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Abstract: 
Mathematical models of the skeletal muscle can support the development of neuroprotheses to 
restore functional movements in individuals with motor deficiencies by the mean of Functional 
Electrical Stimulation (FES). Since many years, numerous skeletal muscle models have been 
proposed to express the relationship between muscle activation and generated force. One of them 
(Makssoud et al [2]-[3]), integrates the Hill model [5] and the physiological one based on Huxley 
work [4] allowing the muscle activation under FES. We propose in this paper an improvement of 
this model by modifying the activation part. These improvements are highlighted through the 
HuMAnS toolbox [1] using a 3D biomechanical model of human named Human 36. This article 
describes this toolbox and the software implementation of the model. Then, we present the results 
of the simulation.  
 
Keywords: Simulation, 3D biomechanical model of Human, models of skeletal 
muscles, Functional Electrical Stimulation. 

Abbreviations: 

FES: Functional Electrical Stimulation 
HuMAnS toolbox: Humanoid Motion Analysis and Simulation toolbox [1] 

Introduction 

Different approaches to model the electromechanical behavior of skeletal muscles 

with FES signal as inputs have been presented in previous studies [2]-[3]. Thanks 

to the development of biomechanics, different musculoskeletal human models 

have also been developed and available. The general musculoskeletal model of 

whole body and its dynamics computation method were established [7]-[8]. The 

effective computational algorithms were pursued for inverse and forward 

dynamics on the basis of efficient multibody dynamics-computation algorithms 
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[6]. In these works, Hill-type model [9] is normally used for the calculation of 

muscle force. In the HuMAnS toolbox (Humanoid Motion Analysis and 

Simulation toolbox developed at the INRIA Rhône-Alpes [1]), a 3D 

biomechanical model of the human has been developed: the Human 36 model in 

which the mathematical muscle model proposed by DEMAR project [2] has been 

introduced. In this muscle model, Hill representation and physiological model 

based on the work of Huxley [4] are integrated and designed especially for muscle 

activation through FES. 

Using the HuMAnS toolbox, we have modified the initial model in order to 

improve the output mechanical response. Input command and the force-length 

relationship were thus enhanced. Then, we observe the results of the 

modifications. In the first part of this article, we give a description of the 

HuMAnS toolbox and particularly the Human 36 model. Then, we describe the 

two models of the skeletal muscle we use, and we present the results and 

discussion of the simulation.  

Materials and Methods 

The HuMAnS toolbox and the Human 36 model 

The HuMAnS toolbox developed at INRIA Rhône-Alpes offers tools for the 

modelling, the control and the analysis of humanoid motion, being that of a robot 

or a human. It is an Open Source software. It is composed of two parts: a first one 

which is the model generation and a second one which is the simulation, the 

control and the analysis tools. A 3D biomechanical model of human has been 

developed on this software: the Human 36 model.  

The Human 36 model includes the geometric, the kinematic and the dynamic 

model of the whole human body and also the interaction of the body with the 

environment [10]. The dynamic model is a lagrangian model [1]. The interest of 

using the Human 36 model for static or dynamics studies has been proved in a 

previous work [11].  

The mathematical model of the skeletal muscle proposed by DEMAR project for 

FES applications has also been implemented in the Human 36 model. Initially, it 

is the model proposed by El Makssoud et al [2]-[3]. As HuMAnS is an Open 



Source software, we are able to change the skeletal muscle model and to observe 

the results of the modifications.  

Skeletal muscle models 

The muscle models we proposed are composed of two parts of different nature 

[3]: first, an activation model describing how an electrical stimulus generates an 

Action Potential (AP) and initiates the contraction and recruits Motor Units, then 

a mechanical model describing the generation of forces and an evolution of 

lengths [3] (Figure 1).  
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Figure 1. Electromechanical model of the muscle 

The contraction force generated by a muscle under FES is mainly modulated 

therefore by the stimulation parameters: intensity (i) and pulse width (pw). For 

this reason, the muscle model has these stimulation parameters as inputs, the 

generated force and active stiffness as outputs. 

