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ABSTRACTSchema matching is a crucial task to gather information efgame domain. How-
ever, this process is still largely performed manually oms@utomatically, discouraging the
deployment of large-scale mediation systems. Indeeck thege-scale scenarii need a solution
which ensures both an acceptable matching quality and gesfbpnance. In this article, we
present the BMatch approach to efficiently match a large remobschemas. The quality aspect
is based on the combination of terminological and contdxtuethods. The performance as-
pect relies on a B-tree indexing structure to reduce thedeapace. Finally, experiments with
real sets of schemas show that our approach is scalable atmbdorms the most referenced
matching tools both in quality of matches and performanceti

RESUMELa découverte de correspondances entre schémas est uedm@faqrtante lorsque I'on
intégre des informations d’'un méme domaine. Cependantocegsus est encore trop souvent
effectué manuellement ou au moyen d’approches semi-atitpres. Notre approche Bmatch
s’appuie sur une combinaison de mesures terminologiqu#mérmations contextuelles pour
découvrir des correspondances entre schémas. Par aillpors étre efficace dans un contexte
large échelle, nous nous appuyons sur une structure d’mtitex B-tree pour réduire I'espace
de recherche. Des expérimentations sur des données réaletsent que notre approche passe
bien a I'échelle tout en obtenant globalement une meillepralité et de meilleures perfor-
mances comparativement aux outils de découverte de comdapces de référence.

KEYWORDSsemantic similarity, schema matching, BMatch, B-treexrateucture, node context,
terminological and structural measures.

MOTS-CLES :similarité semantique, découverte de correspondances sohmémas, BMatch,
structure d’indexation B-tree, contexte d’'un noeud, mesterminologiques et structurelles.
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1. Introduction

Interoperability among applications in distributed enwviments, including today’s
World-Wide Web and the emerging Semantic Web, dependsaliition the ability
to map between them. Unfortunately, automated data irtiegraand more precisely
matching between schema, is still largely done by hand,abartintensive and error-
prone process. As a consequence, semantic integratioesismyve become a key
bottleneck in the deployment of a wide variety of informatimanagement applica-
tions. The high cost of this bottleneck has motivated numemesearch activities
on methods for describing, manipulating and (semi-autaaly) generating schema
mappings.

The schema matching problem consists in identifying one oremerms in a
schema that match terms in a target schema. The currentasgorizatic match-
ers (Madhavaret al, 2001; Aumuelleret al,, 2005; Melniket al,, 2002; Euzenagt
al., 2004a; Rahret al, 2001; Yatskevich, 2003) calculate various similaritiesAeen
elements and they keep the couples with a similarity abowertaia threshold. The
main drawback of such matching tools is the performancéioaljh the matching
quality provided at the end of the process is acceptableltpsed time to match im-
plies a static and limited number of schemas. Yet, in manyalomareas, a dynamic
environment involving large sets of schema is required. &ltays matching tools
must combine both an acceptable quality of matches and gmedderformance.

In this paper, we present our matching tool, BMatch. It sutspmoth the semantic
aspect by ensuring an acceptable matching quality and geddrmpance by using
an indexing structure. Contrary to similar works, our agtois generic; it does not
use any dictionnary or ontology and is both language and @domdependent. The
semantic aspect is specifically designed for schemas arsist®im using both ter-
minological algorithms and structural rules. Indeed, #mninological approaches
enable to discover elements represented by close chastiigys. On the other hand,
the structural rules are used to define the notion of conteatrmde. This context
includes some of its neighbours, each of them is associatezight representing the
importance it has when evaluating the contextual node.ovedomposed of neigh-
bour nodes are compared with the cosine measure to detesimaitgrity. Finally, the
different measures are aggregated for all couples of nddks.most of the match-
ers, this semantic aspect lacks to provide good performarteems of time. Indeed,
comparing each node from one schema to each node from thesetiemas is a time-
consuming process. To overcome this lack, the second aspeat approach aimed
at improving the performance by using an indexing structoiigcelerate the schema
matching process. The B-tree structure has been chosendb tieis goal, as it has
been designed to search and find efficiently an index amongae tpantity of data.
Indeed, we assume that two similar labels share at least moaortoken, so instead of
parsing the whole schema, we just search for the tokenséadaxhe B-tree. Further-
more, we performed some experiments based on large seteerhacand the results
show that our approach is scalable.
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Our main contributions are:

— we designed a generic and flexible approach, BMatch, t@desanatches be-
tween two schemas,

— we introduced the notion of context for a schema node. Oprageh is based
on both terminological measures and structural measung tisis context,

— an indexing structure provides good performance by alugtéabel tokens,

— an experiment section allows to judge on the results pealfry BMatch on both
aspects, the matching quality and the time performance.

Outline. The rest of the paper is structured as follows: first we brigélfine the
main concepts in Section 2. In Section 3, the semantic agdemtir approach is
detailed; and Section 4 covers the time performance asipeStction 5, we present
the results of our experiments; an overview of related werlgiven in Section 6.
Finally, we conclude and outline some future work in Secfion

2. Preliminary aspects

In this section, we define the main notions used in this paper.approach deals
with semi-structured data. Schema in this context are trees

Definition 1 (Schema): a schema is a labeled unordered t&e (Vs, Es, s,
label) whereVs is a set of nodes;g is the root nodelGs C Vs x Vg is a set of
edges; anthbel £ — A whereA is a countable set of labels.

