
HAL Id: lirmm-00343491
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00343491v1

Submitted on 1 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Quality and Performance of Schema
Matching in Large Scale

Fabien Duchateau, Mathieu Roche, Zohra Bellahsene

To cite this version:
Fabien Duchateau, Mathieu Roche, Zohra Bellahsene. Improving Quality and Performance of Schema
Matching in Large Scale. Revue des Sciences et Technologies de l’Information - Série ISI : Ingénierie
des Systèmes d’Information, 2008, 13 (5), pp.59-82. �10.3166/ISI.13.5.59-82�. �lirmm-00343491�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00343491v1
https://hal.archives-ouvertes.fr

Improving Quality and Performance of
Schema Matching in Large Scale

Fabien Duchateau* — Zohra Bellahsene* — Mathieu Roche*

* LIRMM - Université Montpellier 2
161 rue Ada 34000 Montpellier, France

prenom.nom@lirmm.fr

ABSTRACT.Schema matching is a crucial task to gather information of the same domain. How-
ever, this process is still largely performed manually or semi-automatically, discouraging the
deployment of large-scale mediation systems. Indeed, these large-scale scenarii need a solution
which ensures both an acceptable matching quality and good performance. In this article, we
present the BMatch approach to efficiently match a large number of schemas. The quality aspect
is based on the combination of terminological and contextual methods. The performance as-
pect relies on a B-tree indexing structure to reduce the search space. Finally, experiments with
real sets of schemas show that our approach is scalable and outperforms the most referenced
matching tools both in quality of matches and performance time.

RÉSUMÉ.La découverte de correspondances entre schémas est une étape importante lorsque l’on
intégre des informations d’un même domaine. Cependant, ce processus est encore trop souvent
effectué manuellement ou au moyen d’approches semi-automatiques. Notre approche Bmatch
s’appuie sur une combinaison de mesures terminologiques etd’informations contextuelles pour
découvrir des correspondances entre schémas. Par ailleurs, pour être efficace dans un contexte
large échelle, nous nous appuyons sur une structure d’indexation B-tree pour réduire l’espace
de recherche. Des expérimentations sur des données réellesmontrent que notre approche passe
bien à l’échelle tout en obtenant globalement une meilleurequalité et de meilleures perfor-
mances comparativement aux outils de découverte de correspondances de référence.

KEYWORDS:semantic similarity, schema matching, BMatch, B-tree index structure, node context,
terminological and structural measures.

MOTS-CLÉS :similarité semantique, découverte de correspondances entre schmémas, BMatch,
structure d’indexation B-tree, contexte d’un noeud, mesures terminologiques et structurelles.

RSTI - ISI – 13/2008. Modèles et langages pour les bases de données, pages 59 à 82

60 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

1. Introduction

Interoperability among applications in distributed environments, including today’s
World-Wide Web and the emerging Semantic Web, depends critically on the ability
to map between them. Unfortunately, automated data integration, and more precisely
matching between schema, is still largely done by hand, in a labor-intensive and error-
prone process. As a consequence, semantic integration issues have become a key
bottleneck in the deployment of a wide variety of information management applica-
tions. The high cost of this bottleneck has motivated numerous research activities
on methods for describing, manipulating and (semi-automatically) generating schema
mappings.

The schema matching problem consists in identifying one or more terms in a
schema that match terms in a target schema. The current semi-automatic match-
ers (Madhavanet al., 2001; Aumuelleret al., 2005; Melniket al., 2002; Euzenatet
al., 2004a; Rahmet al., 2001; Yatskevich, 2003) calculate various similarities between
elements and they keep the couples with a similarity above a certain threshold. The
main drawback of such matching tools is the performance: although the matching
quality provided at the end of the process is acceptable, theelapsed time to match im-
plies a static and limited number of schemas. Yet, in many domain areas, a dynamic
environment involving large sets of schema is required. Nowadays matching tools
must combine both an acceptable quality of matches and good time performance.

