
HAL Id: lirmm-00341742
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00341742

Submitted on 18 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Double-Base Number System and its Application to
Elliptic Curve Cryptography

Vassil Dimitrov, Laurent Imbert, Pradeep Mishra

To cite this version:
Vassil Dimitrov, Laurent Imbert, Pradeep Mishra. The Double-Base Number System and its Appli-
cation to Elliptic Curve Cryptography. Mathematics of Computation, 2008, 77 (262), pp.1075-1104.
�10.1090/S0025-5718-07-02048-0�. �lirmm-00341742�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00341742
https://hal.archives-ouvertes.fr

MATHEMATICS OF COMPUTATION
S 0025-5718(07)02048-0
Article electronically published on December 11, 2007

THE DOUBLE-BASE NUMBER SYSTEM AND ITS
APPLICATION TO ELLIPTIC CURVE CRYPTOGRAPHY

VASSIL DIMITROV, LAURENT IMBERT, AND PRADEEP K. MISHRA

Abstract. We describe an algorithm for point multiplication on generic ellip-
tic curves, based on a representation of the scalar as a sum of mixed powers of 2
and 3. The sparseness of this so-called double-base number system, combined
with some efficient point tripling formulae, lead to efficient point multiplication
algorithms for curves defined over both prime and binary fields. Side-channel
resistance is provided thanks to side-channel atomicity.

1. Introduction

Since its discovery by Miller [38] and Koblitz [33] in 1985, Elliptic Curve Cryp-
tography (ECC) has been the subject of a vast amount of publications. Of particu-
larly interest is the quest for fast and side-channel resistant implementations. ECC
bases its theoretical robustness on the Elliptic Curve Discrete Logarithm Problem
(ECDLP), for which no subexponential algorithm is known. The main operation of
any ECC protocol is to compute the point [n]P = P + · · ·+ P (n times), for n ∈ Z

and P a point on the curve. This operation, called the point or scalar multiplication,
is the most time consuming and must be carefully implemented. Adaptations of fast
exponentiation algorithms [23] have been proposed. The double-and-add algorithm,
an adaptation of the square-and-multiply exponentiation method, can be used to
compute [n]P in log n point doublings and (log n)/2 point additions on average.
Since the opposite of a point (−P) is easily computed, signed digit representations
allow one to reduce the number of point additions: the Non Adjacent Form (NAF),
also known as the modified Booth recoding, requires (log n)/3 point additions on
average. Window methods (w-NAF) can be used to further reduce the number of
additions to (log n)/(w + 1), at the extra cost of a small amount of precomputa-
tions (one needs to precompute the points jP for j = 1, 3, . . . , 2w−1 − 1; the points
±jP are used in the point multiplication algorithm). Methods based on efficiently
computable endomorphisms on special curves, such as Koblitz curves, are also very
attractive. Since the original submission of this manuscript, several interesting pa-
pers have been published, which merge the properties of the double-base number
system and the efficiently computable endomorphisms on these curves [17, 3].

Received by the editor June 5, 2006 and, in revised form, February 26, 2007.
2000 Mathematics Subject Classification. Primary 14H52; Secondary 14G50, 68R99.
Key words and phrases. ECC, point multiplication, double-base number system, side-channel

atomicity.
This work was funded by the NSERC Strategic Grant: Novel Implementation of Cryptographic

Algorithms on Custom Hardware Platforms.
This work was done during the second author’s leave of absence from the CNRS at the Uni-

versity of Calgary.

c©2007 by the authors
1

2 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

In this paper, we propose a scalar multiplication algorithm based on a repre-
sentation of the scalar n as a sum of mixed powers of two coprime integers p.q,
called the double-base number system (DBNS). The inherent sparseness of this rep-
resentation scheme leads to fewer point additions than other classical methods.
For example, let p = 2, q = 3 and n be a randomly chosen 160-bit integer. Then
one needs only about 22 summands to represent it, as opposed to 80 in standard
binary representation and 53 in the non-adjacent form. Although this sparseness
does not immediately lead to algorithmic improvements, it outlines one of the main
features of this number system and serves as a good starting point for potential
applications in cryptography. Double-base representations have recently attracted
curiosity in the cryptographic community: Avanzi, Ciet and Sica have investigated
double-bases in the case of Koblitz curves, by letting one of the bases be an al-
gebraic number [13, 4]. In [19], Doche et al. proposed a very efficient tripling
algorithm1 for a particular family of curves by using isogeny decompositions; in
this context, finding short double-base expansions is also of primary importance.
Very recently, Doche and Imbert proposed an extension of the idea which lead to
significant speedups in double-base point multiplications for generic curves [20].
This is achieved by considering double-base expansions with digit sets larger than
{−1, 0, 1}.

This paper is an extension of the author’s paper at Asiacrypt 2005 [16]. The
present version contains a more detailed presentation of the double-base number
system, including a theorem on the number of double-base representations for a
given positive integer, and some numerical results that illustrate the properties of
this encoding scheme, particularly its redundancy and sparseness. It also gives more
details on the most important step of the greedy approach used for the conversion
from binary, i.e., finding the best approximation of a given integer of the form paqb.
An efficient alternative solution, which requires some precomputed values to be
stored in lookup tables, is presented in [20].

In order to best exploit the sparse and ternary nature of this representation
scheme, we also propose new formulae for some useful point operations (tripling,
quadrupling, etc.) for generic elliptic curves. We consider curves defined over Fp

with Jacobian coordinates, and curves over F2m with both affine and Jacobian
coordinates. Some of these formulae are already present in [16]. The derivations
are given with more details in the present paper.

Since their discovery by Kocher [35, 34], side-channel attacks (SCA) have become
the most serious threat for cryptographic devices. Therefore, protection against var-
ious kinds of SCA (power analysis, electromagnetic attacks, fault attacks, etc.) has
become a major issue and an interesting area of research. Several countermeasures
have been proposed in the literature. We refer interested readers to [8, 2] for de-
tails. In this work we consider a solution proposed by Chavalier-Mames et al. called
side-channel atomicity [10]. The field operations used in the ADD and DBL curve
operations are rearranged and divided into small identical groups, called atomic
blocks. These blocks all contain the same operations, in the very same order, to
become indistinguishable from the side-channel information leaked to the adver-
sary. Therefore, the trace of a computation composed of a series of ADD and DBL
looks like a series of atomic blocks; the adversary cannot distinguish which block
belongs to which operation from the side-channel information. Thus the sequence

1Note that it is possible to trade one multiplication for a squaring in their formula.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 3

of execution of the curve operations is blinded. This effectively resists simple power
attacks.

The sequel of the paper is organized as follows: In Section 2, we introduce the
double-base number system, its main properties, and some related problems in
number theory and combinatorics. We briefly recall the basics of elliptic curve
cryptography and the costs of the classical curve operations in Section 2.2. In
Section 3, we present several new curve formulae for the operations that arise in the
DBNS point multiplication algorithm presented in Section 4. Finally, we compare
our algorithm with several other methods in Section 5.

2. Background

2.1. The double-base number system. In this section, we present the main
properties of the double-base number system, along with some numerical results
in order to provide the reader with some intuitive ideas about this representation
scheme and the difficulty of some underlying open problems. We have intentionally
omitted the proofs of previously published results. The reader is encouraged to
check the references for more details.

We will need the following definitions.

Definition 1 (S-integer). Given a set of primes S, an S-integer is a positive integer
whose prime factors all belong to S.

Definition 2 (double-base number system). Given p, q, two relatively prime pos-
itive integers, the double-base number system (DBNS) is a representation scheme
into which every positive integer n is represented as the sum or difference of {p, q}-
integers, i.e., numbers of the form paqb:

(1) n =
l∑

i=1

si paiqbi , with si ∈ {−1, 1} and ai, bi ≥ 0.

The size, or length, of a DBNS expansion is equal to the number of terms l in (1).
In the following, we will only consider expansions of n as sums of {2, 3}-integers;
i.e., DBNS with p = 2, q = 3.

Whether one considers signed (si = ±1) or unsigned (si = 1) expansions, this
representation scheme is highly redundant. For instance, if we assume unsigned
double-base representations only, we can prove that 10 has exactly 5 different DBNS
representations, 100 has exactly 402 different DBNS representations, 1, 000 has ex-
actly 1, 295, 579 different DBNS representations, etc. The following theorem holds.

Theorem 1. Let n be a positive integer. The number of unsigned DBNS represen-
tations of n is given by the following recursing function. f(1) = 1 and for n ≥ 1,

(2) f(n) =

{
f(n − 1) + f(n/3) if n ≡ 0 (mod 3),
f(n − 1) otherwise.

Proof. Let us consider the diophantine equation

(3) n = h0 + 3h1 + 9h2 + · · · + 3khk,

where k = �log3(n)� and hi ≥ 0 for i = 0, . . . , k. Let h(m) = (h(m)
0 , . . . , h

(m)
k) be the

m-th solution of (3). By substituting each h
(m)
i into (3) with its (unique) binary

representation, we obtain a specific partition of n as the sum of numbers of the form

4 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

2a3b. Our problem thus reduces to counting the number of solutions g(n) of (3).
This is a very classical integer partition problem, which is known to be associated
with the following generating function (see [45] for example):

(4) G(z) =
1

(1 − z)(1 − z3) . . . (1 − z3k)
.

We will prove that (2) admits the same generating function; i.e., that f(n) = g(n) =
[zn]G(z), where the symbol [zn]G(z) denotes the coefficient of degree n in the series
G(z).

Let F (z) =
∑∞

n=1 znf(n) be the generating function associated with (2). We
find that

F (z) =
∞∑

n=1

z3nf(3n) +
∞∑

n=1
3�n

znf(n)

=
∞∑

n=1

z3n (f(3n − 1) + f(n)) +
∞∑

n=2
3�n

znf(n − 1) + zf(1)

= z +
∞∑

n=2

znf(n − 1) +
∞∑

n=1

z3nf(n)

= z + zF (z) + F (z3).

Thus

(5) F (z) =
z

1 − z
+

z3

(1 − z)(1 − z3)
+

z9

(1 − z)(1 − z3)(1 − z9)
+ · · · .

By noticing that, for n ≥ 1, the coefficient of zn in the series z/(1 − z) is equal to
the coefficient of zn in the series 1/(1 − z) and by expressing all terms in (5) with
denominator

∏
i(1 − z3i

), we obtain that

(6) [zn] F (z) = [zn]
1

(1 − z)(1 − z3) . . . (1 − z3k)
= [zn] G(z),

which concludes the proof. �
It is quite clear that the above theorem also applies to numbers of the form 2asb,

where s is an odd integer greater than 1. In this case, the number of solutions of
the corresponding partition problem is given by a function similar to (2), where 3
is replaced by s. f̂(1) = 1 and for n ≥ 1,

f̂(n) =

{
f̂(n − 1) + f̂(n/s) if n ≡ 0 (mod s),
f̂(n − 1) otherwise.