Definition 2 (Semantic similarity measure): let £, be a set of elements of
schema 1, andv; be a set of elements of schema 2. A semantic similarity mea-
sure between two elements € E; ande; € Fs, denoted as,, (e, e2), is a metric
value based on the likeness of their meaning / semantic egmtefined by:

Sm : E1XEy — [0, 1]

(e1,e2) — Sm(e1, e2) where a zero value means total dissimilarity and 1 valuedstan
for total similarity. In the rest of the paper, we referSg,(e1, e2) as the similarity
value.

Definition 3 (Automatic schema matching):given two schema element sdfs
and E> and a threshold, we define automatic schema matching the algorithm to
obtain the set of discovered matchegs{(e1, e2,5m(e1, e2))}, such that between two
elements:; € E; andey € Es, Sy(e1,e2) > t.

Threshold t may be adjusted by an expert, depending uportrtitegy, domain or
algorithms used by the schema matching tools.
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Example: if S,,(adresse,address) is calculated using the Levenshtein dis-
tance algorithm, the similarity value is 0.857 and if therasg algorithm is used,
then the result is 0.333 (see Section 3.2 for more details)r aRother example
S (dept, department), the Levenshtein distance value is 0 and the 3-gram result
is 0.111. These examples show that the threshold has to betedjby an expert
depending upon the properties of strings being comparedtendatch algorithms
applied. Our approach, presented in Sections 3 and 4, isl lnasthese definitions.

3. BMatch: semantic aspect

In the context of a large scale scenario, performing the niragcwith similarity
measures which use external resources or are based onciestaiight be a costly
process. Besides, an external resource might be inapptegdar matching a given
domain: it can be either too general (e.g. Wordnet) or tocifipge.g. an ontol-
ogy). Thus, our approach is generic and it favours measunéshvdirectly rely on
the schemas and do not require too much processing. It cemlbimee semantic
similarity measures: two of them are terminological and dhiger is based on the
structure. All of these measures are combined with diffetieresholds to produce
a set of matches. In the rest of this section, we first give sorovations for the
choice of similarity measures. We describe some importations of our approach,
the terminological measures and the context. Then, the BiV&asemantic aspect is
explained in detail. Finally, more precision is given abihgt parameters.

3.1. Motivations

In this section, we explain the motivations underlying owrky especially why
we have chosen to combine both terminological and strulciparoaches.

— Terminological measures are not sufficient, for example:

- mouse (computer device) and mouse (animal) lead to a polgggroblem,
- university and faculty are totally dissimilar labels.

— Structural measures have some drawbacks:

- propagating the benefit of irrelevant discovered matcbethé neighbour
nodes increases the discovery of more irrelevant matches,

- not efficient with small schemas.

Example of schema matchingonsider the two following schemas used in (D@&a&n
al.,, 2004). They represent the organization in universitiemfdifferent countries
and have been widely used in the literature. In the rest optyer, we will refer
to these schemas as the university scenario. With thesensshdahe ideal set of
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matches given by an expert i3S Dept Australia, CS Dept U.S.), (courses, under-
grad courses), (courses, grad courses), (staff, peomegdemic staff, faculty), (tech-
nical staff, staff), (lecturer, assistant professor),niee lecturer, associate professor),
(professor, professay)

CS Dept Australia CS Dept U.S
Courses Staff Undergrad Grad le
o T Courses Courses/p\
Academic Staff Technical Staff Faculty Staff
Senior . .
Lecturer Lecturer Pr‘onf‘e"ssor Assistant  Associate Professor

e e Professor Professor

(a) Organization of an Australian university (b) Organization of a US university
Figure 1. The two university scenario schemas

Let’s imagine that we try to determine a similarity betwe@oursesand Grad-
Courses Using terminological measures, namely 3-grams and Léitemsdistance,
we discover a high similarity between these lab&gingMatchingdenotes the aver-
age between 3-grams and Levenshtein distance values amtésents the similarity
obtained by terminological measures. All of these measaresiefined in Section
3.2.

— 3grams(Courses, GradCourses) = 0.2
— Lev(Courses, GradCourses) = 0.42

= StringMatching(Courses, GradCourses) = 0.31

Now if we consider the nodescademic StafandFaculty, the terminological mea-
sures are not useful for discovering a match between thbsés|asince the labels are
totally dissimilar, implying a StringMatching value of @P. However, the structural
measure enables us to match the labels with a similarityevaid.37. They are based
on the notion ofcontext which represents, for a given node, its semantically most
important neighbours. And the contexts of two nodes are ewatpusing theo-
sine measureThis structural measure thus reveals semantic relatipsisA detailed
explanation of the context and the cosine measure is giveedtion 3.4.

— StringMatching(Academic Staff, Faculty) = 0.002

— Context(Academic Staff) = Academic Staff, Lecturer, 8ehiecturer, Professor
— Context(Faculty) = Faculty, Assistant Professor, AssecProfessor, Professor

= CosineMeasure(Context(Academic Staff), Context(Facuf) = 0.37
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In our approach, we thus combine both terminological anectiral measures to
avoid the previously described problems.

3.2. Terminological measures

To calculate the semantic similarity between two labelsrétare many measures
which are often cited in the literature (Euzestal., 2004a; Cohent al,, 2003; Maed-
cheet al, 2002). This section only presents the two terminologicaasures used in
the BMatch semantic aspect. They are described in morel detéduchateauet
al., 2007). Both measures compute a value in [0, 1], withOtkalue denoting dissim-
ilarity and 1 denoting total similarity.