The skeletal muscle model initially implemented in Human 36 

The command signal u(t) is shown on the Figure 2. It fluctuates between two 

values Up and Um. Its different states correspond to different activations: 

contraction phase (2), transition phase (1) and relaxation phase (0) (Figure 2) [2].
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Figure 2. Command signal [1] 

The recruiting rate depends on the width and intensity of the impulsion. Its value 

is given by [2]:  
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The mechanical model is composed of: a contractile component with the 

command signal u(t) and α as inputs, and passive elements composed of a serial 

linear spring and a parallel exponential spring (Figure 3)[2]. 
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Figure 3. Mechanical Model of the skeletal muscle [1] 

The stiffness and the force of a muscle depend on its length: 
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For the quadriceps and hamstrings muscles, the  km, Fm, ks, kp, kep, Lc0 and L0 

values are given in the table 1. 

 km Fm ks kp kep Lc0 L0

Quadriceps 104N.m-1 500N 104N.m-1 0 1N.m-1 8.2cm 49.2cm

Hamstrings 104N.m-1 500N 104N.m-1 0 1N.m-1 10,7cm 49.2cm

Table 1. Maximum stiffness and force of quadriceps and hamstrings muscles 

The dynamic model of contractile component coupled with the linear series spring 

(Figure 3) is [2] (where kc, Fc, εc are the state variables): 
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 (eq. 3)  

Then, we can compute from the command u, the recruiting rate α, the forces Fc 

and F0, the stiffness kc  thanks to the first and last equations of the system (eq. 3): 
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The total force developed by the muscle is:     
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New activation model 

We propose here an evolution of the DEMAR skeletal muscle model presented 

as been developed directly from the Huxley [4] and the 

Hill models [5] and its parameters estimated on animal muscles. 

simp

above. This new model h

Compared to the previous ones, it includes a new recruitment function and more 

accurate dynamics, including a force-length relation at the microscopic scale. 

A new command signal u(t) is implemented (Figure 4). 
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ereas for the left knee isometric case is studied. 

e (Fc) and εc of the 

The movement is calculated for both knees. For the right knee, a free movement is 

performed wh

The results concerning the rotation angle of the right knee (Q) (the left knee 

doesn’t move), the torques, the active stiffness (kc), the forc

contractile element are presented on the Figure 5. 
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 implementation is able to render both isometric and non 

ifferential 

ations was proposed by DEMAR 

an 36 model (HuMAnS toolbox 

he other skeletal muscles of 

the human body in order to use the Human 36 model to compare the results given 

account the difference between i and pw modulation. Moreover, in the new 

model, the recruitment α is kept to 0 when either i or pw are 0 and its cross 

sections along the i and pw axes follow sigmoid like functions as observed 

experimentally when varying only one of these parameters. Thus both 

modifications enhance the model with a more realistic behavior, validated on real 

experiments [12]. 

As regards the simulation results we can notice the original following results: i) 

the model and its

isometric contractions, Hill type models can hardly achieve this with the same set 

of identified parameters, ii) Relaxation and contraction phases dynamics are 

different as in the real world, this is also not render by linear models of the 

muscle, iii) internal variable such as active stiffness, relative length of the 

contractile element can be observed and simulated, again, classical Hill-type 

models can not give such pieces of information, iv) finally, as contraction and 

relaxation phases dynamics can be adjusted separately, and owing to the u 

command input, different from the recruitment input, the model is able to predict 

both twitch and titanic contraction with a high accuracy. Figure 5 shows the 

results obtained, consistent with experimental data (not presented here). 

This analysis of the model concerns the software implementation issue, quite 

complex to achieve, mainly due to the switching and initialization of d

equations and the coupling between muscle’s equation and biomechanics state 

variables such as length. We also qualitatively validate the global behavior of the 

HuMAnS software with such complex simulation, through the validation of 

known properties of muscle’s behavior listed above. 

Conclusion and Perspectives 

An initial skeletal muscle model for FES applic

project and has been implemented in the Hum

[1]). As HuMAnS gives the possibility to test and different models of muscle, we 

simulate here an evolution of the activation model of this model, which is more in 

accordance with the physiological muscle behavior.  

Even though we have already validated this model through experiments on 

rabbit’s muscles, we will be able now to introduce t
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 this work. 
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