Apparently, Mahler was the first to consider the problem of finding good approx-
imations of f̂(n) in his work from 1940 on the Mordel’s functional equation [37].

He proved that log f̂(n) ≈ (log n)2

2 log s
. In 1953, Pennington [40] obtained a very good

approximation of log f̂(sn), which gives us an extremely accurate estimation of the
number of partitions of n as the sum of {2, s}-integers:

f̂(sn) = eO(1)

(
nC1 log nnC2 log nC1 log log n

n2C1 log log n log nC3 log n

)
,

where C1, C2, C3 are explicitconstants depending only on s

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 5

Theorem 1 tells us that there exist very many ways to represent a given integer
in DBNS. Some of these representations are of special interest, most notably the
ones that require the minimal number of {2, 3}-integers; that is, an integer can be
represented as the sum of l terms, but cannot be represented with (l − 1) or fewer.
These so-called canonic representations are extremely sparse. For example, 127 has
783 different unsigned representations, among which 6 are canonic requiring only
three {2, 3}-integers. An easy way to visualize DBNS numbers is to use a two-
dimensional array (the columns represent the powers of 2 and the rows represent
the powers of 3) into which each non-zero cell contains the sign of the corresponding
term. For example, the six canonic representations of 127 are given in Table 1.

Table 1. The six canonic unsigned DBNS representations of 127

2233 + 2132 + 2030 = 108 + 18 + 1 2233 + 2430 + 2031 = 108 + 16 + 3

1 2 4
1 1
3
9 1
27 1

1 2 4 8 16
1 1
3 1
9
27 1

2531 + 2033 + 2230 = 96 + 27 + 4 2332 + 2133 + 2030 = 72 + 54 + 1

1 2 4 8 16 32
1 1
3 1
9
27 1

1 2 4 8
1 1
3
9 1
27 1

2630 + 2133 + 2032 = 64 + 54 + 9 2630 + 2232 + 2033 = 64 + 36 + 27

1 2 4 8 16 32 64
1 1
3
9 1
27 1

1 2 4 8 16 32 64
1 1
3
9 1
27 1

Some numerical facts provide a good impression about the sparseness of the
DBNS. The smallest integer requiring three {2, 3}-integers in its unsigned canonic
DBNS representation is 23; the smallest integer requiring four {2, 3}-integers in
its unsigned canonic DBNS representation is 431. Similarly, the next smallest
integers requiring five, six and seven {2, 3}-integers are 18, 431, 3, 448, 733, and
1, 441, 896, 119, respectively. The next record-setter would be most probably bigger
than one trillion.

6 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

If one considers signed representations, then the theoretical difficulties in estab-
lishing the properties of this number system dramatically increase. To wit, it is
possible to prove that the smallest integer that cannot be represented as the sum
or difference of two {2, 3}-integers is 103. The next limit is most probably 4985,
but to prove it rigorously, one has to show that none of the following exponential
diophantine equations has a solution.

Conjecture 1. The diophantine equations

±2a3b ± 2c3d ± 2e3f = 4985

do not have solutions in integers.

One way to tackle this problem would be to extend the results from Skinner [41]
on the diophantine equation apx + bqy = c + dpzqw, to the case where a, b, c, d are
not necessarily positive integers. Deriving similar results for a four-term equation
(that is, proving that a given number does not admit a signed DBNS representation
with 4 terms) seems, however, to be a much more difficult problem.

Finding one of the canonic DBNS representations in a reasonable amount of time,
especially for large integers, seems to be a very difficult task. Fortunately, one can
use a greedy approach to find a fairly sparse representation very quickly. Given
n > 0, Algorithm 1 below returns a signed DBNS representation for n. Although
it sometimes fails in finding a canonic representation,2 it is very easy to implement
and, more importantly, it guarantees an expansion of sublinear length. Indeed, one
of the most important theoretical results about the double-base number system is
the following theorem from [18]. It gives us an estimate for the number of terms
that one can expect to represent a positive integer.

Algorithm 1 Greedy algorithm
Input A positive integer n
Output The sequence of triples (si, ai, bi)i≥0 such that n =

∑
i si2ai3bi with si ∈

{−1, 1} and ai, bi ≥ 0
1: s ← 1
2: while n �= 0 do
3: Find the best approximation of n of the form z = 2a3b

4: print (s, a, b)
5: if n < z then
6: s ← −s
7: n ← |n − z|

Theorem 2. Algorithm 1 terminates after k ∈ O(log n/ log log n) steps.

Sketch of proof. (See [18] for a complete proof). Clearly, we have k ∈ O(log n)
by taking the 2-adic or 3-adic expansions of n. A result by Tijdeman [44] states
that there exists an absolute constant C such that there is always a number of
the form 2a3b between n − n/(log n)C and n. Let n = n0 > n1 > n2 > · · · >
nl > nl+1 be the sequence of integers obtained via Algorithm 1. Clearly, for all
i = 0, . . . , l, it satisfies ni = 2ai3bi + ni+1 with ni+1 < ni/(log ni)C By defining

2The smallest example is 41; the canonic representation is 32+9, whereas the greedy algorithm
returns 41 = 36 + 4 + 1.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 7

l = l(n) such that nl > f(n) ≥ nl+1, we obtain that k = l(n) + O(log f(n)). The
proof is completed by showing that the function f(n) = exp (log n/ log log n) gives
l(n) ∈ O(log n/ log log n). �

The complexity of the greedy algorithm mainly depends on the complexity of
step 3: finding the {2, 3}-integer which best approximates n. The problem can be
reformulated in terms of linear forms of logarithms. For the best default approxi-
mation, one has to find two integers a, b ≥ 0 such that

(7) a log 2 + b log 3 ≤ log n,

and such that no other integers a′, b′ ≥ 0 give a better left approximation to log n.
In [7], Berthè and Imbert proposed an algorithm based on Ostrowski’s num-

ber system [1] for real numbers [6]; a number system associated with the series
(qiα−pi)i≥0, where (pi/qi)i≥0 is the series of the convergents of the continued frac-
tion expansion of an irrational number α ∈]0, 1[. In this system, every real number
−α ≤ β < 1 − α can be uniquely written as

(8) β =
+∞∑
i=1

bi(qi−1α − pi−1),

where ⎧⎨
⎩

0 ≤ b1 ≤ a1 − 1, and 0 ≤ bi ≤ ai for i > 1,
bi = 0 if bi+1 = ai+1,
bi �= ai for infinitely many even and odd integers.

The algorithm presented in [7] uses the fact that β can be approximated modulo 1
by numbers of the form Aα; the best successive approximations being given by the
series

(9) Aj =
j∑

i=1

biqi−1.

By setting α = log 2/ log 3, and β = {log n/ log 3} (where {} denotes the frac-
tional part), the solution of our problem is given by a =

∑m
i=1 biqi−1 and b =

�β� −
∑m

i=1 bipi−1, where m is the largest integer such that b ≥ 0.
One can prove that the algorithm proposed in [7] to find the best approximation

of n of the form 2a3b has complexity O(log log n). Since the greedy algorithm
finishes in O(log n/ log log n) iterations, its complexity is thus in O(log n). It is
important to remark that for a recoding algorithm between two additive number
systems, we cannot do better.

2.2. Elliptic curve cryptography.

Definition 3. An elliptic curve E over a field K, denoted by E/K, is defined by
its Weierstraß equation

(10) E/K : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6

where a1, a2, a3, a4, a6 ∈ K and ∆, the discriminant of E, is different from 0.

In practice, the general equation (10) can be greatly simplified by applying ad-
missible changes of variables. If the characteristic of K is not equal to 2 and 3, one
can rewrite it as

(11) y2 = x3 + a4x + a6,

where a4, a6 ∈ K, and ∆ = 4a3
4 + 27a2

6 �= 0.

8 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

When the characteristic of K is equal to 2, the ordinary or non-supersingular
form3 of an elliptic curve is given by

(12) y2 + xy = x3 + a2x
2 + a6,

where a2, a6 ∈ K and ∆ = a6 �= 0.
The set E(K) of K-rational points on an elliptic curve E/K consists of the

affine points (x, y) satisfying (10) along with the special point O called the point
at infinity. It forms an abelian group, where the operation (denoted additively)
is defined by the well-known law of chord and tangent (see [2] for details). Given
P, Q on the curve, the group law slightly differs as to whether one considers the
computation of P + Q with P �= ±Q or the computation of P + P = [2]P . We talk
about point addition (ADD) and point doubling (DBL).

There exist many ways to represent the points of E(K). In affine coordinates (A),
both the ADD and DBL operations involve expensive field inversions (to compute
the slope of the chord/tangent). In order to avoid these inversions, several inversion-
free systems of coordinates have been proposed. The choice of such a system has
to be made according to several parameters including memory constraints and the
relative cost between one field inversion and one field multiplication, often called
the [i]/[m] ratio. For binary fields, several works report a ratio [i]/[m] between 3
and 10 depending on the implementation options (see [15, 26]). For prime fields,
however, this ratio is more difficult to estimate precisely. In [22], Fong et al. consider
that [i]/[m] > 40 on general-purpose processors. In fact, different experiments can
provide very different results. If, for example, one uses GMP [24] to compare
the cost of these two operations over large prime fields, one does not necessarily
notice a huge difference in terms of computational time. This is due to the fact
that the multiplication and reduction (modulo p) algorithms implemented in GMP
are generic; i.e. they do not take into account the possible special form of the
modulus. When implementing ECC/HECC algorithms, it is a good idea to use
primes that allow fast modular arithmetic, such as those recommended by the
NIST [39], the SEC Group [43], or more generally the primes belonging to what
Bajard et al. called the Mersenne family [42, 11, 5]. In these cases, the multiplication
becomes much more efficient than the inversion. In hardware implementations using
inversion-free systems, the space for the inverter is often saved and the single final
inversion is done using Fermat’s little theorem. Although the overhead due to
inversions in less dramatic for curves defined over F2m , affine coordinates are not
necessarily the best choice in practice, especially for software implementations [15].
In this paper we consider projective coordinates for curves defined over Fp and both
affine and projective for curves defined over F2m . More exactly, we use Jacobian
coordinates (J), a special class of projective coordinates, where the point (X : Y :
Z) corresponds to the affine point (X/Z2, Y/Z3) when Z �= 0. The point at infinity
is represented as (1 : 1 : 0). The opposite of (X : Y : Z) is (X : −Y : Z). Clearly
there exist infinitely many points in the projective space which correspond to the
same affine point. We use the common abusive notation (X : Y : Z) to represent
any representative of the equivalence class given by the relation of projection.

