C 2 log n C 1 log log n n 2C 1 log log n log n C 3 log n ,
where C 1 , C 2 , C 3 are explicitconstants depending only on s Theorem 1 tells us that there exist very many ways to represent a given integer in DBNS. Some of these representations are of special interest, most notably the ones that require the minimal number of {2, 3}-integers; that is, an integer can be represented as the sum of l terms, but cannot be represented with (l -1) or fewer. These so-called canonic representations are extremely sparse. For example, 127 has 783 different unsigned representations, among which 6 are canonic requiring only three {2, 3}-integers. An easy way to visualize DBNS numbers is to use a twodimensional array (the columns represent the powers of 2 and the rows represent the powers of 3) into which each non-zero cell contains the sign of the corresponding term. For example, the six canonic representations of 127 are given in Table 1.

Table 1. The six canonic unsigned DBNS representations of 127 Some numerical facts provide a good impression about the sparseness of the DBNS. The smallest integer requiring three {2, 3}-integers in its unsigned canonic DBNS representation is 23; the smallest integer requiring four {2, 3}-integers in its unsigned canonic DBNS representation is 431. Similarly, the next smallest integers requiring five, six and seven {2, 3}-integers are 18, 431, 3, 448, 733, and 1, 441, 896, 119, respectively. The next record-setter would be most probably bigger than one trillion.

2 2 3 3 + 2 1 3 2 + 2 0 3 0 = 108 + 18 + 1 2 2 3 3 + 2 4 3 0 + 2 0 3 1 = 108 + 16 + 3 1 2 4 1 1 3 9 1
If one considers signed representations, then the theoretical difficulties in establishing the properties of this number system dramatically increase. To wit, it is possible to prove that the smallest integer that cannot be represented as the sum or difference of two {2, 3}-integers is 103. The next limit is most probably 4985, but to prove it rigorously, one has to show that none of the following exponential diophantine equations has a solution.

Conjecture 1. The diophantine equations

±2 a 3 b ± 2 c 3 d ± 2 e 3 f = 4985
do not have solutions in integers.

One way to tackle this problem would be to extend the results from Skinner [START_REF] Skinner | On the diophantine equation ap x + bq y = c + dp z q w[END_REF] on the diophantine equation ap x + bq y = c + dp z q w , to the case where a, b, c, d are not necessarily positive integers. Deriving similar results for a four-term equation (that is, proving that a given number does not admit a signed DBNS representation with 4 terms) seems, however, to be a much more difficult problem.

Finding one of the canonic DBNS representations in a reasonable amount of time, especially for large integers, seems to be a very difficult task. Fortunately, one can use a greedy approach to find a fairly sparse representation very quickly. Given n > 0, Algorithm 1 below returns a signed DBNS representation for n. Although it sometimes fails in finding a canonic representation,2 it is very easy to implement and, more importantly, it guarantees an expansion of sublinear length. Indeed, one of the most important theoretical results about the double-base number system is the following theorem from [START_REF] Dimitrov | An algorithm for modular exponentiation[END_REF]. It gives us an estimate for the number of terms that one can expect to represent a positive integer.

Algorithm 1 Greedy algorithm

Input A positive integer n Output The sequence of triples (s i , a i , b i ) i≥0 such that n = i s i 2 a i 3 b i with s i ∈ {-1, 1} and a i , b i ≥ 0 1: s ← 1 2: while n = 0 do 3:
Find the best approximation of n of the form z = 2 a 3 b 4:

print (s, a, b)

5: if n < z then 6: s ← -s 7: n ← |n -z| Theorem 2. Algorithm 1 terminates after k ∈ O(log n/ log log n) steps.
Sketch of proof. (See [START_REF] Dimitrov | An algorithm for modular exponentiation[END_REF] for a complete proof). Clearly, we have k ∈ O(log n) by taking the 2-adic or 3-adic expansions of n. A result by Tijdeman [START_REF] Tijdeman | On the maximal distance between integers composed of small primes[END_REF] states that there exists an absolute constant C such that there is always a number of the form 2 a 3 b between nn/(log n) C and n.

Let n = n 0 > n 1 > n 2 > • • • > n l > n l+1
be the sequence of integers obtained via Algorithm 1. Clearly, for all i = 0, . . . , l, it satisfies

n i = 2 a i 3 b i + n i+1 with n i+1 < n i /(log n i ) C By defining l = l(n) such that n l > f(n) ≥ n l+1 , we obtain that k = l(n) + O(log f (n)). The proof is completed by showing that the function f (n) = exp (log n/ log log n) gives l(n) ∈ O(log n/ log log n).
The complexity of the greedy algorithm mainly depends on the complexity of step 3: finding the {2, 3}-integer which best approximates n. The problem can be reformulated in terms of linear forms of logarithms. For the best default approximation, one has to find two integers a, b ≥ 0 such that [START_REF] Berthé | On converting numbers to the double-base number system[END_REF] a log 2 + b log 3 ≤ log n, and such that no other integers a , b ≥ 0 give a better left approximation to log n. In [START_REF] Berthé | On converting numbers to the double-base number system[END_REF], Berthè and Imbert proposed an algorithm based on Ostrowski's number system [START_REF] Allouche | Automatic sequences[END_REF] for real numbers [START_REF] Berthé | Autour du système de numération d'Ostrowski[END_REF]; a number system associated with the series (q i αp i ) i≥0 , where (p i /q i ) i≥0 is the series of the convergents of the continued fraction expansion of an irrational number α ∈]0, 1[. In this system, every real number -α ≤ β < 1α can be uniquely written as

(8) β = +∞ i=1 b i (q i-1 α -p i-1 ), where ⎧ ⎨ ⎩ 0 ≤ b 1 ≤ a 1 -1, and 0 ≤ b i ≤ a i for i > 1, b i = 0 if b i+1 = a i+1 , b i = a i
for infinitely many even and odd integers. The algorithm presented in [START_REF] Berthé | On converting numbers to the double-base number system[END_REF] uses the fact that β can be approximated modulo 1 by numbers of the form Aα; the best successive approximations being given by the series (9)

A j = j i=1 b i q i-1 .
By setting α = log 2/ log 3, and β = {log n/ log 3} (where {} denotes the fractional part), the solution of our problem is given by a

= m i=1 b i q i-1 and b = β -m i=1 b i p i-1
, where m is the largest integer such that b ≥ 0. One can prove that the algorithm proposed in [START_REF] Berthé | On converting numbers to the double-base number system[END_REF] to find the best approximation of n of the form 2 a 3 b has complexity O(log log n). Since the greedy algorithm finishes in O(log n/ log log n) iterations, its complexity is thus in O(log n). It is important to remark that for a recoding algorithm between two additive number systems, we cannot do better.

Elliptic curve cryptography.

Definition 3. An elliptic curve E over a field K, denoted by E/K, is defined by its Weierstraß equation [START_REF] Chevalier-Mames | Low-cost solutions for preventing simple sidechannel analysis: Side-channel atomicity[END_REF] E/K :

y 2 + a 1 xy + a 3 y = x 3 + a 2 x 2 + a 4 x + a 6
where a 1 , a 2 , a 3 , a 4 , a 6 ∈ K and ∆, the discriminant of E, is different from 0.

In practice, the general equation ( 10) can be greatly simplified by applying admissible changes of variables. If the characteristic of K is not equal to 2 and 3, one can rewrite it as ( 11)

y 2 = x 3 + a 4 x + a 6 ,
where a 4 , a 6 ∈ K, and ∆ = 4a 3 4 + 27a 2 6 = 0.

When the characteristic of K is equal to 2, the ordinary or non-supersingular form3 of an elliptic curve is given by ( 12)

y 2 + xy = x 3 + a 2 x 2 + a 6 ,
where a 2 , a 6 ∈ K and ∆ = a 6 = 0.

The set E(K) of K-rational points on an elliptic curve E/K consists of the affine points (x, y) satisfying [START_REF] Chevalier-Mames | Low-cost solutions for preventing simple sidechannel analysis: Side-channel atomicity[END_REF] along with the special point O called the point at infinity. It forms an abelian group, where the operation (denoted additively) is defined by the well-known law of chord and tangent (see [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF] for details). Given P, Q on the curve, the group law slightly differs as to whether one considers the computation of P + Q with P = ±Q or the computation of P + P = [2]P . We talk about point addition (ADD) and point doubling (DBL).