In this paper, we present our matching tool, BMatch. It supports both the semantic
aspect by ensuring an acceptable matching quality and good performance by using
an indexing structure. Contrary to similar works, our approach is generic; it does not
use any dictionnary or ontology and is both language and domain independent. The
semantic aspect is specifically designed for schemas and consists in using both ter-
minological algorithms and structural rules. Indeed, the terminological approaches
enable to discover elements represented by close characterstrings. On the other hand,
the structural rules are used to define the notion of context of a node. This context
includes some of its neighbours, each of them is associated aweight representing the
importance it has when evaluating the contextual node. Vectors composed of neigh-
bour nodes are compared with the cosine measure to detect anysimilarity. Finally, the
different measures are aggregated for all couples of nodes.Like most of the match-
ers, this semantic aspect lacks to provide good performancein terms of time. Indeed,
comparing each node from one schema to each node from the other schemas is a time-
consuming process. To overcome this lack, the second aspectof our approach aimed
at improving the performance by using an indexing structureto accelerate the schema
matching process. The B-tree structure has been chosen to reach this goal, as it has
been designed to search and find efficiently an index among a large quantity of data.
Indeed, we assume that two similar labels share at least a common token, so instead of
parsing the whole schema, we just search for the tokens indexed in the B-tree. Further-
more, we performed some experiments based on large sets of schema and the results
show that our approach is scalable.

A flexible and scalable approach 61

Our main contributions are:

– we designed a generic and flexible approach, BMatch, to discover matches be-
tween two schemas,

– we introduced the notion of context for a schema node. Our approach is based
on both terminological measures and structural measure using this context,

– an indexing structure provides good performance by clustering label tokens,

– an experiment section allows to judge on the results provided by BMatch on both
aspects, the matching quality and the time performance.

Outline. The rest of the paper is structured as follows: first we brieflydefine the
main concepts in Section 2. In Section 3, the semantic aspectof our approach is
detailed; and Section 4 covers the time performance aspect;in Section 5, we present
the results of our experiments; an overview of related work is given in Section 6.
Finally, we conclude and outline some future work in Section7.

2. Preliminary aspects

In this section, we define the main notions used in this paper.Our approach deals
with semi-structured data. Schema in this context are trees.

Definition 1 (Schema): a schema is a labeled unordered treeS = (VS , ES , rS ,
label) whereVS is a set of nodes;rS is the root node;GS ⊆ VS × VS is a set of
edges; andlabelES → Λ whereΛ is a countable set of labels.

Definition 2 (Semantic similarity measure): let E1 be a set of elements of
schema 1, andE2 be a set of elements of schema 2. A semantic similarity mea-
sure between two elementse1 ∈ E1 ande2 ∈ E2, denoted asSm(e1, e2), is a metric
value based on the likeness of their meaning / semantic content, defined by:

Sm : E1xE2 → [0, 1]

(e1, e2) → Sm(e1, e2) where a zero value means total dissimilarity and 1 value stands
for total similarity. In the rest of the paper, we refer toSm(e1, e2) as the similarity
value.

Definition 3 (Automatic schema matching):given two schema element setsE1

and E2 and a thresholdt, we define automatic schema matching the algorithm to
obtain the set of discovered matchesM={(e1, e2,Sm(e1, e2))}, such that between two
elementse1 ∈ E1 ande2 ∈ E2, Sm(e1, e2) ≥ t.

Threshold t may be adjusted by an expert, depending upon the strategy, domain or
algorithms used by the schema matching tools.

62 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

Example: if Sm(adresse, address) is calculated using the Levenshtein dis-
tance algorithm, the similarity value is 0.857 and if the 3-gram algorithm is used,
then the result is 0.333 (see Section 3.2 for more details). For another example
Sm(dept, department), the Levenshtein distance value is 0 and the 3-gram result
is 0.111. These examples show that the threshold has to be adjusted by an expert
depending upon the properties of strings being compared andthe match algorithms
applied. Our approach, presented in Sections 3 and 4, is based on these definitions.