3.2.1. n-grams

An n-gram (Shannon, 1948) is a similarity measure dealing witissquences of
n items from a given stringn-grams are used in various areas of statistical natural
language processing to calculate the numbet obnsecutive characters in different
strings. In generalp value ranges from 2 to 5 and is often set at 3 (Lin, 1998; Kefi,
2006).

3.2.2. Levenshtein distance

The Levenshtein distance (Levenshtein, 1966) betweenthivgs is given by the
minimum number of operations needed to transform one sairitg into the target
string, where an operation is an insertion, deletion, osstiliion of a single character.

3.3. Node context

A specific feature of our approach is to consider the neighbodes. We have
called this notion the context, which represents, givenraeci noden,., the nodes
denotedr; in its neighbourhood. In fact, all nodes in the schema maydnsidered
in the neighbourhood af.. However, it is quite obvious that the closest nodeare
semantically closer to the node. Given this assumption, we calculate the weight
of each noder; according to the node., which evaluates how semantically close
the context node:; is to the noden.. First we calculate\ d, which represents the
difference between the, level and they; level:

Ad = |lev(ne) — lev(n;)| [1]
wherelev(n) is the depth of node from the root. Then we can calculate the weight

denotedv(n., n;) between the nodes. andn;:

(2]

wi(ne,ni), ifAnc(ne,n;) or Desc(ne,n;)
w(ne,ni) =
w2(ne,ni), otherwise
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whereAnc(n, m) (resp.Desc(n, m)) is a boolean function indicating whether node
n is an ancestor (resp. descendant) of nadd his weight formulais divided into two
cases, according to the relationship between the two tetaddes. Ifn is an ancestor

or a descendant of:, the Formula 3 is applied. Otherwise we apply Formula 4. The
idea behind this weight formula is based on the fact that thgec two nodes are in
the tree, the more similar their meaning is.

K
T Ad + |lev(ne) — lev(na)| + [lev(n:) — lev(na)]

wi(ne,ni) =

(3]

K
(Jlev(ne) — lev(ng)| + [lev(n;) — lev(ng)|)

wa(ne,n;) =1+ 7% [4]

wheren, represents the lowest common ancestort@ndn;, andk is a parameter

to allow some flexibility with the context. This is describ@dnore detail in Section
3.5. The value of this weight is in the interval ]1,2] for= 1. Note that this formula,
for a given noden, gives the same weight to all descendants and ancestorssof th
noden which are at the same level.

Example: let us consider the nodécademic Staffrom schema 1(a). We look
for the importance ofstaff for the nodeAcademic Staff As Staff is an ancestor of
Academic Staffwe apply Formula. Ad, the difference between their levels in the
tree hierarchy, is equal to 1. Their lowest common ances®iaff and the difference
in level between this common ancestor with itself is 0, witiis equal to 1 with the
nodeAcademic Stafthus giving us the following result:

1

w(Academic StaffStaff) =1+ 111510

1.5 (5]

Now we compute the weight of the no@»durseswith regards toAcademic Staff
They have no ancestor or descendant relationship, so Farid applied. Their
lowest common ancestor is the root node, nan@$yDept AustraliaAcademic Staff
is 2 levels away from the common ancestor, &udirseds 1 level away from it. The
weight of Coursedor the nodeAcademic Staffjives:

. 1
w(Academic StaffCourses) = 1 + m =1.17 [6]

We can then generalize to obtain the following set of paieiginbour, associated
weight), also called context vector, which represents thetext of the nodécademic
Staff {(CS Dept Australia, 1.25), (Courses, 1.17), (Staff, 1(B¢chnical Staff, 1.25),
(Lecturer, 1.5), (Senior Lecturer, 1.5), (Professor, 1}5Jote that some parameters
(described later in this section) have an impact on the &bnte
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3.4. Semantic match algorithm

The semantic aspect of BMatch is based on two steps: firstpl@aeterms in the
context vectors when they have close character strings.stép uses the Levenshtein
distance and 3-gram algorithms (see Section 3.2). Secondlgalculate the cosine
measure between two vectors to determine if their contestoise or not.

3.4.1. Step one: terminological measures to replace terms

The following describes in detail the first part of the sentaaspect. The two
schemas are traversed in preorder traversal and all nodearpared two by two
with the Levenshtein distance and the 3-grams. Both measreeprocessed and,
according to the adopted stratégyhe highest one or the average is kept. The
obtained value is denote&aM for String Measurelf SM is above a certain threshold,
which is defined by an expert, then some replacements may.dideel threshold will
be discussed in Section 5. We decided to replace the termtigtigreater number
of characters by the term with the smaller number of charactadeed, we consider
that the smaller sized term is more general than the largedsine. This assumption
can be checked easily since some terms may be written inlainguplural. After
this first step, we finally obtain the initial schemas thatéehpessibly been modified
with character string replacements.

We have also noted polysemia or synonymy problems. Thedl/piglysemous
example ismouse which can represent both an animal and a computer device. In
those cases, the string replacement obviously occurs Butdaffect since the terms
are similar. On the contrary, two synonyms are mainly detkas dissimilar by string
matching algorithms. However, the second part of our allgorj by using the context,
enables us to avoid these two problems.