As we shall see, our DBNS-based point multiplication algorithm uses several
basic operations (addition, doubling, tripling, etc.). In Sections 2.2.1 and 2.2.2, we
recall the complexity of some of these curve operations, expressed in terms of the

3By opposition to supersingular curves of the form y2 + a3y = x3 + a4x + a6 with a3 �= 0.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 9

number of elementary operations in the field K. The interested reader is encour-
aged to check the literature [27, 2] for detailed descriptions of these algorithms. We
use [i], [s] and [m] to denote the cost of one inversion, one squaring and one multi-
plication, respectively. We always leave out the cost of field additions. For curves
defined over Fp it is widely assumed that [s] = 0.8[m]. It is therefore a good idea to
trade multiplications in favor of squarings whenever possible. However, as we shall
see, our algorithms can be protected against SCA using side-channel atomicity [10].
In such cases, because squarings and multiplications must be performed using the
same multiplier in order to be indistinguishable, we have to consider that [s] = [m].
For curves defined over binary fields, however, squarings are free (when normal
bases are used to represent the elements of F2m) or of negligible cost (squaring is a
linear operation in polynomial basis); the complexity is thus mainly driven by the
numbers of inversions and multiplications.

2.2.1. Elliptic curves defined over Fp. When Jacobian coordinates are used the
addition (ADDJ) and doubling (DBLJ) operations require 12[m]+4[s] and 4[m]+
6[s], respectively. The cost of DBLJ can be reduced to 4[m] + 4[s] when a4 = −3
(Brier and Joye [9] proved that most randomly chosen curves can be mapped to
an isogeneous curve with a4 = −3). Also, if one of the points is given in affine
coordinates (Z = 1), then the cost of the so-called mixed addition (J + A → J)
reduces to 8[m]+3[s]. Several algorithms have been proposed for repeated doublings
(the computation of [2w]P) in the case of binary fields [25, 36]. For prime fields,
an algorithm was proposed by Itoh et al. in [28], which is more efficient than w
invocations of DBLJ . In the general case (a4 �= −3) it requires 4w[m]+(4w+2)[s].
When a4 = −3 the cost of w-DBLJ is exactly the same as the cost of w doublings;
i.e. 4w[m] + 4w[s]. In Table 2, we summarize the complexity of these different
elliptic curve operations. In the third column, we give the minimum number of
registers required to achieve the corresponding complexities. See [2, chapter 13] for
a complete description.

Table 2. Elliptic curve operations in Jacobian coordinates for
curves defined over Fp

Curve operation Complexity # Registers
DBLJ 4[m] + 6[s] 6
DBLJ , a4=−3 4[m] + 4[s] 5
ADDJ 12[m] + 4[s] 7
ADDJ+A 8[m] + 3[s] 7
w-DBLJ 4w[m] + (4w + 2)[s] 7

2.2.2. Elliptic curves defined over F2m . For curves defined over F2m we give the
cost of the most common operations in affine and Jacobian coordinates,4 as they
both have practical interest. Note that we only consider ordinary curves (for details
concerning supersingular curves, see [2]).

4We do not consider Lopez-Dahab coordinates, which are also very attractive for curves defined
over binary fields, simply because we did not find any good tripling formula in this system of
coordinate.

10 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

Affine coordinates: The addition (ADDA) and doubling (DBLA) operations can be
computed with the same number of field operations in 1[i] + 1[s] + 2[m]. In [21],
Eisenträger et al. proposed efficient formulae for tripling (TPLA), double-and-add
(DAA) and triple-and-add (TAA). By trading some inversions for a small number
of multiplications, their results have been further improved by Ciet et al. [12] when
[i]/[m] > 6. We summarize the complexities of each of these operations in Table 4,
with the break-even points between the two options for DAA, TPLA and TAA.

Table 3. Elliptic curve operations in affine coordinates for curves
defined over F2m

Curve operation [21] [12] break-even point
DBLA 1[i] + 1[s] + 2[m] –
ADDA 1[i] + 1[s] + 2[m] –
DAA 2[i] + 2[s] + 3[m] 1[i] + 2[s] + 9[m] [i]/[m] = 6
TPLA 2[i] + 2[s] + 3[m] 1[i] + 4[s] + 7[m] [i]/[m] = 4
TAA 3[i] + 3[s] + 4[m] 2[i] + 3[s] + 9[m] [i]/[m] = 5

Jacobian coordinates: The use of Jacobian coordinates for curves defined over F2m

was proposed by Hankerson et al. in [26], after noticing that their software im-
plementation5 using affine coordinates was leading to a ratio [i]/[m] � 10. In the
general case, an addition requires 16[m] + 3[s]; it reduces to 11[m] + 3[s] if one of
the points is given in affine coordinates. The doubling operation can be computed
in 5[m] + 5[s], including one multiplication by a6 (see [2, chapter 13] for detailed
algorithms).

Table 4. Elliptic curve operations in Jacobian coordinates for
curves defined over F2m

Curve operation Complexity # Registers
DBLJ 5[m] + 5[s] 5
ADDJ 16[m] + 3[s] 10
ADDJ+A 11[m] + 3[s] –

We note that, although the doubling algorithm can be computed using 5 mul-
tiplications and 5 squarings, it requires 6 atomic blocks if one considers (s, m, a)-
blocks (i.e., blocks composed of 1 squaring, 1 multiplication and 1 addition in that
order). Since squarings are almost free over F2m , it is much better to consider
(s, s, m, a)-blocks, as it indeed allows one to perform a doubling in 5 blocks; i.e.
in 5 multiplications. We express both the doubling and the mixed addition with
(s, s, m, a)-blocks in Tables 15 and 16 of Appendix B.

3. New curve arithmetic formulae

This section is devoted to new, efficient curve operations, which have been de-
fined in order to best exploit the sparseness and the ternary nature of the DBNS
representation. Namely, we give formulae for:

5For hardware implementation, however, affine coordinates seem to be the best choice.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 11

• point tripling, consecutive triplings, as well a very specific consecutive dou-
blings following (consecutive) tripling(s) in Jacobian coordinates for curves
defined over Fp,

• point tripling, point quadrupling (QPLA) and combined quadruple-and-add
(QAA) in affine coordinates for curves defined over F2m ,

• point tripling (TPLJ) in Jacobian coordinates for curves defined over F2m .

3.1. Curves defined over Fp using Jacobian coordinates. In this section, we
derive equations to obtain an efficient point tripling formula (TPLJ) in Jacobian
coordinates for curves defined over Fp. (This formula was already present in [16].)
Then, we explain how some field operations can be saved when several triplings (w-
TPLJ) have to be computed, or when several doublings have to be computed right
after one or more triplings (w-TPLJ /w′-DBLJ). As we shall see in Section 4, this
very specific operation occurs quite often in our scalar multiplication algorithm.

To simplify, we start with affine coordinates. Let P = (x1, y1) ∈ E(K) be a
point on an elliptic curve E defined by (11). By definition, we have [2]P = (x2, y2),
where

(13) λ1 =
3x2

1 + a4

2y1
, x2 = λ2

1 − 2x1, y2 = λ1(x1 − x2) − y1 .

We can compute [3]P = [2]P + P = (x3, y3), by evaluating λ2 (the slope of the
chord between the points [2]P and P) as a function of x1 and y1 only. We have

λ2 =
y2 − y1

x2 − x1

= −λ1 −
2y1

x2 − x1

= −3x2
1 + a4

2y1
− 8y3

1

(3x2
1 + a4)2 − 12x1y2

1

.

(14)

We further remark that

x3 = λ2
2 − x1 − x2

= λ2
2 − x1 − λ2

1 + 2x1

= (λ2 − λ1)(λ2 + λ1) + x1

(15)

and
y3 = λ2(x1 − x3) − y1

= −λ2(λ2 − λ1)(λ2 + λ1) − y1 .
(16)

Thus [3]P = (x3, y3) can be computed directly from x1, y1 without evaluating the
intermediate values x2 and y2.

By replacing x1 and y1 by X1/Z
2
1 and Y1/Z

3
1 respectively, we obtain the following

point tripling formula in Jacobian coordinates. Let P = (X1 : Y1 : Z1) be a point
on the curve �= O. Then the point [3]P = (X3 : Y3 : Z3) is given by

X3 = 8Y 2
1 (T − ME) + X1E

2,

Y3 = Y1

(
4(ME − T)(2T − ME) − E3

)
,

Z3 = Z1E,

(17)

where M = 3X2
1 + a4Z

4
1 , E = 12X1Y

2
1 − M2 and T = 8Y 4

1 .

12 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

The cost of (17) is 10[m] + 6[s]. If one uses side-channel atomicity to resist
SCA, this is equivalent to 16[m]. We express the TPLJ algorithm in terms of
atomic blocks in Table 13 of Appendix A. In comparison, computing [3]P using
the doubling and addition algorithms from [10], expressed as a repetition of atomic
blocks, costs 10[m] + 16[m] = 26[m].

As we shall see, consecutive triplings; i.e., expressions of the form [3w]P , occur
quite often in our point multiplication algorithm. From (17), we remark that the
computation of the intermediate value M = 3X2

1 + a4Z
4
1 requires 1[m] + 3[s] (we

omit the multiplication by 3). If we need to compute [9]P , we then have to evaluate
M ′ = 3X2

3 + a4Z
4
3 . Since Z3 = Z1E, we have a4Z

4
3 = a4Z

4
1E4 (where E =

12X1Y
2
1 −M2), and a4Z

4
1 and E2 have already been computed. Hence, using these

precomputed subexpressions, we can compute M ′ = 3X2
3 + (a4Z

4
1)(E2)2, with

1[m] + 2[s]. The same technique can be applied to save one multiplication for each
subsequent tripling. Thus, we can compute 3wP with (15w+1)[m], which is always
better than w invocations of the tripling algorithm. The atomic blocks version of
w-TPLJ is given in Table 14 of Appendix A. Note that the idea of reusing a4Z

4

for multiple doublings was first proposed by Cohen et al. in [14], where modified
Jacobian coordinates are proposed.

From Table 2, DBLJ normally requires 4[m] + 6[s], or equivalently 10 blocks of
computation if side-channel atomicity is used. The scalar multiplication algorithm
presented in the next section very often6 requires a w′-DBLJ to be computed right
after a w-TPLJ . This is due to the fact that we impose some conditions on the
double-base expansion of the scalar k (see details in Section 4). When this occurs, it
is possible to save 1[s] for the first DBLJ using subexpressions computed for the last
tripling. The next (w′−1)-DBLJ are then computed with (4w′−4)[m]+(4w′−4)[s].
(The details of these algorithms are given in Appendix A.) We summarize the
complexities of these curve operations in Table 5, together with the number of
registers required in each case.

Table 5. Tripling algorithms in Jacobian coordinates for curves
defined over Fp

Curve operation Complexity # Registers
TPLJ 6[s] + 10[m] 8
w-TPLJ (4w + 2)[s] + (11w − 1)[m] 10
w-TPLJ /w′-DBLJ (11w + 4w′ − 1)[s] + (4w + 4w′ + 3)[m] 10

3.2. Curves defined over F2m using affine coordinates. In this section, we
propose new affine formulae for the computation of [3]P , [4]P and [4]P ± Q for
curves defined over F2m .