There exist many ways to represent the points of E(K). In affine coordinates (A), both the ADD and DBL operations involve expensive field inversions (to compute the slope of the chord/tangent). In order to avoid these inversions, several inversionfree systems of coordinates have been proposed. The choice of such a system has to be made according to several parameters including memory constraints and the relative cost between one field inversion and one field multiplication, often called the [i]/[m] ratio. For binary fields, several works report a ratio [i]/[m] between 3 and 10 depending on the implementation options (see [START_REF] De Win | A fast software implementation for arithmetic operations in GF(2 n )[END_REF][START_REF] Hankerson | Software implementation of elliptic curve cryptography over binary fields, Cryptographic Hardware and Embedded Systems[END_REF]). For prime fields, however, this ratio is more difficult to estimate precisely. In [START_REF] Fong | Field inversion and point halving revisited[END_REF], Fong et al. consider that [i]/[m] > 40 on general-purpose processors. In fact, different experiments can provide very different results. If, for example, one uses GMP [START_REF] Granlund | GMP, the GNU multiple precision arithmetic library[END_REF] to compare the cost of these two operations over large prime fields, one does not necessarily notice a huge difference in terms of computational time. This is due to the fact that the multiplication and reduction (modulo p) algorithms implemented in GMP are generic; i.e. they do not take into account the possible special form of the modulus. When implementing ECC/HECC algorithms, it is a good idea to use primes that allow fast modular arithmetic, such as those recommended by the NIST [START_REF]Digital signature standard (DSS)[END_REF], the SEC Group [START_REF]SEC 2: Recommended elliptic curve domain parameters, Standard for Efficient Cryptography[END_REF], or more generally the primes belonging to what Bajard et al. called the Mersenne family [START_REF] Solinas | Generalized mersenne numbers[END_REF][START_REF] Chung | More generalized Mersenne numbers, Selected Areas in Cryptography[END_REF][START_REF] Bajard | Modular number systems: Beyond the Mersenne family[END_REF]. In these cases, the multiplication becomes much more efficient than the inversion. In hardware implementations using inversion-free systems, the space for the inverter is often saved and the single final inversion is done using Fermat's little theorem. Although the overhead due to inversions in less dramatic for curves defined over F 2 m , affine coordinates are not necessarily the best choice in practice, especially for software implementations [START_REF] De Win | A fast software implementation for arithmetic operations in GF(2 n )[END_REF]. In this paper we consider projective coordinates for curves defined over F p and both affine and projective for curves defined over F 2 m . More exactly, we use Jacobian coordinates (J ), a special class of projective coordinates, where the point (X : Y : Z) corresponds to the affine point (X/Z 2 , Y/Z 3 ) when Z = 0. The point at infinity is represented as (1 : 1 : 0). The opposite of (X : Y : Z) is (X : -Y : Z). Clearly there exist infinitely many points in the projective space which correspond to the same affine point. We use the common abusive notation (X : Y : Z) to represent any representative of the equivalence class given by the relation of projection.

As we shall see, our DBNS-based point multiplication algorithm uses several basic operations (addition, doubling, tripling, etc.). In Sections 2.2.1 and 2.2.2, we recall the complexity of some of these curve operations, expressed in terms of the number of elementary operations in the field K. The interested reader is encouraged to check the literature [START_REF] Hankerson | Guide to elliptic curve cryptography[END_REF][START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF] for detailed descriptions of these algorithms. We use [i], [s] and [m] to denote the cost of one inversion, one squaring and one multiplication, respectively. We always leave out the cost of field additions. For curves defined over F p it is widely assumed that [s] = 0.8 [m]. It is therefore a good idea to trade multiplications in favor of squarings whenever possible. However, as we shall see, our algorithms can be protected against SCA using side-channel atomicity [START_REF] Chevalier-Mames | Low-cost solutions for preventing simple sidechannel analysis: Side-channel atomicity[END_REF]. In such cases, because squarings and multiplications must be performed using the same multiplier in order to be indistinguishable, we have to consider that [s] = [m]. For curves defined over binary fields, however, squarings are free (when normal bases are used to represent the elements of F 2 m ) or of negligible cost (squaring is a linear operation in polynomial basis); the complexity is thus mainly driven by the numbers of inversions and multiplications.

2.2.1. Elliptic curves defined over F p . When Jacobian coordinates are used the addition (ADD J ) and doubling (DBL J ) operations require 12[m] + 4[s] and 4[m] + 6[s], respectively. The cost of DBL J can be reduced to 4[m] + 4[s] when a 4 = -3 (Brier and Joye [START_REF] Brier | Fast point multiplication on elliptic curves through isogenies[END_REF] proved that most randomly chosen curves can be mapped to an isogeneous curve with a 4 = -3). Also, if one of the points is given in affine coordinates (Z = 1), then the cost of the so-called mixed addition (J + A → J ) reduces to 8[m]+3[s]. Several algorithms have been proposed for repeated doublings (the computation of [2 w ]P ) in the case of binary fields [START_REF] Guajardo | Efficient algorithms for elliptic curve cryptosystems[END_REF][START_REF] Lopez | An improvement of the Guajardo-Paar method for multiplication on non-supersingular elliptic curves[END_REF]. For prime fields, an algorithm was proposed by Itoh et al. in [START_REF] Itoh | Fast implementation of publickey cryptography on a DSP TMS320C6201[END_REF], which is more efficient than w invocations of DBL J . In the general case (a

4 = -3) it requires 4w[m] + (4w + 2)[s].
When a 4 = -3 the cost of w-DBL J is exactly the same as the cost of w doublings; i.e. 4w[m] + 4w[s]. In Table 2, we summarize the complexity of these different elliptic curve operations. In the third column, we give the minimum number of registers required to achieve the corresponding complexities. See [2, chapter 13] for a complete description. 

J 4[m] + 6[s] 6 DBL J , a 4 =-3 4[m] + 4[s] 5 ADD J 12[m] + 4[s] 7 ADD J +A 8[m] + 3[s] 7 w-DBL J 4w[m] + (4w + 2)[s] 7 
2.2.2. Elliptic curves defined over F 2 m . For curves defined over F 2 m we give the cost of the most common operations in affine and Jacobian coordinates, 4 as they both have practical interest. Note that we only consider ordinary curves (for details concerning supersingular curves, see [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]).

Affine coordinates: The addition (ADD A ) and doubling (DBL A ) operations can be computed with the same number of field operations in 1

[i] + 1[s] + 2[m]
. In [START_REF] Eisenträger | Fast elliptic curve arithmetic and improved Weil pairing evaluation[END_REF], Eisenträger et al. proposed efficient formulae for tripling (TPL A ), double-and-add (DA A ) and triple-and-add (TA A ). By trading some inversions for a small number of multiplications, their results have been further improved by Ciet et al. [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF] when [i]/[m] > 6. We summarize the complexities of each of these operations in Table 4, with the break-even points between the two options for DA A , TPL A and TA A .

Table 3. Elliptic curve operations in affine coordinates for curves defined over F 2 m

Curve operation [START_REF] Eisenträger | Fast elliptic curve arithmetic and improved Weil pairing evaluation[END_REF] [12] break-even point

DBL A 1[i] + 1[s] + 2[m] - ADD A 1[i] + 1[s] + 2[m] - DA A 2[i] + 2[s] + 3[m] 1[i] + 2[s] + 9[m] [i]/[m] = 6 TPL A 2[i] + 2[s] + 3[m] 1[i] + 4[s] + 7[m] [i]/[m] = 4 TA A 3[i] + 3[s] + 4[m] 2[i] + 3[s] + 9[m] [i]/[m] = 5
Jacobian coordinates: The use of Jacobian coordinates for curves defined over F 2 m was proposed by Hankerson et al. in [START_REF] Hankerson | Software implementation of elliptic curve cryptography over binary fields, Cryptographic Hardware and Embedded Systems[END_REF], after noticing that their software implementation 5 

J 5[m] + 5[s] 5 ADD J 16[m] + 3[s] 1 0 ADD J +A 11[m] + 3[s] -
We note that, although the doubling algorithm can be computed using 5 multiplications and 5 squarings, it requires 6 atomic blocks if one considers (s, m, a)blocks (i.e., blocks composed of 1 squaring, 1 multiplication and 1 addition in that order). Since squarings are almost free over F 2 m , it is much better to consider (s, s, m, a)-blocks, as it indeed allows one to perform a doubling in 5 blocks; i.e. in 5 multiplications. We express both the doubling and the mixed addition with (s, s, m, a)-blocks in Tables 15 and16 of Appendix B.