3.4.2. Step two: cosine measure applied to context vectors

In the second part of our algorithm, the schemas - in whichessimng replace-
ments may have occurred by means of step 1 - are traversed agad the context
vector of a current element is extracted in each schema. €lghloour elements
composing this vector may be ancestors, descendantsigsitir further nodes of the
current element, but each of them has a weight, illustrattegimportance of this
neighbour with regards to the current node. The two contegtors are compared
using the cosine measure, in which we include the node weightleed, when
counting the number of occurrences of a term, we multiply thimber by its weight.
This processing enables us to calculaM, the cosine measure between two context
vectors, and thus also the similarity between the two noelesed to these contexts.

1. The maximum and average strategies are reported to be amgoledff in the literature.
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The cosine measure (Wilkinsaet al, 1991) is widely used in Information Re-
trieval. The cosine measure between the two context veaerotedCM, is given
by the following formula:

V1 U2

OM('Ul,'UQ) = [7]

(v1 - v1)(v2 - v2)

CM value is in the interval [0,1]. A result close to 1 indicatkattthe vectors tend to
be in the same direction, and a value close to 0 denotes fetafrdlarity between the
two vectors.

Example: during step 2, the following replacement occurred: Facuity
Academic Staff. Now consider the two current nod&siff and Peoplerespec-
tively from schemas 1(a) and 1(b). Their respective andtdicficontext vectors,
composed of pairs of a neighbour node and its associatechtyeige {(CS Dept
Australia, 1.5), (Faculty, 1.5), (Technical Staff, 1.5)ahd {(CS Dept U.S., 1.5),
(Faculty, 1.5), (Staff, 1.5).} As the only common term between the two vectors is
Facultywith a weight ofl1.5, the cosine measure between those context vectors is 0.44.

The context enables to discover or disambiguate a matcheleetywolysemous
or synonymous pairs. It also enables to discover matcheshwfiare other kind of
relationships. In the previous examptaff is a “subclassOf” ofPeoplewhile in
Section 3.1Academic Staffs a synonym ofraculty. Note that our approach is not
able to discover the kind of relationship between the paiments, it simply indicates
whether it should be a match with regards to the computedasityi

Finally, we obtain two similarity measureSMandCM, with the first one based on
terminological algorithms while the second takes the odritto account. Here again,
a strategy must be adopted to decide how to aggregate thodariy measures. In
our approach, the maximum and average were chosen becayggtierally give bet-
ter results in experiments than other formulas where onbkeofrteasures is favoured.
At the end of the process, BMatch deals with a set of matchesisting of all element
pairs whose similarity value is above a threshold given bgxgrert.

3.5. Tuning the parameters

Like most matchers, our approach includes some parametémmugh this may
be seen as a drawback, since a domain expert is often redqainate them, this is off-
set by the fact that our application is generic and works wittdictionary regardless
of the domain or language.

2. To clarify the example, the context has been voluntanijtied in terms of number of neigh-
bours thanks to the parameters.
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—NB_LEVELS: this parameter is used to know the number of levels, bothndp a
down in the hierarchy, to search in order to find the contexieso

— MIN_WEIGHT: combined withNB_LEVELS, it represents the minimum weight
to be accepted as a context node. This is quite useful to daithg many cousin
nodes (that do not have a significant importance) includelarcontext.

— REPLACE_THRESHOLD: this threshold is the minimum value to be reached to
make any replacement between two terms.

— SIM_THRESHOLD this threshold is the minimal value to be reached to accept a
similarity between two schema nodes based on terminolbigieasures.

— K: this coefficient used in formula 2 allows more flexibilithdeed, it represents
the importance we give to the context when measuring siitidar

Given that the number of parameters is important, such alicatipn needs to
be tuned correctly to give acceptable results. In (Duche&tal., 2007), several
experiments show the flexibility of BMatch by testing di#fet configurations. This
enabled us to set some of the parameters at default valusisieBewe note that some
tools like eTuner (Leet al,, 2007) aim at automatically tuning matching tools.

Semantic aspect is hampered by the same drawback as thenattobrersi.e. low
time performance. This is due to the large number of po##sili.e. each element
from one schema is tested with each element of another sch&hanext section
presents an indexing structure to accelerate the schenthimgprocess by reducing
the search space.

4. BMatch: performance aspect

The first part of this section introduces the B-tree, an ifmgstructure. Then we
explain how this structure is integrated with the semangi¢ fo improve the perfor-
mance.

4.1. Anindexing structure: the B-tree

In our approach, we use the B-tree as the main structure sddonatches and
create matches between schemas. The advantage of seaimhimgtches using
the B-tree approach is that B-trees have indexes that signtfy accelerate this
process. For example, if you consider the schemas 1(a) djdthéy have 8 and
9 elements respectively, implying 72 matching possibi#itivith an algorithm that
tries all combinations. And those schemas are small examiplg in some domains,
schemas may contain up to 6 000 elements. By indexing in @&-twe are able to
reduce this number of matching possibilities, thus praxgdietter time performance.
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As described in (Comer, 1979), B-trees have many featur&str&e is composed
of nodes, with each of them having a list of indexes. A B-treerderM means that
each node can have upltb children nodes and contain a maximum\dfl indexes.
Another feature is that the B-tree is balanced, meaningathdhe leaves are at the
same level - thus enabling fast insertion and fast retrisivele a search algorithm in
a B-tree ofn nodes visits onlyl+logyn nodes to retrieve an index. This balancing
involves some extra processing when adding new indexeshintB-tree, however its
impact is limited when the B-tree order is high.