Let us first recall the equations for the doubling operation. Given P = (x1, y1),
P �= −P , we have [2]P = (x2, y2), where

(18) λ1 = x1 +
y1

x1
, x2 = λ2

1 + λ1 + a2, y2 = λ1(x1 + x2) + x2 + y1.

6The only exceptions occur when the expansion of k contains a series of consecutive {2, 3}-
integers with identical binary exponents.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 13

We shall compute [3]P = (x3, y3) as [3]P = P + [2]P . From (18), we obtain after
simplifications

(19) x3 = (λ1 + λ2 + 1)2 + λ2 + λ1 + 1 + x1, y3 = λ2(x1 + x3) + x3 + y1,

where λ1 = x1 +y1/x1 and λ2 = (y1 +y2)/(x1 +x2). In order to reduce the number
of field operations for the computations of x3 and y3, we want to get a convenient
expression for (λ1 + λ2 + 1). We start by expressing (x1 + x2) in terms of x1 only.
We have:

x1 + x2 = x1 + λ2
1 + λ1 + a2 =

x4
1 + (y2

1 + x1y1 + a2x
2
1)

x2
1

.

From (12), since P is on the curve, we define α = x4
1 + x3

1 + a6 such that

(20) x1 + x2 =
α

x2
1

.

Now, going back to the expression for λ2, we have:

λ2 = λ1 +
x2

x1 + x2

= λ1 +
x1

x1 + x2
+ 1

= λ1 +
x3

1

α
+ 1(21)

= λ1 +
x4

1 + a6

α
(22)

=
α(x2

1 + y1) + x4
1 + a6

x1α
,

λ2 =
β

x1α
,(23)

where β = α(x2
1 + y1) + x4

1 + a6. From (21), we remark that

(24) λ1 + λ2 + 1 =
x3

1

α
.

Replacing (23) and (24) in (19), we finally get

x3 =
(

x4
1

x1α

)2

+
x4

1

x1α
+ x1,(25)

y3 =
β

x1α
(x1 + x3) + x3 + y1.(26)

It is easy to see that computing α requires 1[m] + 2[s]; 1 extra [m] gives β and
1/(x1α) is computed with another 1[m] + 1[i]. The total cost for this new point
tripling is thus 1[i] + 3[s] + 6[m]. This is always better than the formula proposed
in [12] (it saves 1[m]+1[s]) and becomes faster than the equation from [21] as soon
as [i] ≥ 3[m] (see Table 3 for the exact costs of these previous methods).

For the quadrupling operations, the trick used in [21] by Eisenträger et al., which
consists in evaluating only the x-coordinate of [2]P when computing [2]P ±Q, can
also be applied to speed-up the quadrupling (QPLA) operation. From (19), we
compute [4]P = [2]([2]P) = (x4, y4) as

(27) λ2 = x2 +
y2

x2
, x4 = λ2

2 + λ2 + a2, y4 = λ2(x1 + x4) + x4 + y1.

14 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

We observe that the computation of y2 can be avoided by evaluating λ2 as

(28) λ2 =
x2

1

x2
+ λ1 + x2 + 1.

As a result, computing [4]P over binary fields requires 2[i]+3[s]+3[m]. Compared
to two consecutive doublings, it saves one field multiplication. Note that we are
working in characteristic 2 and thus squarings are free or of negligible cost.

For the QAA operation, we evaluate [4]P ±Q as [2]([2]P)±Q using one doubling
(DBLA) and one double-and-add (DAA), resulting in 3[i]+3[s]+5[m]. This is always
better than applying the previous trick one more time by computing ((((P + Q) +
P) + P) + P) in 4[i] + 4[s] + 5[m]; or evaluating [3]P + (P + Q) which requires
4[i] + 4[s] + 6[m].

In [12], Ciet et al. have improved an algorithm by Guajardo and Paar [25] for the
computation of [4]P ; their new method requires 1[i] + 5[s] + 8[m]. Based on their
costs, QAA is best evaluated as ([4]P)±Q using one quadrupling (QPLA) followed
by one addition (ADDA) in 2[i] + 6[s] + 10[m]. In Table 6 below, we summarize
the costs and break-even points between our new formulae and the algorithms
proposed in [12]. With such small break-even points, however, it remains unclear
which formulae will give the best overall performance in practical situations.

Table 6. Tripling and quadrupling algorithms in affine coordi-
nates for curves defined over F2m

Operation present work [12] break-even point
TPLA 1[i] + 3[s] + 6[m] 1[i] + 4[s] + 7[m] –
QPLA 2[i] + 3[s] + 3[m] 1[i] + 5[s] + 8[m] [i]/[m] = 5
QAA 3[i] + 3[s] + 5[m] 2[i] + 6[s] + 10[m] [i]/[m] = 5

3.3. Curves defined over F2m using Jacobian coordinates. As pointed out by
Hankerson et al. in [26], affine coordinates might not be the best option for software
implementations. In this section, we propose a tripling algorithm for curves defined
over F2m using Jacobian coordinates. (We did not find an efficient tripling formula
using Lopez-Dahad coordinates.)

Let us first recall the doubling formula. If P = (X1 : Y1 : Z1), we compute
[2]P = (X2 : Y2 : Z2) as

X2 = B + a6C
4,

Z2 = X1C
2,

Y2 = BZ2 + (A + D + Z2)X2,

where A = X2
1 , B = A2, C = Z2

1 and D = Y1Z1.
For the point tripling operation, we compute [3]P = P + [2]P = (X3 : Y3 : Z3)

by deriving, for example, the addition formula from [2]. We easily obtain

Z3 = (X1Z
2
2 + X2Z

2
1)Z1Z2 = (X3

1Z2
1 + X2)Z2Z

3
1 = FZ3

1 ,

with E = (X1Z
2
1 + X2) and F = EZ2. We then compute X3 as

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 15

X3 = a2Z
2
3 + (Y1Z

3
2 + Y2Z

3
1)(Y1Z

3
2 + Y2Z

3
1 + Z3) + (X1Z

2
2 + X2Z

2
1)3

= a2F
2Z6

1 + (Y1X
3
1Z6

1 + Y2Z
3
1)(Y1X

3
1Z6

1 + Y2Z
3
1 + FZ3

1) + (X3
1Z4

1 + X2Z
2
1)3

= HZ6
1 ,

where H = (a2F
2 + G(G + F) + E3) and G = (Y1X

3
1Z3

1 + Y2). Finally, Y3 can be
computed as

Y3 = (Y1Z
3
2 + Y2Z

3
1 + Z3)X3 + ((X1Z

2
2 + X2Z

2
1)Z1)2((Y1Z

3
2 + Y2Z

3
1)X2

+ (X1Z
2
1 + X2Z

2
1)Z1Y2)

= (Y1X
3
1Z3

1 + Y2 + F)HZ9
1 + (X1Z

2
1 + X2)2((X3

1Y1Z
3
1 + Y2)X2

+ (X3
1Z2

1 + X2)Y2)Z9
1

= IZ9
1 ,

where I = (G + F)H + E2(GX2 + EY2).
Using the fact that [3]P = (X3 : Y3 : Z3) = (HZ6

1 : IZ9
1 : FZ3

1) = (H : I : F),
the operation count is 15[m] + 7[s], including two multiplications by a2 and a6. In
terms of memory, it requires 12 registers. We note that computing [3]P as [2]P +P ;
i.e. using one doubling followed by one addition, would cost 21[m] + 8[s]. We give
an atomic version of this algorithm in Table 17 of Appendix B.

4. Scalar multiplication and double-base chains

In this section, we present a generic scalar multiplication algorithm which takes
advantage of the properties of the double-base number and the efficient curve for-
mulae presented in the previous sections. This generic algorithm can be easily
adapted to different cases; we give the complexities for curves defined over Fp us-
ing Jacobian coordinates and for curves defined over F2m using both affine and
Jacobian coordinates.

Everything would be easy and we would have nothing else to say if it was possible
to use the greedy algorithm presented in Section 2.1 for the conversion. Unfortu-
nately, in order to reduce the number of doublings and/or triplings, our algorithm
requires the scalar n to be represented in a particular double-base form. More pre-
cisely, we need to express n > 0 as n =

∑l
i=1 si 2ai3bi , with si ∈ {−1, 1}, where

the exponents form two decreasing sequences; i.e., a1 ≥ a2 ≥ · · · ≥ al ≥ 0 and
b1 ≥ b2 ≥ · · · ≥ bl ≥ 0. More formally, we endow the set of {2, 3}-integers with the
order � induced by the product order on N

2:

(29) 2a3b � 2a′
3b′ ⇔ a ≤ a′, b ≤ b′.

These particular DBNS representations allow us to expand n in a Horner-like fash-
ion such that all partial results can be reused during the computation of [n]P . In
fact, such a double-base expansion for n defines a double-base chain computing n.

Definition 4 (Double-base chain). Given n > 0, a sequence (Ci)i>0 of positive
integers satisfying:

(30) C1 = 1, Ci+1 = 2ui3viCi + s, with s ∈ {−1, 1}
for some ui, vi ≥ 0, and such that Cl = n for some l > 0, is called a double-base
chain computing n. The length l of a double-base chain is equal to the number of
{2, 3}-integers in (1) used to represent the integer n.

16 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

Note that it is always possible to find a double-base chain computing n; the
binary representation is a special case. In fact, this particular DBNS representation
is also highly redundant. Counting the exact number of DBNS representations
which satisfy these conditions is per se a very intriguing problem. Let g(n) denote
the number of (unsigned) double-base chains computing n. Clearly, since the binary
expansion is a trivial case, one has g(3n) ≥ 1 + g(u), and thus g(3n) ≥ n + 1. If
g(n) = 1

n

∑u
t=0 g(t), we conjecture that, for large n, one has log n < g(n); and

maybe limn→∞
log n
g(n) = 0. Moreover, it is possible to prove that g(n) = 1, if and

only if, either n ∈ {0, 1, 2} or n = 2a3 − 1, for a ≥ 1.
If necessary, such a specific DBNS representation of any w-bit positive integer

n can be computed using Algorithm 2 below; a modified version of the greedy
algorithm which takes into account the order � on the exponents.