New curve arithmetic formulae

This section is devoted to new, efficient curve operations, which have been defined in order to best exploit the sparseness and the ternary nature of the DBNS representation. Namely, we give formulae for:

• point tripling, consecutive triplings, as well a very specific consecutive doublings following (consecutive) tripling(s) in Jacobian coordinates for curves defined over F p , • point tripling, point quadrupling (QPL A ) and combined quadruple-and-add (QA A ) in affine coordinates for curves defined over F 2 m , • point tripling (TPL J ) in Jacobian coordinates for curves defined over F 2 m . 3.1. Curves defined over F p using Jacobian coordinates. In this section, we derive equations to obtain an efficient point tripling formula (TPL J ) in Jacobian coordinates for curves defined over F p . (This formula was already present in [START_REF] Dimitrov | Efficient and secure elliptic curve point multiplication using double-base chains[END_REF].) Then, we explain how some field operations can be saved when several triplings (w-TPL J ) have to be computed, or when several doublings have to be computed right after one or more triplings (w-TPL J /w -DBL J ). As we shall see in Section 4, this very specific operation occurs quite often in our scalar multiplication algorithm.

To simplify, we start with affine coordinates. Let P = (x 1 , y 1 ) ∈ E(K) be a point on an elliptic curve E defined by [START_REF] Chung | More generalized Mersenne numbers, Selected Areas in Cryptography[END_REF]. By definition, we have [2]P = (x 2 , y 2 ), where ( 13)

λ 1 = 3x 2 1 + a 4 2y 1 , x 2 = λ 2 1 -2x 1 , y 2 = λ 1 (x 1 -x 2 ) -y 1 .
We can compute [3]P = [2]P + P = (x 3 , y 3 ), by evaluating λ 2 (the slope of the chord between the points [2]P and P ) as a function of x 1 and y 1 only. We have

λ 2 = y 2 -y 1 x 2 -x 1 = -λ 1 - 2y 1 x 2 -x 1 = - 3x 2 1 + a 4 2y 1 - 8y 3 1 (3x 2 1 + a 4 ) 2 -12x 1 y 2 1 . ( 14 
)
We further remark that

x 3 = λ 2 2 -x 1 -x 2 = λ 2 2 -x 1 -λ 2 1 + 2x 1 = (λ 2 -λ 1 )(λ 2 + λ 1 ) + x 1 (15) 
and

y 3 = λ 2 (x 1 -x 3 ) -y 1 = -λ 2 (λ 2 -λ 1 )(λ 2 + λ 1 ) -y 1 . ( 16 
)
Thus [3]P = (x 3 , y 3 ) can be computed directly from x 1 , y 1 without evaluating the intermediate values x 2 and y 2 .

By replacing x 1 and y 1 by X 1 /Z 2 1 and Y 1 /Z 3 1 respectively, we obtain the following point tripling formula in Jacobian coordinates. Let P = (X 1 : Y 1 : Z 1 ) be a point on the curve = O. Then the point [3]P = (X 3 : Y 3 : Z 3 ) is given by

X 3 = 8Y 2 1 (T -ME) + X 1 E 2 , Y 3 = Y 1 4(ME -T )(2T -ME) -E 3 , Z 3 = Z 1 E, ( 17 
)
where

M = 3X 2 1 + a 4 Z 4 1 , E = 12X 1 Y 2 1 -M 2 and T = 8Y 4 1 .
The cost of ( 17) is 10[m] + 6[s]. If one uses side-channel atomicity to resist SCA, this is equivalent to 16[m]. We express the TPL J algorithm in terms of atomic blocks in Table 13 of Appendix A. In comparison, computing [START_REF] Avanzi | Extending scalar multiplication using double bases[END_REF]P using the doubling and addition algorithms from [START_REF] Chevalier-Mames | Low-cost solutions for preventing simple sidechannel analysis: Side-channel atomicity[END_REF], expressed as a repetition of atomic blocks, costs 10

[m] + 16[m] = 26[m].
As we shall see, consecutive triplings; i.e., expressions of the form [3 w ]P , occur quite often in our point multiplication algorithm. From [START_REF] Dimitrov | FPGA implementation of point multiplication on Koblitz curves using Kleinian integers, Cryptographic Hardware and Embedded Systems[END_REF], we remark that the computation of the intermediate value

M = 3X 2 1 + a 4 Z 4 1 requires 1[m] + 3[s]
(we omit the multiplication by 3). If we need to compute [START_REF] Brier | Fast point multiplication on elliptic curves through isogenies[END_REF]P , we then have to evaluate

M = 3X 2 3 + a 4 Z 4 3 . Since Z 3 = Z 1 E, we have a 4 Z 4 3 = a 4 Z 4 1 E 4 (where E = 12X 1 Y 2 1 -M 2 )
, and a 4 Z 4 1 and E 2 have already been computed. Hence, using these precomputed subexpressions, we can compute M = 3X 2 3

+ (a 4 Z 4 1 )(E 2 ) 2 , with 1[m] + 2[s].
The same technique can be applied to save one multiplication for each subsequent tripling. Thus, we can compute 3 w P with (15w +1)[m], which is always better than w invocations of the tripling algorithm. The atomic blocks version of w-TPL J is given in Table 14 of Appendix A. Note that the idea of reusing a 4 Z 4 for multiple doublings was first proposed by Cohen et al. in [START_REF] Cohen | Efficient elliptic curve exponentiation using mixed coordinates[END_REF], where modified Jacobian coordinates are proposed.

From Table 2, DBL J normally requires 4[m] + 6[s], or equivalently 10 blocks of computation if side-channel atomicity is used. The scalar multiplication algorithm presented in the next section very often6 requires a w -DBL J to be computed right after a w-TPL J . This is due to the fact that we impose some conditions on the double-base expansion of the scalar k (see details in Section 4). When this occurs, it is possible to save 1[s] for the first DBL J using subexpressions computed for the last tripling. The next (w -1)-DBL J are then computed with (4w -4)[m]+(4w -4) [s].

(The details of these algorithms are given in Appendix A.) We summarize the complexities of these curve operations in Table 5, together with the number of registers required in each case. 

(4w + 2)[s] + (11w -1)[m] 1 0 w-TPL J /w -DBL J (11w + 4w -1)[s] + (4w + 4w + 3)[m] 1 0 3.2.
Curves defined over F 2 m using affine coordinates. In this section, we propose new affine formulae for the computation of [3]P , [START_REF] Avanzi | Scalar multiplication on Koblitz curves using double bases[END_REF]P and [4]P ± Q for curves defined over F 2 m . Let us first recall the equations for the doubling operation. Given P = (x 1 , y 1 ), P = -P , we have [2]P = (x 2 , y 2 ), where ( 18)

λ 1 = x 1 + y 1 x 1 , x 2 = λ 2 1 + λ 1 + a 2 , y 2 = λ 1 (x 1 + x 2 ) + x 2 + y 1 .
We shall compute [3]P = (x 3 , y 3 ) as [3]P = P + [2]P . From [START_REF] Dimitrov | An algorithm for modular exponentiation[END_REF], we obtain after simplifications ( 19)

x 3 = (λ 1 + λ 2 + 1) 2 + λ 2 + λ 1 + 1 + x 1 , y 3 = λ 2 (x 1 + x 3 ) + x 3 + y 1 ,
where λ 1 = x 1 + y 1 /x 1 and λ 2 = (y 1 + y 2 )/(x 1 + x 2 ). In order to reduce the number of field operations for the computations of x 3 and y 3 , we want to get a convenient expression for (λ 1 + λ 2 + 1). We start by expressing (x 1 + x 2 ) in terms of x 1 only. We have:

x 1 + x 2 = x 1 + λ 2 1 + λ 1 + a 2 = x 4 1 + (y 2 1 + x 1 y 1 + a 2 x 2 1 ) x 2 1 .
From ( 12), since P is on the curve, we define α = x 4 1 + x 3 1 + a 6 such that (20)

x 1 + x 2 = α x 2 1 .
Now, going back to the expression for λ 2 , we have:

λ 2 = λ 1 + x 2 x 1 + x 2 = λ 1 + x 1 x 1 + x 2 + 1 = λ 1 + x 3 1 α + 1 (21) = λ 1 + x 4 1 + a 6 α (22) = α(x 2 1 + y 1 ) + x 4 1 + a 6 x 1 α , λ 2 = β x 1 α , ( 23 
)
where β = α(x 2 1 + y 1 ) + x 4 1 + a 6 . From (21), we remark that ( 24)

λ 1 + λ 2 + 1 = x 3 1 α .
Replacing ( 23) and ( 24) in ( 19), we finally get

x 3 = x 4 1 x 1 α 2 + x 4 1 x 1 α + x 1 , ( 25 
)
y 3 = β x 1 α (x 1 + x 3 ) + x 3 + y 1 . ( 26 
)

It is easy to see that computing α requires 1[m] + 2[s]; 1 extra [m] gives β and 1/(x 1 α) is computed with another 1[m] + 1[i]. The total cost for this new point tripling is thus 1[i] + 3[s] + 6[m]

. This is always better than the formula proposed in [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF] (it saves 1[m] + 1[s]) and becomes faster than the equation from [START_REF] Eisenträger | Fast elliptic curve arithmetic and improved Weil pairing evaluation[END_REF] as soon as [i] ≥ 3[m] (see Table 3 for the exact costs of these previous methods).