The B-tree is a structure widely used in databases due tdfitgeat capabilities
of retrieving information. As schema matchers need to duiekcess and retrieve
a lot of data when matching, an indexing structure such ag&<ould improve the
performances. The B-tree has been preferred to the B+tigielfus commonly used
in database systems) since we do not need the costly deletatigm. Thus, with
this condition, the B-tree seems more efficient than the é&e+trecause it stores less
indexes and it is able to find an index quicker.

4.2. Principle of our matching algorithm

Contrary to most other matching tools, BMatch does not usatixto compute
the similarity of each pair of elements. Instead, a B-trekpse indexes represent
tokens, is built and enriched as we parse new schemas, amlisttewered matches
are also stored in this structure. The tokens referencaladll$ that contain it. For
example, after parsing schemas 1(a) and 1(b)cthesestoken would hold three
labels: coursesfrom schema 1(agrad coursesandundergrad coursefom schema
1(b). Note that the labelgrad coursesandundergrad courseare also stored under
thegrad and theundergradtokens respectively.

For each input schema, the same algorithm is applied: thensahs parsed el-
ement by element following a preorder traversal. This ezslbis to compute the
context vector of each element. The label is split into takene then fetch each of
those tokens in the B-tree, resulting in two possibilities:

— no token is found, so we just add it in the B-tree with a rafeesto the label,

— or the token already exists in the B-tree, and then we tryni $emantic sim-
ilarities between the current label and those referencethéyexisting token. We
assume that in most cases, similar labels have a common takdnif not, they may
be discovered with the context similarity).

Let usillustrate this case. Wheourseds parsed in schema 1(a), the label is first
tokenized, resulting in the following set of tokeremurses We search the B-tree for
this single token, but it does not exist. Thus, we create artafructure whose index
is coursesand which stores the current lalmdursesand it is added to the B-tree.
Later on, we parsgrad coursesn schema 1(b). After the tokenization process,
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we obtain this set of tokengrad, courses We then search the B-tree for the first
token of the set, bugrad does not exist. A token structure with thgsad token as
index is inserted in the B-tree, and it stores ¢gnad coursedabel. Then the second
token,coursesis searched in the B-tree. As it already exists, we browldbalabels

it contains (here only theourseslabel is found) to calculate the String Measure
(denoted SM) between them agrthd coursesBMatch can replace one of the labels
by another if they are considered similar (depending on trarpeters). Whatever
happensgrad coursess added in thecoursesstructure. The next parsed element
is undergrad courseswhich is composed of two tokensindergradand courses
The first one results in an unsuccessful search, implyingdhaindergradtoken
structure can be created. The second token is already in-threeBand it contains
the two previously added labelsoursesandgrad courses The String Measures are
computed betweeunndergrad courseand the two labels, involving replacements if
SM reaches a certain thresholdndergrad coursess added in the label list of the
coursedoken structure. In this way, the index enables us to quifiklythe common
tokens between occurrences, and to limit the String Measaurgutation with only a
few labels.

At this step, some string replacements might have occufiieen the parser recur-
sively performs the same action for the descendant nodakesthildren nodes can
then be added to the context. Once all descendants have tesrsged, similarities
might be discovered by comparing the label with token refees using the cosine and
the terminological measures. A parameter can be set toétersearch to the whole
B-tree if no matches have been discovered. Let us extendwaumpde. After process-
ing undergrad coursesve should go on to its children elements. As itis a leaf, we
then search the B-tree again for all tokens which compodalbigdundergrad courses
Under theundergradtoken, we find only one label, so nothing happens. Under the
coursestoken, only one of the three existing labels, namebyrses is interesting
(one isundergrad courseand the othergrad coursesis in the same schema). The
String Measure is thus applied betwemursesandundergrad coursesThe Cosine
Measure is also performed between their respective cantextl aggregation of these
two measures results in the semantic measure between #imede. | If this semantic
measure reaches the given threshold, then a match may loeelied.

5. Experiments

As our matching tool deals with both quality and performaasgects, this section
is organized in two parts. The first one shows that BMatch iples/an acceptable
quality of matching regarding the existing matching toolehe second part deals
with the performance. For this purpose, large schemas atehetato evaluate the
benefit of the B-tree. These experiments were performed aBlezPentium 4 laptop
running Windows XP, with 2 Gb RAM. Java Virtual Machine 1.%he current version
required to launch our prototype. To evaluate our matclond ive have chosen five



A flexible and scalable approach 71

real-world scenarios, each composed of two schemas. Theseidely used in the
literature. The first one describeparson the second is related tmiversity courses
from Thalia (Hammeet al, 2005), the third one obusiness ordeextracted from
OAGIS® and XCBL*. Finally, currencyand smsare popular web servicgs Their
main features are given in Table 1.

Table 1. Features of the different scenarios
Person| University | Order | Currency | SMS

Number of nodes{:/S2) | 11/10 8/9 20/844 | 12/35 | 46/64
Avg number of nodes 11 9 432 24 55
Max depth 61/52) 4/4 4/4 3/3 3/3 4/4
Number of mappings 5 9 10 6 20

5.1. Matching quality

We present three metrics to evaluate the quality of our niragdiool, namely pre-
cision, recall and F-measure, that we use to compare BMatmhits with those of
COMA++ and Similarity Flooding (SF). To the best of our knedge, these tools are
the only ones publicly available.