Algorithm 2 Greedy algorithm with restricted exponents

Input n, a w-bit positive integer; amax, bmax > 0, the largest allowed binary and
ternary exponents

Output The sequence (si, ai, bi)i>0 such that n =
∑l

i=1 si2ai3bi , with 2ai3bi �
2ai−13bi−1 for i ≥ 1

1: s ← 1
2: while n > 0 do
3: define z = 2a3b, the best approximation of n with 0 ≤ a ≤ amax and 0 ≤ b ≤

bmax

4: print (s, a, b)
5: amax ← a, bmax ← b
6: if n < z then
7: s ← −s
8: n ← |n − z|

Two important parameters of this algorithm are the upper bounds for the binary
and ternary exponents in the expansion of n, called amax and bmax, respectively.
Clearly, we have amax < log2(n) < w and bmax < log3(n) ≈ 0.63w. Our experi-
ments showed that using these utmost values for amax and bmax does not result in
short expansions. Indeed, when the best approximation of a given integer of the
form 2a3b is either close to a power of 2 (i.e. b is small) or close to a power of
3 (i.e. a is small), the resulting double-base chains are likely to be the binary or
the balanced ternary expansions. We want to avoid this phenomenon by selecting
amax, bmax such that 2amax3bmax is slightly greater than n, and amax is not too
large/small compared to bmax. The optimal values for amax, bmax seem difficult to
determine in the general case as they clearly depend (but not only) on the relative
cost between the doubling and the tripling operations. Instead, we consider the
following heuristic which leads to good results in practice: if n = (nw−1 . . . n1n0)2
is a randomly chosen w-bit integer (i.e. nw−1 �= 0), we initially set amax = x
and bmax = y, where 2x3y is a very good, non-trivial (i.e. y �= 0) approxima-
tion of 2w. Then, in order to get sequences of exponents satisfying the conditions
2ai3bi � 2ai−13bi−1 for i ≥ 1, the new largest exponents are updated according to
the values of a and b obtained in step 3.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 17

We can now present a generic point multiplication algorithm which can be easily
adapted to various cases depending on the field over which the curve is defined and
the curve operations we have at our disposal.

Algorithm 3 Generic DBNS Scalar Multiplication

Input An integer n =
∑l

i=1 si 2ai3bi , with si ∈ {−1, 1}, and such that 2ai3bi �
2ai−13bi−1 for i ≥ 1; and a point P ∈ E(K)

Output the point [n]P ∈ E(K)
1: Q ← [s1]P
2: for i = 1, . . . , l − 1 do
3: ui ← ai − ai+1, vi ← bi − bi+1

4: Q ← [3vi]Q
5: Q ← [2ui]Q
6: Q ← Q + [si+1]P
7: Return Q

The complexity of Algorithm 3 depends on the number of doublings, triplings
and mixed additions that have to be performed: the total number of additions is
equal to the length l of the double-base expansion of n, and the number of doublings
and triplings are equal to a1 ≤ amax and b1 ≤ bmax, respectively. However, the
complexity can be more precisely evaluated if one considers the exact cost of each
iteration, by counting the exact number of field operations (inversions, multiplica-
tions and squarings) required in steps 4 to 6.

In fact, given n > 0, Algorithm 3 immediately gives us a double-base chain for
n. Let Wi be the exact number of curve operations required to compute [Ci]P from
[Ci−1]P . We clearly have C1 = 1 and W1 = 0 (we set Z to P or −P at no cost in
step 1). Hence, the total cost for computing [n]P from input point P is given by

(31) Wl =
l∑

i=1

Wi.

In the next three sections, we consider three cases: curves defined over Fp using
Jacobian coordinates, and curves defined over F2m using both affine and Jacobian
coordinates. Extensions to other cases, for example for curves defined over fields of
characteristic three, can be easily derived.

4.1. Curves defined over Fp with Jacobian coordinates. In this case, steps
4 and 5 can be implemented using the w-TPLJ /w′-DBLJ operation presented in
Section 4.1. When ui = 0 or vi = 0 in Step 3, w-TPLJ or w-DBLJ are called
instead. The addition is always a mixed addition (ADDJ+A). We have:

(32) Wi = vi-TPLJ /ui-DBLJ + ADDJ+A.

The total cost is given by (31).

4.2. Curves defined over F2m with Jacobian coordinates. In this case we did
not find any way to save some operations for consecutive doublings and/or triplings.
The addition is always a mixed addition. We have:

(33) Wi = vi × TPLJ + ui × DBLJ + ADDJ+A.

Again, the total cost is given by (31).

18 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

4.3. Curves defined over F2m with affine coordinates. In this case, the al-
gorithm can be further optimized in order to take advantage of the quadrupling
and combined quadruple-and-add algorithms presented in Section 3.2. Algorithm 4
below is an adaptation of our generic algorithm.

Algorithm 4 DBNS scalar multiplication for curves over F2m using affine coordi-
nates

Input An integer n =
∑l

i=1 si 2ai3bi , with si ∈ {−1, 1}, and such that 2ai3bi �
2ai−13bi−1 for i ≥ 1; and a point P ∈ E(K)

Output the point [n]P ∈ E(K)
1: Q ← [s1]P
2: for i = 1, . . . , l − 1 do
3: ui ← ai − ai+1, vi ← bi − bi+1

4: if ui = 0 then
5: Q ← [3]([3vi−1]Q) + [si+1]P
6: else
7: Q ← [3vi]Q
8: Q ← [4�(ui−1)/2�]Q
9: if ui ≡ 0 (mod 2) then

10: Q ← [4]Q + [si+1]P
11: else
12: Q ← [2]Q + [si+1]P
13: Return Q

We remark that although l − 1 additions are required to compute [n]P , we
never actually use the addition operation (ADDA); simply because we combine
each addition with either a doubling (step 13), a tripling (step 6) or a quadrupling
(step 11), using the DAA, TAA and QAA operations. Note also that the TAA

operation for computing [3]P ± Q is only used in step 6, when ui = 0. Another
approach of similar cost is to start with all the quadruplings plus one possible
doubling when ui is odd, and then perform vi − 1 triplings followed by one final
triple-and-add.

The expression for Wi is a little more complicated; we have:

(34) Wi = δui,0 ((vi − 1) T + TA)

+ (1 − δui,0)
(

vi T +
⌊

ui − 1
2

⌋
Q + δ|ui|2,0 QA + δ|ui|2,1 DA

)
,

where δi,j is the Kronecker delta such that δi,j = 1 if i = j and δi,j = 0 if i �= j,
and |ui|2 denotes ui mod 2.

5. Comparisons and experimental results

In this section, we illustrate the efficiency of the proposed variants of the generic
algorithm by providing experimental results and comparisons with classical meth-
ods (double-and-add, NAF, w-NAF) and some recently proposed algorithms: a
ternary/binary approach from [12] for curves defined over binary fields using affine
coordinates; and two algorithms from Izu et al. published in [29] and [31] for curves

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 19

defined over prime fields. In the latter, we consider the protected version of our al-
gorithm, combined with Joye and Tymen’s randomization technique to counteract
differential attacks [32].

If we assume that n is a randomly chosen integer, it is well known that the
double-and-add algorithm requires log n doublings and log n/2 additions on aver-
age. Using the NAF representation, the average density of non-zero digits is reduced
to 1/3. More generally, for w-NAF methods, the average number of non-zero digits
is roughly equal to log n/(w+1). Unfortunately, it seems very difficult to give such
a theoretical estimate for double-base chains. When the exponents do not have
to satisfy any other conditions than being positive integers, it can be proved [18]
that the greedy algorithm returns expansions of length O(log n/ log log n). How-
ever, for double-base chains, the rigorous determination of this complexity leads to
tremendously difficult problems in transcendental number theory and exponential
Diophantine equations and is still an open problem. Therefore, in order to estimate
the average number of {2, 3}-integers required to represent n, and to precisely eval-
uate the complexity of our point multiplication algorithms, we have performed
several numerical experiments, over 10000 randomly chosen 160-bit integers. The
results are presented below.

5.1. Curves defined over Fp with Jacobian coordinates. We report results
for 160-bit integers. If the classic methods are used in conjunction with side-channel
atomicity (which implies [s] = [m]), the average cost of the double-and-add method
can be estimated to 159 × 10 + 80 × 11 = 2470[m]; similarly, the NAF and 4-NAF
methods require, on average, 2173[m] and 1942[m], respectively. The results of our
numerical experiments in the case of double-base chains are presented in Table 7.

Table 7. Average complexity of our scalar multiplication algo-
rithm obtained using 10000 randomly chosen 160-bit integers for
different values amax, bmax and curves defined over Fp using Jaco-
bian coordinates

amax bmax l Complexity [s] = [m] [s] = 0.8[m]
57 65 44.09 758.25[s] + 1236.60[m] 1994.86 1843.20
76 53 37.23 770.23[s] + 1132.45[m] 1902.69 1748.64
95 41 36.63 812.24[s] + 1072.48[m] 1884.73 1722.28
103 36 38.39 840.44[s] + 1061.33[m] 1901.78 1733.69

In order to compare our algorithm with the side-channel resistant algorithms
presented in [29, 31, 30], we also give the uniform costs in terms of the equivalent
number of field multiplications in the last two columns. Note that, if side-channel
atomicity is used to prevent simple analysis, squarings cannot be optimized and
must be computed using a general multiplier; one must therefore consider [s] = [m].
In the last column of Table 7, we also give the complexity in terms of the equivalent
number of multiplications assuming [s] = 0.8[m].

In Table 8, we summarize the costs of several scalar multiplication algorithms.
In order to present fair comparisons, we add the extra cost of Joye and Tymen’s
randomization technique (41[m] assuming [i] = 30[m]) which can be used to resist
differential analysis. The figures for the algorithms from Izu, Möller and Takagi are
taken from [29] and [31] assuming Coron’s randomization technique which turns

20 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

out to be more efficient in their case. The cost of our algorithm is taken from the
third row of Table 7, with amax = 95 and bmax = 41, as these values lead to the
best operation count.

Table 8. Comparison of different scalar multiplication algorithms
protected against simple and differential analysis

Algorithm Complexity (#[m])
double-and-add 2511
NAF 2214
4-NAF 1983
Izu, Möller, Takagi 2002 [29] 2449
Izu, Takagi 2005 [31] 2629
DBNS 1926

We remark that the DBNS algorithm requires fewer operations than the other
methods. It represents a gain of 23.29% over the double-and-add, 13% over the
NAF, 2.8% over 4-NAF, 21.35% over [29] and 26.7% over [31]. Moreover, it does
not require precomputations like the 4-NAF and the algorithms from Izu et al.

5.2. Curves defined over F2m with Jacobian coordinates. As noticed in Sec-
tion 3.3, the cost of our tripling is almost equivalent to that of one doubling followed
by a mixed addition. From our numerical experiments, we remark that the average
length l of the double-base chains obtained with the greedy algorithm for different
values amax, bmax lies between 2 log n/9 and log n/3. Unfortunately, with such an
efficient doubling formula, even the shortest double-base chains result in too many
additions (about 40 for 160-bit scalar) and too many triplings to defeat algorithms
based on doublings only. Therefore, an optimized algorithm is very likely to be-
have like the NAF algorithm which only uses doublings and mixed additions; on
average the NAF requires 5[m] × 159 + 11[m] × 53 = 1378[m]. This is confirmed
by our numerical results presented in Table 9. The best results are not obtained
for shortest chains but for the expansions which minimize the number of triplings
(and maximize the number of doublings).