For the quadrupling operations, the trick used in [START_REF] Eisenträger | Fast elliptic curve arithmetic and improved Weil pairing evaluation[END_REF] by Eisenträger et al., which consists in evaluating only the x-coordinate of [2]P when computing [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]P ± Q, can also be applied to speed-up the quadrupling (QPL A ) operation. From (19), we compute [4]P = [2]([2]P ) = (x 4 , y 4 ) as ( 27)

λ 2 = x 2 + y 2 x 2 , x 4 = λ 2 2 + λ 2 + a 2 , y 4 = λ 2 (x 1 + x 4 ) + x 4 + y 1 .
We observe that the computation of y 2 can be avoided by evaluating λ 2 as (28)

λ 2 = x 2 1 x 2 + λ 1 + x 2 + 1.
As a result, computing [START_REF] Avanzi | Scalar multiplication on Koblitz curves using double bases[END_REF] 6 below, we summarize the costs and break-even points between our new formulae and the algorithms proposed in [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF]. With such small break-even points, however, it remains unclear which formulae will give the best overall performance in practical situations.

Table 6. Tripling and quadrupling algorithms in affine coordinates for curves defined over F 2 m

Operation

present work [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF] break-even point TPL

A 1[i] + 3[s] + 6[m] 1[i] + 4[s] + 7[m] - QPL A 2[i] + 3[s] + 3[m] 1[i] + 5[s] + 8[m] [i]/[m] = 5 QA A 3[i] + 3[s] + 5[m] 2[i] + 6[s] + 10[m] [i]/[m] = 5 3.3.
Curves defined over F 2 m using Jacobian coordinates. As pointed out by Hankerson et al. in [START_REF] Hankerson | Software implementation of elliptic curve cryptography over binary fields, Cryptographic Hardware and Embedded Systems[END_REF], affine coordinates might not be the best option for software implementations. In this section, we propose a tripling algorithm for curves defined over F 2 m using Jacobian coordinates. (We did not find an efficient tripling formula using Lopez-Dahad coordinates.) Let us first recall the doubling formula.

If P = (X 1 : Y 1 : Z 1 ), we compute [2]P = (X 2 : Y 2 : Z 2 ) as X 2 = B + a 6 C 4 , Z 2 = X 1 C 2 , Y 2 = BZ 2 + (A + D + Z 2 )X 2 , where A = X 2 1 , B = A 2 , C = Z 2 1 and D = Y 1 Z 1 .
For the point tripling operation, we compute [3]P = P + [2]P = (X 3 : Y 3 : Z 3 ) by deriving, for example, the addition formula from [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]. We easily obtain

Z 3 = (X 1 Z 2 2 + X 2 Z 2 1 )Z 1 Z 2 = (X 3 1 Z 2 1 + X 2 )Z 2 Z 3 1 = F Z 3 1 , with E = (X 1 Z 2 1 + X 2 ) and F = EZ 2 .
We then compute X 3 as

X 3 = a 2 Z 2 3 + (Y 1 Z 3 2 + Y 2 Z 3 1 )(Y 1 Z 3 2 + Y 2 Z 3 1 + Z 3 ) + (X 1 Z 2 2 + X 2 Z 2 1 ) 3 = a 2 F 2 Z 6 1 + (Y 1 X 3 1 Z 6 1 + Y 2 Z 3 1 )(Y 1 X 3 1 Z 6 1 + Y 2 Z 3 1 + F Z 3 1 ) + (X 3 1 Z 4 1 + X 2 Z 2 1 ) 3 = HZ 6 1 , where H = (a 2 F 2 + G(G + F ) + E 3 ) and G = (Y 1 X 3 1 Z 3 1 + Y 2 )
. Finally, Y 3 can be computed as

Y 3 = (Y 1 Z 3 2 + Y 2 Z 3 1 + Z 3 )X 3 + ((X 1 Z 2 2 + X 2 Z 2 1 )Z 1 ) 2 ((Y 1 Z 3 2 + Y 2 Z 3 1 )X 2 + (X 1 Z 2 1 + X 2 Z 2 1 )Z 1 Y 2 ) = (Y 1 X 3 1 Z 3 1 + Y 2 + F )HZ 9 1 + (X 1 Z 2 1 + X 2 ) 2 ((X 3 1 Y 1 Z 3 1 + Y 2 )X 2 + (X 3 1 Z 2 1 + X 2 )Y 2 )Z 9 1 = IZ 9 1 , where I = (G + F )H + E 2 (GX 2 + EY 2 ).
Using the fact that [3]P = (X 3 : Y 3 : Z 3 ) = (HZ 6 1 : IZ 9 1 : F Z 3 1 ) = (H : I : F ), the operation count is 15[m] + 7[s], including two multiplications by a 2 and a 6 . In terms of memory, it requires 12 registers. We note that computing [3]P as [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]P +P ; i.e. using one doubling followed by one addition, would cost 21[m] + 8 [s]. We give an atomic version of this algorithm in Table 17 of Appendix B.

Scalar multiplication and double-base chains

In this section, we present a generic scalar multiplication algorithm which takes advantage of the properties of the double-base number and the efficient curve formulae presented in the previous sections. This generic algorithm can be easily adapted to different cases; we give the complexities for curves defined over F p using Jacobian coordinates and for curves defined over F 2 m using both affine and Jacobian coordinates.

Everything would be easy and we would have nothing else to say if it was possible to use the greedy algorithm presented in Section 2.1 for the conversion. Unfortunately, in order to reduce the number of doublings and/or triplings, our algorithm requires the scalar n to be represented in a particular double-base form. More precisely, we need to express n > 0 as n = l i=1 s i 2 a i 3 b i , with s i ∈ {-1, 1}, where the exponents form two decreasing sequences; i.e.,

a 1 ≥ a 2 ≥ • • • ≥ a l ≥ 0 and b 1 ≥ b 2 ≥ • • • ≥ b l ≥ 0.
More formally, we endow the set of {2, 3}-integers with the order induced by the product order on N 2 :

(29) 2 a 3 b 2 a 3 b ⇔ a ≤ a , b ≤ b .
These particular DBNS representations allow us to expand n in a Horner-like fashion such that all partial results can be reused during the computation of [n]P . In fact, such a double-base expansion for n defines a double-base chain computing n.

Definition 4 (Double-base chain). Given n > 0, a sequence (C i ) i>0 of positive integers satisfying:

(30) C 1 = 1, C i+1 = 2 u i 3 v i C i + s, with s ∈ {-1, 1}
for some u i , v i ≥ 0, and such that C l = n for some l > 0, is called a double-base chain computing n. The length l of a double-base chain is equal to the number of {2, 3}-integers in (1) used to represent the integer n.

Note that it is always possible to find a double-base chain computing n; the binary representation is a special case. In fact, this particular DBNS representation is also highly redundant. Counting the exact number of DBNS representations which satisfy these conditions is per se a very intriguing problem. Let g(n) denote the number of (unsigned) double-base chains computing n. Clearly, since the binary expansion is a trivial case, one has g(3n) ≥ 1 + g(u), and thus g( 3

n ) ≥ n + 1. If g(n) = 1 n u t=0 g(t)
, we conjecture that, for large n, one has log n < g(n); and maybe lim n→∞

log n g(n) = 0. Moreover, it is possible to prove that g(n) = 1, if and only if, either n ∈ {0, 1, 2} or n = 2 a 3 -1, for a ≥ 1.
If necessary, such a specific DBNS representation of any w-bit positive integer n can be computed using Algorithm 2 below; a modified version of the greedy algorithm which takes into account the order on the exponents.