5.1.1. Precision, recall and F-measure

Precision, recall and F-measure formulas are based on PabRrecision is an
evaluation criterion that is very appropriate for an unsuvised approach. Precision
calculates the proportion of relevant pairs extracted ammxtracted pairs. 100%
precision means that all pairs extracted by the system kearg. Using the notations
of Table 2, the precision is given by the Formula 8.

. TP
Precision = TP+ FP [8]

Table 2. Contingency table at the base of evaluation measures

Relevant pairs Irrelevant pairs
Pairs evaluated as relevant by the system TP (True Positive) | FP (False Positive)
Pairs evaluated as irrelevant by the systeriN (False Negative) TN (True Negative)

Another typical measure of the machine learning approacéasll, which com-
putes the proportion of relevant pairs extracted amongaetepairs. 100% recall

3. http://lwww.oagi.org
4. http://lwww.xcbl.org
5. http://lwww.seekda.com
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means that all relevant pairs of elements have been foune. r@d¢all is given by
Formula 9.

TP
Recall = m [9]

It is often important to find a tradeoff between recall andcgien. We can use
a measure that takes these two evaluation criteria intoustday calculating the F-
measure (Van-Risbergen, 1979) :

(52 + 1) x Precision x Recall
(8% x Precision) + Recall

F — measure(3) = [10]

The 8 parameter of Formula 10 regulates the respective influefipeegision and
recall. Itis often set at 1 to give the same weight to thesedwaduation measures.
This measure is widely used in the research field (e.g. INEREC or the evaluation
of schema matching (Det al.,, 2002)).

5.1.2. Comparison with other matching tools

In this part, the quality of BMatch is compared with two maichtools known
to provide an acceptable matching quality: COMA++ and Sinity Flooding (SF).
COMA++ (Aumuelleret al., 2005) uses 17 similarity measures to build a matrix be-
tween every pair of elements to finally aggregate the siitjlaralues and extract
matches. Conversely, SF (Melngt al., 2002) builds a graph between input schemas
and then processes some initial matches with a string nmegeheasure. The matches
are refined thanks to the propagation mechanism. Both nmgt¢bols are described
with more detail in Section 6.

We analysed the set of matches returned by the matchingttootsnpute the pre-
cision, recall, and F-measure. We first focus on our runnegario which describes
two universities. BMatch obtained matches for this sceramé shown in Table 3. Our
application was tuned with the following configuration, aating to the experiments
from (Duchateaet al, 2007): the adopted strategydsg — max, the replacement
threshold i9).2, the similarity threshold i8.15. The number of levels in the context
is limited to 2, K and theminimum_weight are respectively set atand1.5. For
COMA++, all its strategies have been tried and the best nbthiesults are shown in
the following Table 4. Similarity Flooding matches aredidtin Table 5. Both match-
ing tools are responsible for their thresholds. Note thété@se three tables tain the
relevance column indicates that the match is relevant.

In Table 3, the fourth match betwe&8 Dept AustralieandPeopleis irrelevant.
However, the relevant matches are also noted on line 3 andvatdh is currently
not able to determine if one of the matches should be remowvadto Indeed, some
complex matches can be discovered, for instance the @betseswith both Grad

6. http://xmImining.lip6.fr
7. http://trec.nist.gov
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CoursesandUndergrad Coursesn line 2 and 5. Applying a strategy to detect com-
plex matches and remove irrelevant ones is the focus of aggesearch. Similarity
Flooding also discovers an irrelevant match.

Table 3. Matches obtained with BMatch for university scenario

Element from schema 1 Element from schema 2 Relevance
Professor Professor +
Courses Grad Courses +

CS Dept Australia CS Dept U.S. +
CS Dept Australia People
Courses Undergrad Courses +
Staff People +
Academic Staff Faculty +
Technical Staff Staff +
Table 4. Matches with COMA++ for university scenario
Element from schema 1 Element from schema 2 Relevance
Professor Professor +
Technical Staff Staff +
CS Dept Australia CS Dept U.S. +
Courses Grad Courses +
Courses Undergrad Courses +
Table 5. Matches with SF for university scenario

Element from schema 1 Element from schema 2 Relevance

Professor Professor +
Staff Staff

CS Dept Australia CS Dept U.S. +

Courses Grad Courses +

Faculty Academic Staff +

After this detailed example for the university scenario,gite the results in terms
of precision, recall and F-measure for all scenarios. KEdudepicts the precision
obtained by the matching tools for the five scenarios. COM#statool that favours
the precision, and achieves a score higher tha in three scenarios (university,
person and currency). However, we also note that COMA++iabtae lowest score
for the order scenario. BMatch achieves the best precisiamwb scenarios (order and
sms), but the experiments also show that in the other cdseslifference between
BMatch and COMA++ precisions is not very significand% at most). Although
Similarity Flooding scores 400% precision for the person scenario, it obtains low
precision for the others, thus discovering many irrelevaatches.
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Figure 2. Precision obtained by the matching tools in the five scesario

Figure 3 depicts the recall for the five scenarios. We firsenbat the matching
tools do not discover many relevant matches for the ordersamglscenarios (recall
less thant0%). BMatch performs best in four scenarios, but it missesymatevant
matches for the person scenario (recall eqéa®). This poor recall is mainly due
to the numerous tokens in the person schemas and the paracmtéguration: with
a replacement threshold setla? and a similarity threshold set &t15, our approach
missed many relevant matches because terminological mesadia not return values
which reach these thresholds. We have also demonstratBdighéteawet al., 2007)
that BMatch is able to obtaih00% recall for the university scenario when its param-
eters are tuned in an optimal configuration. COMA++ is theyanhtching tool to
obtain a recall abov&0% for the person scenario. However, in three scenarios-ts r
call is at least 5% worse than that of BMatch. Similarity Flooding obtains khwest
recall in four scenarios.