Table 9. Average complexity of our DBNS point multiplication
algorithm obtained using 10000 randomly chosen 160-bit integers
for different values amax, bmax and curves defined over F2m using
Jacobian coordinates

amax bmax l Complexity (#[m] only)
57 65 44.09 1708[m]
76 53 37.23 1566[m]
95 41 36.63 1478[m]
103 36 38.39 1459[m]
156 3 52.41 1374[m]
159 1 53.10 1370[m]

For curves over F2m and Jacobian coordinates, the double-base approach will
thus only become a serious alternative if one can find a better tripling formula, or
an algorithm leading to shorter double-base chains.

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 21

5.3. Curves defined over F2m with affine coordinates. We summarize our
experimental results and the comparisons with other classical methods in Table 10.
These results have been obtained with the curve operations that have the best com-
plexity when the ratio [i]/[m] is small. Indeed, when the relative cost of an inversion
increases, inversion-free coordinates become rapidly more interesting (see [26]).

For completeness, we also give the operation counts for a recent ternary/binary
algorithm presented in [12], which is based on the following recursive decomposition:
if n ≡ 0 or 3 (mod 6), return [3]([n/3]P); if n ≡ 2 or 4 (mod 6), return [2]([k/2]P);
if n ≡ 1 (mod 6), i.e., n = 6m + 1, return [2]([3m]P) + P ; if n ≡ 5 (mod 6), i.e.,
n = 6m − 1, return [2]([3m]P) − P . The recursion stops whenever n = 1 and
returns P . Applying this recursive decomposition to any positive scalar n leads, of
course, to a double-base chain which does satisfy the requirements that the ternary
and binary exponents form two decreasing sequences. But, thanks to the huge
redundancy of the DBNS, it is possible to seek better representations having the
same properties on the exponents and, at the same time, leading to shorter chains
and reduced complexity.

Table 10. Average complexity and comparisons with other meth-
ods of our DBNS point multiplication algorithm obtained us-
ing 10000 randomly chosen 160-bit integers and different values
amax, bmax for curves defined over F2m using affine coordinates

amax bmax l Complexity [i] = 3[m] [i] = 10[m]
57 65 44.09 228.69[i] + 242.32[s] + 335.66[m] 1022 2066
76 53 37.23 216.17[i] + 235.09[s] + 324.84[m] 973 1932
95 41 36.63 211.74[i] + 235.86[s] + 322.38[m] 958 1898
103 36 38.39 211.15[i] + 237.50[s] + 322.46[m] 956 1906

Double-and-add 244.31[i] + 244.82[s] + 407.09[m] 1139 2847
NAF 217.22[i] + 217.91[s] + 380.63[m] 1031 2550
Ternary/Binary 222.11[i] + 222.84[s] + 353.04[m] 1019 2573

We remark that our algorithm requires fewer inversions and multiplications than
the other methods. In order to clarify the comparison, we report, in the last two
columns of Table 10, the cost in terms of the equivalent number of multiplications
assuming [i] = 3[m] and [i] = 10[m]. In the first case, our algorithm represents a
speed-up of about 16% over the double-and-add, 7% over the NAF and 6% over the
ternary/binary approach proposed in [12]. In the more realistic case (for software
implementations) [i] = 10[m], the speed-ups are even more important; 33% over
the double-and-add, 25% over the NAF and 26% over the ternary/binary approach.

6. Conclusions

In this paper, we proposed several variants of a generic point multiplication
algorithm based on the representation of n as

∑
i ±2ai3bi . Among many nice prop-

erties, this representation scheme, called the double-base number system, offers the
advantage of being very sparse. In the context of our scalar multiplication algo-
rithm, the extra condition that the sequences of exponents must decrease does not
allow us to claim sublinearity for the length of the double-base chains. However,

22 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

we provided extensive numerical evidence that demonstrates the efficiency of this
approach compared to existing methods of similar nature.

Acknowledgments

The authors are very thankful to the anonymous reviewers for their very useful
comments and for suggesting to us the improved tripling formula in affine coordi-
nates for curves over binary fields. They also thank Nicolas Meloni for the improved
tripling formula in Jacobian coordinates for curves over binary fields.

Appendix A. Curves defined over Fp using Jacobian coordinates

In this appendix, we give the algorithms for DBLJ (including the case when
a doubling is performed right after a tripling), w-DBLJ , TPLJ and w-TPLJ ,
expressed in atomic blocks, for curves defined over Fp, with Jacobian coordinates.

Table 11. The DBLJ algorithm in atomic blocks. When DBLJ

is called right after w-TPLJ , the blocks ∆2, ∆3 and ∆4 can be
replaced by the blocks ∆′

2 and ∆′
3 to save one multiplication

DBLJ / Fp / Jacobian
Input: P = (X1 : Y1 : Z1)
Output: [2]P = (X3 : Y3 : Z3) = (R1 : R2 : R3)
Init: R1 = X1, R2 = Y1, R3 = Z1

∆1 R4 = R1 × R1 (X2
1) ∆6 R2 = R2 × R2 (Y 2

1)
R5 = R4 + R4 (2X2

1) R2 = R2 + R2 (2Y 2
1)

∗ ∗
R4 = R4 + R5 (3X2

1) ∗
∆2 R5 = R3 × R3 (Z2

1) ∆7 R5 = R1 × R2 (S)
R1 = R1 + R1 (2X1) ∗
∗ R5 = −R5 (−S)
∗ ∗

∆3 R5 = R5 × R5 (Z4
1) ∆8 R1 = R4 × R4 (M2)

∗ R1 = R1 + R5 (M2 − S)
∗ ∗
∗ R1 = R1 + R5 (X3)

∆4 R6 = a × R5 (aZ4
1) ∆9 R2 = R2 × R2 (4Y 4

1)
R4 = R4 + R6 (M) R7 = R2 + R2 (T)
∗ ∗
R5 = R2 + R2 (2Y1) R5 = R1 + R5 (X3 − S)

∆5 R3 = R3 × R5 (Z3) ∆10 R4 = R4 × R5 (M(X3 − S))
∗ R2 = R4 + R7 (−Y3)
∗ R2 = −R2 (Y3)
∗ ∗

∆′
2 R5 = R10 × R10 ∆′

3 R5 = R5 × R9

R1 = R1 + R1 R4 = R4 + R6

∗ ∗
∗ ∗

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 23

Table 12. The w-DBLJ algorithm in atomic blocks. The 10
blocks (or 9 if executed after w-TPLJ) of DBLJ (Table 11) must
be executed once, followed by the blocks ∆11 to ∆18 which have to
be executed w − 1 times. After the execution of DBLJ , the point
of coordinates (Xt : Yt : Zt) correspond to the point [2]P . After
w − 1 iterations [2w]P = (X3 : Y3 : Z3) = (Xt : Yt : Zt)

w-DBLJ / Fp / Jacobian
Input: P = (X1 : Y1 : Z1)
Output: [2w]P = (R1 : R2 : R3)
Init: (Xt : Yt : Zt) is the result of DBLJ (P), R6 = aZ4

1 , R7 = 8Y 4
1

∆11 R4 = R1 × R1 (X2
t) ∆15 R5 = R1 × R2 (S)

R5 = R4 + R4 (2X2
t) ∗

∗ R5 = −R5 (−S)
R4 = R4 + R5 (3X2

t) ∗
∆12 R5 = R6 × R7 (aZ4

t + 8Y 4
t) ∆16 R1 = R4 × R4 (M2)

R6 = R5 + R5 (aZ4
t) R1 = R1 + R5 (M2 − S)

∗ ∗
R4 = R4 + R6 (M) R1 = R1 + R5 (Xt+1)

∆13 R3 = R2 × R3 (YtZt) ∆17 R2 = R2 × R2 (4Y 4
t)

R3 = R3 + R3 (Zt+1) R7 = R2 + R2 (T)
∗ ∗
R1 = R1 + R1 (2Xt) R5 = R1 + R5 (Xt+1 − S)

∆14 R2 = R2 × R2 (Y 2
t) ∆18 R4 = R4 × R5 (M(Xt+1 − S))

R2 = R2 + R2 (2Y 2
t) R2 = R4 + R7 (−Yt+1)

∗ R2 = −R2 (Yt+1)
∗ ∗

24 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

Table 13. The TPLJ algorithm in atomic blocks

TPLJ / Fp / Jacobian
Input: P = (X1 : Y1 : Z1)
Output: [3]P = (X3 : Y3 : Z3) = (R1 : R2 : R3)
Init: R1 = X1, R2 = Y1, R3 = Z1

Γ1 R4 = R3 × R3 (Z2
1) Γ9 R8 = R6 × R7 (T)

∗ R7 = R7 + R7 (8Y 2
1)

∗ ∗
∗ ∗

Γ2 R4 = R4 × R4 (Z4
1) Γ10 R6 = R4 × R5 (ME)

∗ ∗
∗ R6 = −R6 (−ME)
∗ R6 = R8 + R6 (T − ME)

Γ3 R5 = R1 × R1 (X2
1) Γ11 R10 = R5 × R5 (E2)

R6 = R5 + R5 (2X2
1) ∗

∗ ∗
R5 = R5 + R6 (3X2

1) ∗
Γ4 R9 = a × R4 (aZ4

1) Γ12 R1 = R1 × R10 (X1E
2)

R4 = R5 + R9 (M) ∗
∗ ∗
∗ ∗

Γ5 R5 = R2 × R2 (Y 2
1) Γ13 R5 = R10 × R5 (E3)

R6 = R5 + R5 (2Y 2
1) R8 = R8 + R6 (2T − ME)

∗ R5 = −R5 (−E3)
R7 = R6 + R6 (4Y 2

1) ∗
Γ6 R5 = R1 × R7 (4X1Y

2
1) Γ14 R4 = R6 × R7 8Y 2

1 (T − ME)
R8 = R5 + R5 (8X1Y

2
1) R6 = R6 + R6 (2(T − ME))

∗ R6 = −R6 (2(ME − T))
R5 = R5 + R8 (12X1Y

2
1) R1 = R1 + R4 (X3)

Γ7 R8 = R4 × R4 (M2) Γ15 R6 = R6 × R8

∗ R6 = R6 + R6

R8 = −R8 (−M2) ∗
R5 = R5 + R8 (E) R6 = R6 + R5

Γ8 R3 = R3 × R5 (Z3) Γ16 R2 = R2 × R6 (Y3)
∗ ∗
∗ ∗
∗ ∗

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 25

Table 14. The w-TPLJ algorithm in atomic blocks. The 16
blocks of TPLJ must be executed once, followed by the blocks
Γ17 to Γ31 which have to be executed w − 1 times. After the
execution of TPLJ , the point of coordinates (Xt : Yt : Zt) cor-
respond to the point [3]P ; at the end of the w − 1 iterations,
[3w]P = (X3 : Y3 : Z3) = (Xt : Yt : Zt)

w-TPLJ / Fp / Jacobian
Input: P = (X1 : Y1 : Z1)
Output: [3w]P = (R1 : R2 : R3)