Algorithm 2 Greedy algorithm with restricted exponents

Input n, a w-bit positive integer; a max , b max > 0, the largest allowed binary and ternary exponents Output The sequence 

(s i , a i , b i ) i>0 such that n = l i=1 s i 2 a i 3 b i , with 2 a i 3 b i 2 a i-1 3 b i-1 for i ≥ 1 1: s ← 1 2: while n > 0 do

n ← |n -z|

Two important parameters of this algorithm are the upper bounds for the binary and ternary exponents in the expansion of n, called a max and b max , respectively. Clearly, we have a max < log 2 (n) < w and b max < log 3 (n) ≈ 0.63w. Our experiments showed that using these utmost values for a max and b max does not result in short expansions. Indeed, when the best approximation of a given integer of the form 2 a 3 b is either close to a power of 2 (i.e. b is small) or close to a power of 3 (i.e. a is small), the resulting double-base chains are likely to be the binary or the balanced ternary expansions. We want to avoid this phenomenon by selecting a max , b max such that 2 a max 3 b max is slightly greater than n, and a max is not too large/small compared to b max . The optimal values for a max , b max seem difficult to determine in the general case as they clearly depend (but not only) on the relative cost between the doubling and the tripling operations. Instead, we consider the following heuristic which leads to good results in practice: if n = (n w-1 . . . n 1 n 0 ) 2 is a randomly chosen w-bit integer (i.e. n w-1 = 0), we initially set a max = x and b max = y, where 2 x 3 y is a very good, non-trivial (i.e. y = 0) approximation of 2 w . Then, in order to get sequences of exponents satisfying the conditions 2 a i 3 b i 2 a i-1 3 b i-1 for i ≥ 1, the new largest exponents are updated according to the values of a and b obtained in step 3.

We can now present a generic point multiplication algorithm which can be easily adapted to various cases depending on the field over which the curve is defined and the curve operations we have at our disposal.

Algorithm 3 Generic DBNS Scalar Multiplication

Input An integer n = l i=1 s i 2 a i 3 b i , with s i ∈ {-1, 1}, and such that 2

a i 3 b i 2 a i-1 3 b i-1 for i ≥ 1; and a point P ∈ E(K) Output the point [n]P ∈ E(K) 1: Q ← [s 1 ]P 2: for i = 1, . . . , l -1 do 3: u i ← a i -a i+1 , v i ← b i -b i+1 4: Q ← [3 v i ]Q 5: Q ← [2 u i ]Q 6: Q ← Q + [s i+1 ]P 7: Return Q
The complexity of Algorithm 3 depends on the number of doublings, triplings and mixed additions that have to be performed: the total number of additions is equal to the length l of the double-base expansion of n, and the number of doublings and triplings are equal to a 1 ≤ a max and b 1 ≤ b max , respectively. However, the complexity can be more precisely evaluated if one considers the exact cost of each iteration, by counting the exact number of field operations (inversions, multiplications and squarings) required in steps 4 to 6.

In fact, given n > 0, Algorithm 3 immediately gives us a double-base chain for n. Let W i be the exact number of curve operations required to compute [C i ]P from [C i-1 ]P . We clearly have C 1 = 1 and W 1 = 0 (we set Z to P or -P at no cost in step 1). Hence, the total cost for computing [n]P from input point P is given by ( 31)

W l = l i=1 W i .
In the next three sections, we consider three cases: curves defined over F p using Jacobian coordinates, and curves defined over F 2 m using both affine and Jacobian coordinates. Extensions to other cases, for example for curves defined over fields of characteristic three, can be easily derived.

4.1.

Curves defined over F p with Jacobian coordinates. In this case, steps 4 and 5 can be implemented using the w-TPL J /w -DBL J operation presented in Section 4.1. When u i = 0 or v i = 0 in Step 3, w-TPL J or w-DBL J are called instead. The addition is always a mixed addition (ADD J +A ). We have:

(32) W i = v i -TPL J /u i -DBL J + ADD J +A .
The total cost is given by (31).

4.2.

Curves defined over F 2 m with Jacobian coordinates. In this case we did not find any way to save some operations for consecutive doublings and/or triplings. The addition is always a mixed addition. We have:

(33)

W i = v i × TPL J + u i × DBL J + ADD J +A .
Again, the total cost is given by (31).

4.3.

Curves defined over F 2 m with affine coordinates. In this case, the algorithm can be further optimized in order to take advantage of the quadrupling and combined quadruple-and-add algorithms presented in Section 3.2. Algorithm 4 below is an adaptation of our generic algorithm.

Algorithm 4 DBNS scalar multiplication for curves over F 2 m using affine coordinates

Input An integer n = l i=1 s i 2 a i 3 b i , with s i ∈ {-1, 1}, and such that 2 a i 3 b i 2 a i-1 3 b i-1 for i ≥ 1; and a point P ∈ E(K) Output the point [n]P ∈ E(K) 1: Q ← [s 1 ]P 2: for i = 1, . . . , l -1 do 3: u i ← a i -a i+1 , v i ← b i -b i+1 4: if u i = 0 then 5: Q ← [3]([3 v i -1 ]Q) + [s i+1 ]P 6: else 7: Q ← [3 v i ]Q 8: Q ← [4 (u i -1)/2 ]Q 9:
if u i ≡ 0 (mod 2) then 10:

Q ← [4]Q + [s i+1 ]P 11: else 12: Q ← [2]Q + [s i+1 ]P 13: Return Q
We remark that although l -1 additions are required to compute [n]P , we never actually use the addition operation (ADD A ); simply because we combine each addition with either a doubling (step 13), a tripling (step 6) or a quadrupling (step 11), using the DA A , TA A and QA A operations. Note also that the TA A operation for computing [START_REF] Avanzi | Extending scalar multiplication using double bases[END_REF]P ± Q is only used in step 6, when u i = 0. Another approach of similar cost is to start with all the quadruplings plus one possible doubling when u i is odd, and then perform v i -1 triplings followed by one final triple-and-add.

The expression for W i is a little more complicated; we have:

(34) W i = δ u i ,0 ((v i -1) T + T A) + (1 -δ u i ,0 ) v i T + u i -1 2 Q + δ |u i | 2 ,0 QA + δ |u i | 2 ,1 DA ,
where δ i,j is the Kronecker delta such that δ i,j = 1 if i = j and δ i,j = 0 if i = j, and |u i | 2 denotes u i mod 2.

Comparisons and experimental results

In this section, we illustrate the efficiency of the proposed variants of the generic algorithm by providing experimental results and comparisons with classical methods (double-and-add, NAF, w-NAF) and some recently proposed algorithms: a ternary/binary approach from [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF] for curves defined over binary fields using affine coordinates; and two algorithms from Izu et al. published in [START_REF] Izu | Improved elliptic curve multiplication methods resistant against side channel attacks[END_REF] and [START_REF]Fast elliptic curve multiplications resistant against side channel attacks[END_REF] for curves defined over prime fields. In the latter, we consider the protected version of our algorithm, combined with Joye and Tymen's randomization technique to counteract differential attacks [START_REF] Joye | Protections against differential analysis for elliptic curve cryptography -an algebraic approach, Cryptographic Hardware and Embedded Systems[END_REF].

If we assume that n is a randomly chosen integer, it is well known that the double-and-add algorithm requires log n doublings and log n/2 additions on average. Using the NAF representation, the average density of non-zero digits is reduced to 1/3. More generally, for w-NAF methods, the average number of non-zero digits is roughly equal to log n/(w + 1). Unfortunately, it seems very difficult to give such a theoretical estimate for double-base chains. When the exponents do not have to satisfy any other conditions than being positive integers, it can be proved [START_REF] Dimitrov | An algorithm for modular exponentiation[END_REF] that the greedy algorithm returns expansions of length O(log n/ log log n). However, for double-base chains, the rigorous determination of this complexity leads to tremendously difficult problems in transcendental number theory and exponential Diophantine equations and is still an open problem. Therefore, in order to estimate the average number of {2, 3}-integers required to represent n, and to precisely evaluate the complexity of our point multiplication algorithms, we have performed several numerical experiments, over 10000 randomly chosen 160-bit integers. The results are presented below. 7. In order to compare our algorithm with the side-channel resistant algorithms presented in [START_REF] Izu | Improved elliptic curve multiplication methods resistant against side channel attacks[END_REF][START_REF]Fast elliptic curve multiplications resistant against side channel attacks[END_REF][START_REF] Izu | A fast parallel elliptic curve multiplication resistant against side channel attacks, Public Key Cryptography[END_REF], we also give the uniform costs in terms of the equivalent number of field multiplications in the last two columns. Note that, if side-channel atomicity is used to prevent simple analysis, squarings cannot be optimized and must be computed using a general multiplier; one must therefore consider [s] = [m]. In the last column of Table 7, we also give the complexity in terms of the equivalent number of multiplications assuming [s] = 0.8 [m].