F-measure, the tradeoff between precision and recallyengn Figure 4. Due to
its previous results, Similarity Flooding achieves the dstv--measure for most sce-
narios, except for &% F-measure for person. BMatch obtains the best F-measure fo
four scenarios and it outperforms COMA++ by almd&%. However, both BMatch
and COMA++ did not perform well in one scenario (person for&th and order for
COMA++).
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Figure 4. F-measure obtained by the matching tools in the five scesario

5.2. Time performance aspect

A matching tool that ensures good performance is requirdéarge scale scenar-
ios, or on the Internet where numerous data sources areblailBy focusing on
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performance, we mainly mean the time spent to match a largeébauof schemas.
Since the matching tools which are dedicated to large scalesios are not available,
we compare our BMatch application with a BMatch version withany indexing
structure. In this case, the matching algorithm tries tocmawery pair of nodes for
each schema by traversing the trees in preorder.

Table 6 shows the different features of the sets of schemasseain our exper-
iments. Two large scale scenarios are presented: the fiesinonlves more than a
thousand average sized schemas about business-to-lsustcesimerce taken from
the XCBL® standards. In the second case, we deal with OASt®&emas which are
also business domain related. Note that it is very hard tluatethe obtained quality
when matching large and numerous schemas, because an exjsefirst manually
match them. An example of matching quality with this kind ohema is shown by
the order scenario in the previous section.

Table 6. Characterization of schema sets

XCBL set | OASIS set
Average number of nodes per schema 21 2 065
Largest / smallest schema size 426 /3 6134/26
Maximum depth 7 21

5.2.1. XCBL Scenario

Here we compare the performance of BMatch and BMatch wittimeiindexing
structure (thus limited to the semantic part) on a large average schemas. The
results are illustrated by the graph depicted in figure 5. @fe see that the version
without indexing structure is efficient when there is notrgéanumber of nodes (less
than 1600). This is due to the fact that the B-tree requiresesmaintenance cost to
keep the tree balanced. BMatch enhanced with indexing geswjood performance
with a larger number of nodes, since two thousand schemasatahed in 220 sec-
onds.

5.2.2. OASIS Scenario

In this scenario, we are interested in matching 430 largersels, with an average
of 2000 nodes. The graph depicted in figure 6 shows that tleéorewithout indexing
structure is not suited for large schemas. On the contraWatBh is able to match
a high number of large schemas in 60 seconds. The graph ages shat BMatch
is quite linear. Indeed, it has also been tested for 900 sakeand BMatch needs
around 130 seconds to perform the matching.

8. http://www.xcbl.org
9. http://lwww.oagi.org
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5.2.3. Comparison with other Matching Tools

Now, we compare the time performance of the three matchialg for the five
scenarios. The time includes both the parsing of the inphetreas and the matching
process. Table 7 depicts the matching performance of eatthing tool for each
scenario. All matchers are able to match small schemasdrsity and order) in less
than one second. However, with larger schemas (order, SS@jlA++ and Similarity
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Flooding are less efficient. On the other hand, BMatch sti#iuzes good performance
while providing the best matching quality (see SectionZ).1These matching tools
use several methods to store information: COMA++ extratfisrimation from the
schemas and stores them in a MySQL database. Then, thisiation is loaded into
memory in directed graphs. The matching matrix, which St@imilarities between
pairs of elements, is not efficient when the number of paiveig important. Similar-
ity Flooding stores information in a graph, and then the pgation process runs, and
it requires 1 or 2 seconds to perform according to the schaimas Its time perfor-
mance are quite similar with that of BMatch. On the contresg store all information
in the B-tree, and elements are quickly accessed thanks éx@s.

Table 7.Time performance of COMA++, Similarity Flooding and BMatoh the
different scenarios

Person| University | Order | Currency| Sms
Average Number of Nodes 11 9 432 24 55
COMA++ <l1ls <l1s 43s 5s 19s
SF <l1ls <l1s 2s 1s 2s
BMatch <1s <1s <1s <1s <l1s

5.3. Discussion

In this section, we conducted some experiments to demaeeadicdh the quality
and time performance of BMatch. We first tuned some paraméteshow their in-
fluence on the results and to set some of them. Then our mgtttwhis compared
with COMA++ and Similarity Flooding, and we have shown thad&ch provides an
acceptable matching quality: in four scenarios out of fiidaBch obtains the highest
F-measure. BMatch also performed well in the performanpects even with sce-
narios involving large schemas, there is no impact on BMptatiormance, contrary
to COMA++ and Similarity Flooding. We also proved the effitig of the B-tree
indexing structure. Indeed, it enables matching of 430 m&®ein 50 seconds, while
the BMatch version without indexing structure requires $66onds. Thus, BMatch
is suitable for a large scale scenario.