Init: (Xt : Yt : Zt) is the result of TPLJ (P), R9 = aZ4
1 , R10 = E2

Γ17 R4 = R9 × R10 (aZ4
t E2) Γ25 R6 = R4 × R5 (ME)

∗ ∗
∗ R6 = −R6 (−ME)
∗ R6 = R8 + R6 (T − ME)

Γ18 R5 = R1 × R1 (X2
t) Γ26 R10 = R5 × R5 (E2)

R6 = R5 + R5 (2X2
t) ∗

∗ ∗
R5 = R5 + R6 (3X2

t) ∗
Γ19 R9 = R4 × R10 (aZ4

t) Γ27 R1 = R1 × R10 (XtE
2)

R4 = R5 + R9 (M) ∗
∗ ∗
∗ ∗

Γ20 R5 = R2 × R2 (Y 2
t) Γ28 R5 = R10 × R5 (E3)

R6 = R5 + R5 (2Y 2
t) R8 = R8 + R6 (2T − ME)

∗ R5 = −R5 (−E3)
R7 = R6 + R6 (4Y 2

t) ∗
Γ21 R5 = R1 × R7 (4XtY

2
t) Γ29 R4 = R6 × R7 (8Y 2

t (T − ME))
R8 = R5 + R5 (8XtY

2
t) R6 = R6 + R6 (2(T − ME))

∗ R6 = −R6 (2(ME − T))
R5 = R5 + R8 (12XtY

2
t) R1 = R1 + R4 (Xt+1)

Γ22 R8 = R4 × R4 (M2) Γ30 R6 = R6 × R8

∗ R6 = R6 + R6

R8 = −R8 (−M2) ∗
R5 = R5 + R8 (E) R6 = R6 + R5

Γ23 R3 = R3 × R5 (Zt+1) Γ31 R2 = R2 × R6 (Yt+1)
∗ ∗
∗ ∗
∗ ∗

Γ24 R8 = R6 × R7 (T)
R7 = R7 + R7 (8Y 2

t)
∗
∗

Appendix B. Curves defined over F2m using Jacobian coordinates

In this appendix, we give the algorithms for DBLJ , ADDJ+A and TPLJ , ex-
pressed in atomic blocks, for curves defined over F2m , with Jacobian coordinates.
We consider (s, s, m, a)-blocks to avoid the use of 6 blocks for the doubling. Note
that the mixed addition and the tripling can be expressed in 11 and 16 (s, m, a)-
blocks respectively.

26 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

Table 15. The DBLJ algorithm for curves over F2m using Jaco-
bian coordinates

DBLJ / F2m / Jacobian
Input: P = (X1 : Y1 : Z1)
Output: [2]P = (X3 : Y3 : Z3) = (R1 : R2 : R3)
Init: R1 = X1, R2 = Y1, R3 = Z1

∆1 R4 = R2
1 (X2

1) ∆4 ∗
R5 = R2

4 (X14) ∗
R2 = R2 × R3 (Y1Z1) R3 = R5 × R3 (X4

1Z3)
R2 = R4 + R2 (X2

1 + Y1Z1) ∗
∆2 R3 = R2

3 (Z2
1) ∆5 ∗

R4 = R2
3 (Z4

1) ∗
R3 = R1 × R3 (Z3) R2 = R2 × R1

R2 = R2 + R3 R2 = R3 + R2 (Y3)

∆3 R1 = R2
4 (Z8

1)
∗
R1 = a6 × R1 (a6Z8

1)
R1 = R5 + R1 (X3)

Table 16. The ADDJ+A algorithm for curves over F2m using
Jacobian coordinates

ADDJ+A / F2m / Jacobian
Input: P = (X1 : Y1 : Z1), Q = (X2 : Y2 : 1)
Output: P + Q = (X3 : Y3 : Z3) = (R4 : R5 : R3)
Init: R1 = X1, R2 = Y1, R3 = Z1, R4 = X2, R5 = Y2

∆1 R6 = R2
3 (Z2

1) ∆7 ∗
∗ ∗
R7 = R4 × R6 (B) R4 = a2 × R8 (a2Z2

3)
R1 = R1 + R7 (E) ∗

∆2 R7 = R2
1 (E2) ∆8 ∗

∗ ∗
R6 = R6 × R3 (Z3

1) R2 = R2 × R6 (FI)
∗ R4 = R4 + R2 (a2Z2

3 + FI)

∆3 ∗ ∆9 ∗
∗ ∗
R6 = R6 × R5 (Y2Z3

1) R2 = R7 × R1 (E3)
R2 = R2 + R6 (F) R4 = R4 + R2 (X3)

∆4 ∗ ∆10 ∗
∗ ∗
R3 = R1 × R3 (Z3) R4 = R6 × R4 (IX3)
R6 = R2 + R3 (I) ∗

∆5 R8 = R2
3 (Z2

3) ∆11 ∗
∗ ∗
R4 = R2 × R4 (FX2) R5 = R8 × R5 (Z2

3H)
∗ R5 = R4 + R5 (Y3)

∆6 ∗
∗
R5 = R3 × R5 (Z3Y2)
R5 = R4 + R5 (H)

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 27

Table 17. The TPLJ algorithm for curves defined over F2m using
Jacobian coordinates

TPLJ / F2m / Jacobian
Input: P = (X1 : Y1 : Z1)
Output: [3]P = (X3 : Y3 : Z3) = (R6 : R4 : R11)
Init: R1 = X1, R2 = Y1, R3 = Z1

Γ1 R4 = R2
1 (A = X2

1) Γ9 R6 = R1 × R2 (F 2)
R5 = R2

1 (B = X4
1) ∗

R6 = R2 × R3 (Y1Z1) R6 = a2 × R6 (a2F
2)

∗ R7 = R4 + R11 (G + F)
Γ2 R7 = R2

3 (C = Z2
1) Γ10 R11 = R2

10 (E2)
R8 = R2

7 (Z4
1) ∗

R7 = R1 × R7 (Z2) R12 = R4 × R7 (G(G + F))
R9 = R4 + R6 (A + D) R6 = R6 + R12

Γ3 R8 = R2
8 (Z8

1) Γ11 ∗
∗ ∗
R8 = a6 × R8 (a6Z

8
1) R12 = R10 × R11 (E3)

R8 = R5 + R8 (X2) R6 = R6 + R12 (H = X3)
Γ4 ∗ Γ12 ∗

∗ ∗
R5 = R5 × R7 (BZ2) R6 = R6 × R7 (H(G + F))
R9 = R9 + R7 (A + D + Z2) ∗

Γ5 ∗ Γ13 ∗
∗ ∗
R9 = R9 × R8 R4 = R4 × R8 (GX2)
R10 = R7 + R8 (E) ∗

Γ6 ∗ Γ14 ∗
∗ ∗
R11 = R10 × R7 (F = Z3) R5 = R10 × R5 (EY2)
R5 = R5 + R9 (Y2) R4 = R4 + R5 (GX2 + EY2)

Γ7 ∗ Γ15 ∗
∗ ∗
R4 = R4 × R7 (AZ2) R4 = R11 × R4

∗ R4 = R4 + R6 (I = Y3)
Γ8 ∗

∗
R4 = R4 × R6 (AZ2D)
R4 = R4 + R5 (G)

28 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

References

[1] J.-P. Allouche and J. Shallit, Automatic sequences, Cambridge University Press, 2003.
MR1997038 (2004k:11028)

[2] R. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Nguyen, and F. Vercauteren, Handbook
of elliptic and hyperelliptic curve cryptography, CRC Press, 2005. MR2162716 (2007f:14020)

[3] R. Avanzi, V. Dimitrov, C. Doche, and F. Sica, Extending scalar multiplication using double
bases, Advances in Cryptology, ASIACRYPT’06, Lecture Notes in Computer Science, vol.
4284, Springer, 2006, pp. 130–144.

[4] R. Avanzi and F. Sica, Scalar multiplication on Koblitz curves using double bases, Cryptology
ePrint Archive, Report 2006/067, 2006, http://eprint.iacr.org/2006/067.

[5] J.-C. Bajard, L. Imbert, and T. Plantard, Modular number systems: Beyond the Mersenne
family, Proceedings of the 11th International Workshop on Selected Areas in Cryptogra-
phy, SAC’04, Lecture Notes in Computer Science, vol. 3357, Springer, 2005, pp. 159–169.
MR2181315 (2006h:94071)

[6] V. Berthé, Autour du système de numération d’Ostrowski, Bulletin of the Belgian Mathe-
matical Society 8 (2001), 209–239. MR1838931 (2002k:68147)

[7] V. Berthé and L. Imbert, On converting numbers to the double-base number system, Advanced
Signal Processing Algorithms, Architecture and Implementations XIV, Proceedings of SPIE,
vol. 5559, SPIE, 2004, pp. 70–78.

[8] I. F. Blake, G. Seroussi, and N. P. Smart, Advances in elliptic curve cryptography, Lon-
don Mathematical Society Lecture Note Series, no. 317, Cambridge University Press, 2005.
MR2166105

[9] É. Brier and M. Joye, Fast point multiplication on elliptic curves through isogenies, Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC 2003, Lecture Notes in
Computer Science, vol. 2643, Springer, 2003, pp. 43–50. MR2042411 (2005a:14029)

[10] B. Chevalier-Mames, M. Ciet, and M. Joye, Low-cost solutions for preventing simple side-
channel analysis: Side-channel atomicity, IEEE Transactions on Computers 53 (2004), no. 6,
760–768.

[11] J. Chung and A. Hasan, More generalized Mersenne numbers, Selected Areas in Cryptog-
raphy, SAC’03, Lecture Notes in Computer Science, vol. 3006, Springer, 2004, pp. 335–347.
MR2094740 (2005f:94089)

[12] M. Ciet, M. Joye, K. Lauter, and P. L. Montgomery, Trading inversions for multiplications
in elliptic curve cryptography, Designs, Codes and Cryptography 39 (2006), no. 2, 189–206.
MR2209936 (2006j:94057)

[13] M. Ciet and F. Sica, An analysis of double base number systems and a sublinear scalar
multiplication algorithm, Progress of Cryptology, Mycrypt 2005, Lecture Notes in Computer
Science, vol. 3715, Springer, 2005, pp. 171–182.

[14] H. Cohen, A. Miyaji, and T. Ono, Efficient elliptic curve exponentiation using mixed coor-
dinates, Advances in Cryptology, ASIACRYPT’98, Lecture Notes in Computer Science, vol.
1514, Springer, 1998, pp. 51–65. MR1726152

[15] E. De Win, S. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle, A fast soft-
ware implementation for arithmetic operations in GF(2n), Advances in Cryptology, ASI-
ACRYPT’96, Lecture Notes in Computer Science, vol. 1163, Springer, 1996, pp. 65–76.
MR1486049

[16] V. Dimitrov, L. Imbert, and P. K. Mishra, Efficient and secure elliptic curve point multipli-
cation using double-base chains, Advances in Cryptology, ASIACRYPT’05, Lecture Notes in
Computer Science, vol. 3788, Springer, 2005, pp. 59–78. MR2236727

[17] V. S Dimitrov, K. Järvinen, M. J. Jacobson, Jr., W. F. Chan, and Z. Huang, FPGA imple-

mentation of point multiplication on Koblitz curves using Kleinian integers, Cryptographic
Hardware and Embedded Systems, CHES’06, Lecture Notes in Computer Science, vol. 4249,
Springer, 2006, pp. 445–459.