In Table 8, we summarize the costs of several scalar multiplication algorithms. In order to present fair comparisons, we add the extra cost of Joye and Tymen's randomization technique (41[m] assuming [i] = 30 [m]) which can be used to resist differential analysis. The figures for the algorithms from Izu, Möller and Takagi are taken from [START_REF] Izu | Improved elliptic curve multiplication methods resistant against side channel attacks[END_REF] and [START_REF]Fast elliptic curve multiplications resistant against side channel attacks[END_REF] assuming Coron's randomization technique which turns out to be more efficient in their case. The cost of our algorithm is taken from the third row of Table 7, with a max = 95 and b max = 41, as these values lead to the best operation count. We remark that the DBNS algorithm requires fewer operations than the other methods. It represents a gain of 23.29% over the double-and-add, 13% over the NAF, 2.8% over 4-NAF, 21.35% over [START_REF] Izu | Improved elliptic curve multiplication methods resistant against side channel attacks[END_REF] and 26.7% over [START_REF]Fast elliptic curve multiplications resistant against side channel attacks[END_REF]. Moreover, it does not require precomputations like the 4-NAF and the algorithms from Izu et al.

5.2.

Curves defined over F 2 m with Jacobian coordinates. As noticed in Section 3.3, the cost of our tripling is almost equivalent to that of one doubling followed by a mixed addition. From our numerical experiments, we remark that the average length l of the double-base chains obtained with the greedy algorithm for different values a max , b max lies between 2 log n/9 and log n/3. Unfortunately, with such an efficient doubling formula, even the shortest double-base chains result in too many additions (about 40 for 160-bit scalar) and too many triplings to defeat algorithms based on doublings only. Therefore, an optimized algorithm is very likely to behave like the NAF algorithm which only uses doublings and mixed additions; on average the NAF requires 5[m] × 159 + 11[m] × 53 = 1378[m]. This is confirmed by our numerical results presented in Table 9. The best results are not obtained for shortest chains but for the expansions which minimize the number of triplings (and maximize the number of doublings). For curves over F 2 m and Jacobian coordinates, the double-base approach will thus only become a serious alternative if one can find a better tripling formula, or an algorithm leading to shorter double-base chains. 5.3. Curves defined over F 2 m with affine coordinates. We summarize our experimental results and the comparisons with other classical methods in Table 10. These results have been obtained with the curve operations that have the best complexity when the ratio [i]/[m] is small. Indeed, when the relative cost of an inversion increases, inversion-free coordinates become rapidly more interesting (see [START_REF] Hankerson | Software implementation of elliptic curve cryptography over binary fields, Cryptographic Hardware and Embedded Systems[END_REF]).

For completeness, we also give the operation counts for a recent ternary/binary algorithm presented in [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF], which is based on the following recursive decomposition: if n ≡ 0 or 3 (mod 6), return [START_REF] Avanzi | Extending scalar multiplication using double bases[END_REF]([n/3]P ); if n ≡ 2 or 4 (mod 6), return [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]([k/2]P ); if n ≡ 1 (mod 6), i.e., n = 6m + 1, return [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]([3m]P ) + P ; if n ≡ 5 (mod 6), i.e., n = 6m -1, return [START_REF] Avanzi | Handbook of elliptic and hyperelliptic curve cryptography[END_REF]([3m]P ) -P . The recursion stops whenever n = 1 and returns P . Applying this recursive decomposition to any positive scalar n leads, of course, to a double-base chain which does satisfy the requirements that the ternary and binary exponents form two decreasing sequences. But, thanks to the huge redundancy of the DBNS, it is possible to seek better representations having the same properties on the exponents and, at the same time, leading to shorter chains and reduced complexity. We remark that our algorithm requires fewer inversions and multiplications than the other methods. In order to clarify the comparison, we report, in the last two columns of Table 10, the cost in terms of the equivalent number of multiplications assuming [i] = 3[m] and [i] = 10[m]. In the first case, our algorithm represents a speed-up of about 16% over the double-and-add, 7% over the NAF and 6% over the ternary/binary approach proposed in [START_REF] Ciet | Trading inversions for multiplications in elliptic curve cryptography[END_REF]. In the more realistic case (for software implementations) [i] = 10[m], the speed-ups are even more important; 33% over the double-and-add, 25% over the NAF and 26% over the ternary/binary approach.

Conclusions

In this paper, we proposed several variants of a generic point multiplication algorithm based on the representation of n as i ±2 a i 3 b i . Among many nice properties, this representation scheme, called the double-base number system, offers the advantage of being very sparse. In the context of our scalar multiplication algorithm, the extra condition that the sequences of exponents must decrease does not allow us to claim sublinearity for the length of the double-base chains. However, Table 11. The DBL J algorithm in atomic blocks. When DBL J is called right after w-TPL J , the blocks ∆ 2 , ∆ 3 and ∆ 4 can be replaced by the blocks ∆ 2 and ∆ 3 to save one multiplication

DBL J / F p / Jacobian Input: P = (X 1 : Y 1 : Z 1 ) Output: [2]P = (X 3 : Y 3 : Z 3 ) = (R 1 : R 2 : R 3 ) Init: R 1 = X 1 , R 2 = Y 1 , R 3 = Z 1 ∆ 1 R 4 = R 1 × R 1 (X 2 1 ) ∆ 6 R 2 = R 2 × R 2 (Y 2 1 ) R 5 = R 4 + R 4 (2X 2 1 ) R 2 = R 2 + R 2 (2Y 2 1 ) * * R 4 = R 4 + R 5 (3X 2 1 ) * ∆ 2 R 5 = R 3 × R 3 (Z 2 1 ) ∆ 7 R 5 = R 1 × R 2 (S) R 1 = R 1 + R 1 (2X 1 ) * * R 5 = -R 5 (-S) * * ∆ 3 R 5 = R 5 × R 5 (Z 4 1 ) ∆ 8 R 1 = R 4 × R 4 (M 2 ) * R 1 = R 1 + R 5 (M 2 -S) * * * R 1 = R 1 + R 5 (X 3 ) ∆ 4 R 6 = a × R 5 (aZ 4 1 ) ∆ 9 R 2 = R 2 × R 2 (4Y 4 1 ) R 4 = R 4 + R 6 (M ) R 7 = R 2 + R 2 (T ) * * R 5 = R 2 + R 2 (2Y 1 ) R 5 = R 1 + R 5 (X 3 -S) ∆ 5 R 3 = R 3 × R 5 (Z 3 ) ∆ 10 R 4 = R 4 × R 5 (M (X 3 -S)) * R 2 = R 4 + R 7 (-Y 3 ) * R 2 = -R 2 (Y 3 ) * * ∆ 2 R 5 = R 10 × R 10 ∆ 3 R 5 = R 5 × R 9 R 1 = R 1 + R 1 R 4 = R 4 + R 6 * * * *
Table 12. The w-DBL J algorithm in atomic blocks. The 10 blocks (or 9 if executed after w-TPL J ) of DBL J (Table 11) must be executed once, followed by the blocks ∆ 11 to ∆ 18 which have to be executed w -1 times. After the execution of DBL J , the point of coordinates (X t : Y t : Z t ) correspond to the point [2]P . After w -1 iterations [2 w ]P = (X 3 :

Y 3 : Z 3 ) = (X t : Y t : Z t ) w-DBL J / F p / Jacobian Input: P = (X 1 : Y 1 : Z 1 ) Output: [2 w ]P = (R 1 : R 2 : R 3 ) Init: (X t : Y t : Z t ) is the result of DBL J (P ), R 6 = aZ 4 1 , R 7 = 8Y 4 1 ∆ 11 R 4 = R 1 × R 1 (X 2 t ) ∆ 15 R 5 = R 1 × R 2 (S) R 5 = R 4 + R 4 (2X 2 t ) * * R 5 = -R 5 (-S) R 4 = R 4 + R 5 (3X 2 t ) * ∆ 12 R 5 = R 6 × R 7 (aZ 4 t + 8Y 4 t ) ∆ 16 R 1 = R 4 × R 4 (M 2 ) R 6 = R 5 + R 5 (aZ 4 t ) R 1 = R 1 + R 5 (M 2 -S) * * R 4 = R 4 + R 6 (M ) R 1 = R 1 + R 5 (X t+1 ) ∆ 13 R 3 = R 2 × R 3 (Y t Z t ) ∆ 17 R 2 = R 2 × R 2 (4Y 4 t ) R 3 = R 3 + R 3 (Z t+1 ) R 7 = R 2 + R 2 (T ) * * R 1 = R 1 + R 1 (2X t ) R 5 = R 1 + R 5 (X t+1 -S) ∆ 14 R 2 = R 2 × R 2 (Y 2 t ) ∆ 18 R 4 = R 4 × R 5 (M (X t+1 -S)) R 2 = R 2 + R 2 (2Y 2 t ) R 2 = R 4 + R 7 (-Y t+1 ) * R 2 = -R 2 (Y t+1 ) * *
Table 13. The TPL J algorithm in atomic blocks