6. Related work

Many approaches have been devoted to schema matching. M¥itséro are
based on both terminological and structural measures (KMehal, 2002; Mad-
havanet al, 2001; Aumuelleret al, 2005; Drummet al, 2007). However, they
mainly aim at matching a small number of schemas. SAT teclasiqvere used in
(Avesaniet al, 2005) while (Hernandeet al., 2002; Berlinet al, 2002; Doanet
al., 2001) deal with instances. Similarly, in the ontology damaeveral tools (Ehrig
et al, 2004a; Euzenadt al,, 2004b; Doaret al, 2003; Ehriget al, 2004b; Tanget
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al., 2006) have been designed to fulfill the alignment task. $&dtion only focuses on
schema matching tools that we compared BMatch with. Fudétils about the other
approaches are given in surveys (Euzestatl, 2004a; Rahret al, 2001; Yatske-
vich, 2003; Noy, 2004).

6.1. COMA++

As described in (Aumuelleet al, 2005; Doet al,, 2007), COMA++ is a hybrid
matching tool that can incorporate many independent magchigorithms. Differ-
ent strategies, e.g. reuse-oriented matching or fragtmased matching, can be in-
cluded, offering different results. When loading a sche@@MA++ transforms it
into a rooted directed acyclic graph. Specifically, the twbesnas are loaded from
the repository and the user selects the required matchitdgr from thematcher
library. For each algorithm, each element from the source schemirilsuted a
threshold value between 0 (no similarity) and 1 (total samiiy) with each element
of the target schema, resulting ircabe of similarity valuesThe final step involves
combining the similarity values given by each matcher atgor by means of aggre-
gation operators likenax, min, average, etc. Finally, COMA++ displays all match
possibilities and the user checks and validates their acgur

The shortcoming of COMA++ is the time required, both for amgiiles into the
repository and matching schemas. In a large scale confetding several minutes
with those operations can entail performance degradatidrtfze other drawback is
that it does not support direct matching of many schemas. &®#is more com-
plete than BMatch, it uses many algorithms and selects thst appropriate function
to aggregate them. However, BMatch is designed for a largke cenario while
COMA++ focuses on the matching quality and is able to matdi two schemas at
a time. Besides, our approach does not only rely on termiicdd measures, but it
considers the node context too.

6.2. Similarity Flooding

Similarity Flooding is a matching tool described in (Melrékal., 2002) and is
based on structural approaches. Input schemas are cahwatidedirected labeled
graphs and the aim is to find terminological relationshipgs/ieen those graphs. Then
the following structural rule is applied: two nodes fromfeient schemas are consid-
ered similar if their adjacent neighbours are similar. Whinilar nodes are discov-
ered, this similarity is then propagated to adjacent nodésthere are no longer any
changes. As in most of matchers, Similarity Flooding getesranatches for nodes
having a similarity value above a certain threshold.

Our experiment results show that Similarity Flooding doesgive good results
when labels from the same schema are quite similar (e.g tiee several common
tokens) or with small schemas. BMatch uses the same stalictue which states



80 RSTI-ISI-13/2008. Modeles et langages pour les basesrteds

that two nodes from different schemas are similar if mosthairt neighbours are
similar. But BMatch is a combination of terminological aridistural measures while
Similarity Flooding uses only terminological measuresm@itial step, and then the
structural aspect to refine the initial matches.

6.3. Approachesfor matching large schemas

To the best of our knowledge, two works have dealt with lafeemas. The first
one (Rahnet al, 2004) is based on the COMA++ tool. First, the user divides th
schema into fragments and then each fragment from the sgohmsma is mapped
to target schema fragments in order to find interfragmenthest Next, these frag-
ment matches are merged to compute the schema level maldhes.the tool is not
able to directly process large schemas. Another issuestetatthis approach is the
fragmentation criteria of large schemas. The second apprigaPorsche (Saleest
al., 2008), which presents a robust mapping method that createsdiated schema
tree from a large set of input XML schemas (converted to jraed defines mappings
from the contributing schema to the mediated schema. It @mestiree mining with
semantic label clustering which minimizes the target deapace and improves time
performance, thus making the algorithm suitable for laggdesdata sharing.

7. Conclusion

In this paper, we have presented our BMatch approach whials @éth both the
semantic aspect and performance aspect by using an indsixirgjure, the B-tree.
Moreover, our method is generic and flexible. The semanpectsis based on the
combination of two terminological measures and a struttoma, which compares
the contexts of two elements using the cosine measure.

Experiments have shown that BMatch provides the best magajuality in most
scenarios. The experiments have shown that the B-tree iimgiaxructure enables
to improve performance in most cases, especially when thebeu of information
that needs to be stored becomes important. An indexingtateicould be needed
when the schemas are either very large or numerous. Furtheyexperiments also
showed that BMatch is able to match large schemas faste QX@&MmA++ or Similarity
Flooding. Thus, our method is scalable and provide goodpmdnce while ensuring
an acceptable matching quality. We are planning to seekcfaeraas involving more
heterogeneity, thus we need to enhance BMatch by addingfispearsers for each
format file. Another part of our ongoing work is to detect cdexpmappings and
remove irrelevant ones, probably by an automatic postimatocess.
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