[18] V. S. Dimitrov, G. A. Jullien, and W. C. Miller, An algorithm for modular exponentiation,
Information Processing Letters 66 (1998), no. 3, 155–159. MR1627991 (99d:94023)

[19] C. Doche, T. Icart, and D. R. Kohel, Efficient scalar multiplication by isogeny decompositions,
Public Key Cryptography, PKC’06, Lecture Notes in Computer Science, vol. 3958, Springer,
2006, pp. 191–206.

http://www.ams.org/mathscinet-getitem?mr=1997038
http://www.ams.org/mathscinet-getitem?mr=1997038
http://www.ams.org/mathscinet-getitem?mr=2162716
http://www.ams.org/mathscinet-getitem?mr=2162716
http://www.ams.org/mathscinet-getitem?mr=2181315
http://www.ams.org/mathscinet-getitem?mr=2181315
http://www.ams.org/mathscinet-getitem?mr=1838931
http://www.ams.org/mathscinet-getitem?mr=1838931
http://www.ams.org/mathscinet-getitem?mr=2166105
http://www.ams.org/mathscinet-getitem?mr=2042411
http://www.ams.org/mathscinet-getitem?mr=2042411
http://www.ams.org/mathscinet-getitem?mr=2094740
http://www.ams.org/mathscinet-getitem?mr=2094740
http://www.ams.org/mathscinet-getitem?mr=2209936
http://www.ams.org/mathscinet-getitem?mr=2209936
http://www.ams.org/mathscinet-getitem?mr=1726152
http://www.ams.org/mathscinet-getitem?mr=1486049
http://www.ams.org/mathscinet-getitem?mr=2236727
http://www.ams.org/mathscinet-getitem?mr=1627991
http://www.ams.org/mathscinet-getitem?mr=1627991

DOUBLE-BASE NUMBER SYSTEM AND ITS APPLICATIONS TO ECC 29

[20] C. Doche and L. Imbert, Extended double-base number system with applications to elliptic
curve cryptography, Progress in Cryptology, INDOCRYPT’06, Lecture Notes in Computer
Science, vol. 4329, Springer, 2006, pp. 335–348.

[21] K. Eisenträger, K. Lauter, and P. L. Montgomery, Fast elliptic curve arithmetic and improved
Weil pairing evaluation, Topics in Cryptology – CT-RSA 2003, Lecture Notes in Computer
Science, vol. 2612, Springer, 2003, pp. 343–354. MR2080147

[22] K. Fong, D. Hankerson, J. Lòpez, and A. Menezes, Field inversion and point halving revisited,

IEEE Transactions on Computers 53 (2004), no. 8, 1047–1059.
[23] D. M. Gordon, A survey of fast exponentiation methods, Journal of Algorithms 27 (1998),

no. 1, 129–146. MR1613189 (99g:94014)
[24] T. Granlund, GMP, the GNU multiple precision arithmetic library, see: http://www.

swox.com/gmp/.
[25] J. Guajardo and C. Paar, Efficient algorithms for elliptic curve cryptosystems, Advances

in Cryptology, CRYPTO’97, Lecture Notes in Computer Science, vol. 1294, Springer, 1997,
pp. 342–356. MR1630403 (99b:94033)

[26] D. Hankerson, J. Lòpez Hernandez, and A. Menezes, Software implementation of elliptic
curve cryptography over binary fields, Cryptographic Hardware and Embedded Systems,
CHES’00, Lecture Notes in Computer Science, vol. 1965, Springer, 2000, pp. 1–24.

[27] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve cryptography, Springer,
2004. MR2054891 (2005c:94049)

[28] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara, Fast implementation of public-
key cryptography on a DSP TMS320C6201, Cryptographic Hardware and Embedded Sys-
tems, CHES’99, Lecture Notes in Computer Science, vol. 1717, Springer, 1999, pp. 61 –
72.

[29] T. Izu, B. Möller, and T. Takagi, Improved elliptic curve multiplication methods resistant
against side channel attacks, Progress in Cryptology, INDOCRYPT’02, Lecture Notes in
Computer Science, vol. 2551, Springer, 2002, pp. 269–313.

[30] T. Izu and T. Takagi, A fast parallel elliptic curve multiplication resistant against side chan-
nel attacks, Public Key Cryptography, PKC’02, Lecture Notes in Computer Science, vol.
2274, Springer, 2002, pp. 280–296.

[31] , Fast elliptic curve multiplications resistant against side channel attacks, IEICE
Transactions Fundamentals E88-A (2005), no. 1, 161–171.

[32] M. Joye and C. Tymen, Protections against differential analysis for elliptic curve cryptog-
raphy – an algebraic approach, Cryptographic Hardware and Embedded Systems, CHES’01,
Lecture Notes in Computer Science, vol. 2162, Springer, 2001, pp. 377 – 390. MR1946618
(2003k:94031)

[33] N. Koblitz, Elliptic curve cryptosystems, Mathematics of Computation 48 (1987), no. 177,
203–209. MR866109 (88b:94017)

[34] P. Kocher, J. Jaffe, and B. Jun, Differential power analysis, Advances in Cryptology,
CRYPTO’99, Lecture Notes in Computer Science, vol. 1666, Springer, 1999, pp. 388–397.

[35] P. C. Kocher, Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems, Advances in Cryptology, CRYPTO’96, Lecture Notes in Computer Science, vol.
1109, Springer, 1996, pp. 104–113.

[36] J. Lopez and R. Dahab, An improvement of the Guajardo-Paar method for multiplication on
non-supersingular elliptic curves, Proceedings of the XVIII International Conference of the
Chilean Society of Computer Science, SCCC’98, 1998, pp. 91–95.

[37] K. Mahler, On a special functional equation, Journal of the London Mathematical Society
s1-15 (1940), no. 2, 115–123. MR0002921 (2:133e)

[38] V. S. Miller, Uses of elliptic curves in cryptography, Advances in Cryptology, CRYPTO’85,
Lecture Notes in Computer Science, vol. 218, Springer, 1986, pp. 417–428. MR851432
(88b:68040)

[39] National Institute of Standards and Technology, FIPS PUB 186-2: Digital signature standard
(DSS), National Institute of Standards and Technology, January 2000.

[40] W. B. Pennington, On Mahler’s partition problem, Annals of Mathematics 57 (1953), no. 3,
531–546. MR0053959 (14:846m)

[41] C. M. Skinner, On the diophantine equation apx + bqy = c + dpzqw, Journal of Number
Theory 35 (1990), 194–207. MR1057322 (91h:11021)

http://www.ams.org/mathscinet-getitem?mr=2080147
http://www.ams.org/mathscinet-getitem?mr=1613189
http://www.ams.org/mathscinet-getitem?mr=1613189
http://www.ams.org/mathscinet-getitem?mr=1630403
http://www.ams.org/mathscinet-getitem?mr=1630403
http://www.ams.org/mathscinet-getitem?mr=2054891
http://www.ams.org/mathscinet-getitem?mr=2054891
http://www.ams.org/mathscinet-getitem?mr=1946618
http://www.ams.org/mathscinet-getitem?mr=1946618
http://www.ams.org/mathscinet-getitem?mr=866109
http://www.ams.org/mathscinet-getitem?mr=866109
http://www.ams.org/mathscinet-getitem?mr=0002921
http://www.ams.org/mathscinet-getitem?mr=0002921
http://www.ams.org/mathscinet-getitem?mr=851432
http://www.ams.org/mathscinet-getitem?mr=851432
http://www.ams.org/mathscinet-getitem?mr=0053959
http://www.ams.org/mathscinet-getitem?mr=0053959
http://www.ams.org/mathscinet-getitem?mr=1057322
http://www.ams.org/mathscinet-getitem?mr=1057322

30 V. DIMITROV, L. IMBERT, AND P. K. MISHRA

[42] J. Solinas, Generalized mersenne numbers, Research Report CORR-99-39, Center for Applied
Cryptographic Research, University of Waterloo, Waterloo, ON, Canada, 1999.

[43] Certicom Research The SECG group, SEC 2: Recommended elliptic curve domain parame-
ters, Standard for Efficient Cryptography, September 2000, http://www.secg.org/.

[44] R. Tijdeman, On the maximal distance between integers composed of small primes, Compo-
sitio Mathematica 28 (1974), 159–162. MR0345917 (49:10646)

[45] H. S. Wilf, Generatingfunctionology, 2nd ed., Academic Press Inc., 1994. MR1277813

(95a:05002)

Department of Mathematics, Centre for Information Security and Cryptography,

University of Calgary, 2500 University drive N.W., Calgary, AB, T2N 1N4, Canada

E-mail address: dimitrov@vlsi.enel.ucalgary.ca

Department of Mathematics, Centre for Information Security and Cryptography,

University of Calgary, 2500 University drive N.W., Calgary, AB, T2N 1N4, Canada

Current address: LIRMM, University Montpellier 2, CNRS, 161 rue Ada, 34392 Montpellier,
France

E-mail address: Laurent.Imbert@lirmm.fr

Department of Mathematics, Centre for Information Security and Cryptography,

University of Calgary, 2500 University drive N.W., Calgary, AB, T2N 1N4, Canada

E-mail address: pradeep@math.ucalgary.ca

http://www.ams.org/mathscinet-getitem?mr=0345917
http://www.ams.org/mathscinet-getitem?mr=0345917
http://www.ams.org/mathscinet-getitem?mr=1277813
http://www.ams.org/mathscinet-getitem?mr=1277813

	1. Introduction
	2. Background
	2.1. The double-base number system
	2.2. Elliptic curve cryptography

	3. New curve arithmetic formulae
	3.1. Curves defined over Fp using Jacobian coordinates
	3.2. Curves defined over F2m using affine coordinates
	3.3. Curves defined over F2m using Jacobian coordinates

	4. Scalar multiplication and double-base chains
	4.1. Curves defined over Fp with Jacobian coordinates
	4.2. Curves defined over F2m with Jacobian coordinates
	4.3. Curves defined over F2m with affine coordinates

	5. Comparisons and experimental results
	5.1. Curves defined over Fp with Jacobian coordinates
	5.2. Curves defined over F2m with Jacobian coordinates
	5.3. Curves defined over F2m with affine coordinates

	6. Conclusions
	Acknowledgments
	Appendix A. Curves defined over Fp using Jacobian coordinates
	Appendix B. Curves defined over F2m using Jacobian coordinates
	References