TPL J / F p / Jacobian Input: P = (X 1 : Y 1 : Z 1 ) Output: [3]P = (X 3 : Y 3 : Z 3 ) = (R 1 : R 2 : R 3 ) Init: R 1 = X 1 , R 2 = Y 1 , R 3 = Z 1 Γ 1 R 4 = R 3 × R 3 (Z 2 1 ) Γ 9 R 8 = R 6 × R 7 (T ) * R 7 = R 7 + R 7 (8Y 2 1 ) * * * * Γ 2 R 4 = R 4 × R 4 (Z 4 1 ) Γ 10 R 6 = R 4 × R 5 (ME) * * * R 6 = -R 6 (-ME) * R 6 = R 8 + R 6 (T -ME) Γ 3 R 5 = R 1 × R 1 (X 2 1 ) Γ 11 R 10 = R 5 × R 5 (E 2 ) R 6 = R 5 + R 5 (2X 2 1 ) * * * R 5 = R 5 + R 6 (3X 2 1 ) * Γ 4 R 9 = a × R 4 (aZ 4 1 ) Γ 12 R 1 = R 1 × R 10 (X 1 E 2 ) R 4 = R 5 + R 9 (M ) * * * * * Γ 5 R 5 = R 2 × R 2 (Y 2 1 ) Γ 13 R 5 = R 10 × R 5 (E 3 ) R 6 = R 5 + R 5 (2Y 2 1 ) R 8 = R 8 + R 6 (2T -ME) * R 5 = -R 5 (-E 3 ) R 7 = R 6 + R 6 (4Y 2 1 ) * Γ 6 R 5 = R 1 × R 7 (4X 1 Y 2 1 ) Γ 14 R 4 = R 6 × R 7 8Y 2 1 (T -ME) R 8 = R 5 + R 5 (8X 1 Y 2 1 ) R 6 = R 6 + R 6 (2(T -ME)) * R 6 = -R 6 (2(ME -T )) R 5 = R 5 + R 8 (12X 1 Y 2 1 ) R 1 = R 1 + R 4 (X 3 ) Γ 7 R 8 = R 4 × R 4 (M 2 ) Γ 15 R 6 = R 6 × R 8 * R 6 = R 6 + R 6 R 8 = -R 8 (-M 2 ) * R 5 = R 5 + R 8 (E) R 6 = R 6 + R 5 Γ 8 R 3 = R 3 × R 5 (Z 3 ) Γ 16 R 2 = R 2 × R 6 (Y 3 ) * * * * * *
Table 14. The w-TPL J algorithm in atomic blocks. The 16 blocks of TPL J must be executed once, followed by the blocks Γ 17 to Γ 31 which have to be executed w -1 times. After the execution of TPL J , the point of coordinates (X t : Y t : Z t ) correspond to the point [START_REF] Avanzi | Extending scalar multiplication using double bases[END_REF]P ; at the end of the w -1 iterations, [3 w ]P = (X 3 : Y 3 : Z 3 ) = (X t : Y t : Z t )

w-TPL J / F p / Jacobian Input: P = (X 1 : Y 1 : Z 1 ) Output: [3 w ]P = (R 1 : R 2 : R 3 ) Init: (X t : Y t : Z t ) is the result of TPL J (P ), R 9 = aZ 4 1 ,

R 10 = E 2 Γ 17 R 4 = R 9 × R 10 (aZ 4 t E 2 ) Γ 25 R 6 = R 4 × R 5 (ME) * * * R 6 = -R 6 (-ME) * R 6 = R 8 + R 6 (T -ME) Γ 18 R 5 = R 1 × R 1 (X 2 t ) Γ 26 R 10 = R 5 × R 5 (E 2 ) R 6 = R 5 + R 5 (2X 2 t ) * * * R 5 = R 5 + R 6 (3X 2 t ) * Γ 19 R 9 = R 4 × R 10 (aZ 4 t ) Γ 27 R 1 = R 1 × R 10 (X t E 2 ) R 4 = R 5 + R 9 (M ) * * * * * Γ 20 R 5 = R 2 × R 2 (Y 2 t ) Γ 28 R 5 = R 10 × R 5 (E 3 ) R 6 = R 5 + R 5 (2Y 2 t ) R 8 = R 8 + R 6 (2T -ME) * R 5 = -R 5 (-E 3 ) R 7 = R 6 + R 6 (4Y 2 t ) * Γ 21 R 5 = R 1 × R 7 (4X t Y 2 t ) Γ 29 R 4 = R 6 × R 7 (8Y 2 t (T -ME)) R 8 = R 5 + R 5 (8X t Y 2 t ) R 6 = R 6 + R 6 (2(T -ME)) * R 6 = -R 6 (2(ME -T )) R 5 = R 5 + R 8 (12X t Y 2 t ) R 1 = R 1 + R 4 (X t+1 ) Γ 22 R 8 = R 4 × R 4 (M 2 ) Γ 30 R 6 = R 6 × R 8 * R 6 = R 6 + R 6 R 8 = -R 8 (-M 2 ) * R 5 = R 5 + R 8 (E) R 6 = R 6 + R 5 Γ 23 R 3 = R 3 × R 5 (Z t+1 ) Γ 31 R 2 = R 2 × R 6 (Y t+1 ) * * * * * * Γ 24 R 8 = R 6 × R 7 (T ) R 7 = R 7 + R 7 (8Y 2 t ) * *
Table 15. The DBL J algorithm for curves over F 2 m using Jacobian coordinates DBL J / F 2 m / Jacobian Input: P = (X 1 : Y 1 : Z 1 ) Output: [2]P = (X 3 : Y 3 : Z 3 ) = (R 1 : R 2 : R 3 )

Init: R 1 = X 1 , R 2 = Y 1 , R 3 = Z 1 ∆ 1 R 4 = R 2 1 (X 2 1 ) ∆ 4 * R 5 = R 2 4 (X1 4 ) * R 2 = R 2 × R 3 (Y 1 Z 1 ) R 3 = R 5 × R 3 (X 4 1 Z 3 ) R 2 = R 4 + R 2 (X 2 1 + Y 1 Z 1 ) * ∆ 2 R 3 = R 2 3 (Z 2 1 ) ∆ 5 * R 4 = R 2 3 (Z 4 1 ) * R 3 = R 1 × R 3 (Z 3 ) R 2 = R 2 × R 1 R 2 = R 2 + R 3 R 2 = R 3 + R 2 (Y 3 ) ∆ 3 R 1 = R 2 4 (Z 8 1 ) * R 1 = a 6 × R 1 (a 6 Z 8 1 ) R 1 = R 5 + R 1 (X 3 )
Table 16. The ADD J +A algorithm for curves over F 2 m using Jacobian coordinates ADD J +A / F 2 m / Jacobian Input: P = (X 1 : Y 1 : Z 1 ), Q = (X 2 : Y 2 : 1) Output: P + Q = (X 3 : Y 3 : Z 3 ) = (R 4 : R 5 : R 3 ) 

Init: R 1 = X 1 , R 2 = Y 1 , R 3 = Z 1 , R 4 = X 2 , R 5 = Y 2 ∆ 1 R 6 = R 2 3 (Z 2 1 ) ∆ 7 * * * R 7 = R 4 × R 6 (B) R 4 = a 2 × R 8 (a 2 Z 2 3 ) R 1 = R 1 + R 7 (E) * ∆ 2 R 7 = R 2 1 (E 2 ) ∆ 8 * * * R 6 = R 6 × R 3 (Z 3 1 ) R 2 = R 2 × R 6 (F I) * R 4 = R 4 + R 2 (a 2 Z 2 3 + F I) ∆ 3 * ∆ 9 * * * R 6 = R 6 × R 5 (Y 2 Z 3 1 ) R 2 = R 7 × R 1 (E 3 ) R 2 = R 2 + R 6 (F ) R 4 = R 4 + R 2 (X 3 ) ∆ 4 * ∆ 10 * * * R 3 = R 1 × R 3 (Z 3 ) R 4 = R 6 × R 4 (IX 3 ) R 6 = R 2 + R 3 (I) * ∆ 5 R 8 = R 2 3 (Z 2 3 ) ∆ 11 * * * R 4 = R 2 × R 4 (F X 2 ) R 5 = R 8 × R 5 (Z 2 3 H) * R 5 = R 4 + R 5 (Y 3 ) ∆ 6 * * R 5 = R 3 × R 5 (Z 3 Y 2 ) R 5 = R 4 + R 5 (H)
= X 1 , R 2 = Y 1 , R 3 = Z 1 Γ 1 R 4 = R 2 1 (A = X 2 1 ) Γ 9 R 6 = R 1 × R 2 (F 2 ) R 5 = R 2 1 (B = X 4 1 ) * R 6 = R 2 × R 3 (Y 1 Z 1 ) R 6 = a 2 × R 6 (a 2 F 2 ) * R 7 = R 4 + R 11 (G + F ) Γ 2 R 7 = R 2 3 (C = Z 2 1 ) Γ 10 R 11 = R 2 10 (E 2 ) R 8 = R 2 7 (Z 4 1 ) * R 7 = R 1 × R 7 (Z 2 ) R 12 = R 4 × R 7 (G(G + F )) R 9 = R 4 + R 6 (A + D) R 6 = R 6 + R 12 Γ 3 R 8 = R 2 8 (Z 8 1 ) Γ 11 * * * R 8 = a 6 × R 8 (a 6 Z 8 1 ) R 12 = R 10 × R 11 (E 3 ) R 8 = R 5 + R 8 (X 2 ) R 6 = R 6 + R 12 (H = X 3 ) Γ 4 * Γ 12 * * * R 5 = R 5 × R 7 (BZ 2 ) R 6 = R 6 × R 7 (H(G + F )) R 9 = R 9 + R 7 (A + D + Z 2 ) * Γ 5 * Γ 13 * * * R 9 = R 9 × R 8 R 4 = R 4 × R 8 (GX 2 ) R 10 = R 7 + R 8 (E) * Γ 6 * Γ 14 * * * R 11 = R 10 × R 7 (F = Z 3 ) R 5 = R 10 × R 5 (EY 2 ) R 5 = R 5 + R 9 (Y 2 ) R 4 = R 4 + R 5 (GX 2 + EY 2 ) Γ 7 * Γ 15 * * * R 4 = R 4 × R 7 (AZ 2 ) R 4 = R 11 × R 4 * R 4 = R 4 + R 6 (I = Y 3 ) Γ 8 * * R 4 = R 4 × R 6 (AZ 2 D) R 4 = R 4 + R 5 (G)

3 : 4 :

 34 define z = 2 a 3 b , the best approximation of n with 0 ≤ a ≤ a max and 0 ≤ b ≤ b max print (s, a, b) 5: a max ← a, b max ← b

5. 1 .

 1 Curves defined over F p with Jacobian coordinates. We report results for 160-bit integers. If the classic methods are used in conjunction with side-channel atomicity (which implies [s] = [m]), the average cost of the double-and-add method can be estimated to 159 × 10 + 80 × 11 = 2470[m]; similarly, the NAF and 4-NAF methods require, on average, 2173[m] and 1942[m], respectively. The results of our numerical experiments in the case of double-base chains are presented in Table

Table 2 .

 2 Elliptic curve operations in Jacobian coordinates for curves defined over F p

	Curve operation	Complexity	# Registers
	DBL		

Table 4 .

 4 Elliptic curve operations in Jacobian coordinates for curves defined over F 2 m

	Curve operation Complexity # Registers
	DBL

using affine coordinates was leading to a ratio [i]/[m] 10. In the general case, an addition requires 16[m] + 3[s]; it reduces to 11[m] + 3[s] if one of the points is given in affine coordinates. The doubling operation can be computed in 5[m] + 5[s], including one multiplication by a 6 (see [2, chapter 13] for detailed algorithms).

Table 5 .

 5 Tripling algorithms in Jacobian coordinates for curves defined over F p

	Curve operation	Complexity	# Registers
	TPL J	6[s] + 10[m]	8
	w-TPL J		

  Ciet et al. have improved an algorithm by Guajardo and Paar [25] for the computation of [4]P ; their new method requires 1[i] + 5[s] + 8[m]. Based on their costs, QA A is best evaluated as ([4]P ) ± Q using one quadrupling (QPL A ) followed by one addition (ADD A ) in 2[i] + 6[s] + 10[m]. In Table

	P over binary fields requires 2[i] + 3[s] + 3[m]. Compared
	to two consecutive doublings, it saves one field multiplication. Note that we are
	working in characteristic 2 and thus squarings are free or of negligible cost.
	For the QA A operation, we evaluate [4]P ± Q as [2]([2]P ) ± Q using one doubling
	(DBL A ) and one double-and-add (DA A ), resulting in 3[i]+3[s]+5[m]. This is always
	better than applying the previous trick one more time by computing ((((P + Q) +
	P ) + P ) + P ) in 4[i] + 4[s] + 5[m]; or evaluating [3]P + (P + Q) which requires
	4[i] + 4[s] + 6[m].
	In [12],

Table 7 .

 7 Average complexity of our scalar multiplication algorithm obtained using 10000 randomly chosen 160-bit integers for different values a max , b max and curves defined over F p using Jacobian coordinates

	a max b max	l	Complexity	[s] = [m] [s] = 0.8[m]
	57	65	44.09 758.25[s] + 1236.60[m] 1994.86	1843.20
	76	53	37.23 770.23[s] + 1132.45[m] 1902.69	1748.64
	95	41	36.63 812.24[s] + 1072.48[m] 1884.73	1722.28
	103	36	38.39 840.44[s] + 1061.33[m] 1901.78	1733.69

Table 8 .

 8 Comparison of different scalar multiplication algorithms protected against simple and differential analysis

	Algorithm	Complexity (#[m])
	double-and-add	2511
	NAF	2214
	4-NAF	1983
	Izu, Möller, Takagi 2002 [29]	2449
	Izu, Takagi 2005 [31]	2629
	DBNS	1926

Table 9 .

 9 Average complexity of our DBNS point multiplication algorithm obtained using 10000 randomly chosen 160-bit integers for different values a max , b max and curves defined over F 2 m using Jacobian coordinates

	a max b max	l	Complexity (#[m] only)
	57	65	44.09	1708[m]
	76	53	37.23	1566[m]
	95	41	36.63	1478[m]
	103	36	38.39	1459[m]
	156	3	52.41	1374[m]
	159	1	53.10	1370[m]

Table 10 .

 10 Average complexity and comparisons with other methods of our DBNS point multiplication algorithm obtained using 10000 randomly chosen 160-bit integers and different values a max , b max for curves defined over F 2 m using affine coordinates

	a max b max	l	Complexity	[i] = 3[m] [i] = 10[m]
	57	65	44.09 228.69[i] + 242.32[s] + 335.66[m]	1022	2066
	76	53	37.23 216.17[i] + 235.09[s] + 324.84[m]	973	1932
	95	41	36.63 211.74[i] + 235.86[s] + 322.38[m]	958	1898
	103	36	38.39 211.15[i] + 237.50[s] + 322.46[m]	956	1906
	Double-and-add	244.31[i] + 244.82[s] + 407.09[m]	1139	2847
	NAF			217.22[i] + 217.91[s] + 380.63[m]	1031	2550
	Ternary/Binary	222.11[i] + 222.84[s] + 353.04[m]	1019	2573

Table 17 .

 17 The TPL J algorithm for curves defined over F 2 m using Jacobian coordinatesTPL J / F 2 m / Jacobian Input: P = (X 1 : Y 1 : Z 1 ) Output: [3]P = (X 3 : Y 3 : Z 3 ) = (R 6 : R 4 : R 11 ) Init: R 1

Note that it is possible to trade one multiplication for a squaring in their formula.

The smallest example is 41; the canonic representation is

32+9, whereas the greedy algorithm returns 41 = 36 + 4 + 1.

By opposition to supersingular curves of the form y 2 + a 3 y = x 3 + a

x + a 6 with a 3 = 0.

We do not consider Lopez-Dahab coordinates, which are also very attractive for curves defined over binary fields, simply because we did not find any good tripling formula in this system of coordinate.

For hardware implementation, however, affine coordinates seem to be the best choice.

The only exceptions occur when the expansion of k contains a series of consecutive {2, 3}integers with identical binary exponents.
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we provided extensive numerical evidence that demonstrates the efficiency of this approach compared to existing methods of similar nature.

Appendix A. Curves defined over F p using Jacobian coordinates

In this appendix, we give the algorithms for DBL J (including the case when a doubling is performed right after a tripling), w-DBL J , TPL J and w-TPL J , expressed in atomic blocks, for curves defined over F p , with Jacobian coordinates.

Appendix B. Curves defined over F 2 m using Jacobian coordinates

In this appendix, we give the algorithms for DBL J , ADD J +A and TPL J , expressed in atomic blocks, for curves defined over F 2 m , with Jacobian coordinates. We consider (s, s, m, a)-blocks to avoid the use of 6 blocks for the doubling. Note that the mixed addition and the tripling can be expressed in 11 and 16 (s, m, a)blocks respectively.