3. BMatch: semantic aspect

In the context of a large scale scenario, performing the matching with similarity
measures which use external resources or are based on instances might be a costly
process. Besides, an external resource might be inappropriate for matching a given
domain: it can be either too general (e.g. Wordnet) or too specific (e.g. an ontol-
ogy). Thus, our approach is generic and it favours measures which directly rely on
the schemas and do not require too much processing. It combines three semantic
similarity measures: two of them are terminological and theother is based on the
structure. All of these measures are combined with different thresholds to produce
a set of matches. In the rest of this section, we first give somemotivations for the
choice of similarity measures. We describe some important notions of our approach,
the terminological measures and the context. Then, the BMatch’s semantic aspect is
explained in detail. Finally, more precision is given aboutthe parameters.

3.1. Motivations

In this section, we explain the motivations underlying our work, especially why
we have chosen to combine both terminological and structural approaches.

– Terminological measures are not sufficient, for example:

- mouse (computer device) and mouse (animal) lead to a polysemia problem,

- university and faculty are totally dissimilar labels.

– Structural measures have some drawbacks:

- propagating the benefit of irrelevant discovered matches to the neighbour
nodes increases the discovery of more irrelevant matches,

- not efficient with small schemas.

Example of schema matching:consider the two following schemas used in (Doanet
al., 2004). They represent the organization in universities from different countries
and have been widely used in the literature. In the rest of thepaper, we will refer
to these schemas as the university scenario. With these schemas, the ideal set of

A flexible and scalable approach 63

matches given by an expert is {(CS Dept Australia, CS Dept U.S.), (courses, under-
grad courses), (courses, grad courses), (staff, people), (academic staff, faculty), (tech-
nical staff, staff), (lecturer, assistant professor), (senior lecturer, associate professor),
(professor, professor)}.

���������	
�����

��	�
�
 �����

����������������������������

����	���
�������

����	���
�����

��

(a) Organization of an Australian university (b) Organization of a US university

Figure 1. The two university scenario schemas

Let’s imagine that we try to determine a similarity betweenCoursesandGrad-
Courses. Using terminological measures, namely 3-grams and Levenshtein distance,
we discover a high similarity between these labels.StringMatchingdenotes the aver-
age between 3-grams and Levenshtein distance values and it represents the similarity
obtained by terminological measures. All of these measuresare defined in Section
3.2.

– 3grams(Courses, GradCourses) = 0.2

– Lev(Courses, GradCourses) = 0.42

⇒ StringMatching(Courses, GradCourses) = 0.31

Now if we consider the nodesAcademic StaffandFaculty, the terminological mea-
sures are not useful for discovering a match between these labels, since the labels are
totally dissimilar, implying a StringMatching value of 0.002. However, the structural
measure enables us to match the labels with a similarity value of 0.37. They are based
on the notion ofcontext, which represents, for a given node, its semantically most
important neighbours. And the contexts of two nodes are compared using theco-
sine measure. This structural measure thus reveals semantic relationships. A detailed
explanation of the context and the cosine measure is given inSection 3.4.

– StringMatching(Academic Staff, Faculty) = 0.002

– Context(Academic Staff) = Academic Staff, Lecturer, Senior Lecturer, Professor

– Context(Faculty) = Faculty, Assistant Professor, Associate Professor, Professor

⇒ CosineMeasure(Context(Academic Staff), Context(Faculty)) = 0.37

64 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

In our approach, we thus combine both terminological and structural measures to
avoid the previously described problems.

3.2. Terminological measures

To calculate the semantic similarity between two labels, there are many measures
which are often cited in the literature (Euzenatet al., 2004a; Cohenet al., 2003; Maed-
cheet al., 2002). This section only presents the two terminological measures used in
the BMatch semantic aspect. They are described in more detail in (Duchateauet
al., 2007). Both measures compute a value in [0, 1], with the0 value denoting dissim-
ilarity and1 denoting total similarity.

3.2.1. n-grams

An n-gram (Shannon, 1948) is a similarity measure dealing with subsequences of
n items from a given string.n-grams are used in various areas of statistical natural
language processing to calculate the number ofn consecutive characters in different
strings. In general,n value ranges from 2 to 5 and is often set at 3 (Lin, 1998; Kefi,
2006).

3.2.2. Levenshtein distance

The Levenshtein distance (Levenshtein, 1966) between two strings is given by the
minimum number of operations needed to transform one sourcestring into the target
string, where an operation is an insertion, deletion, or substitution of a single character.

3.3. Node context

A specific feature of our approach is to consider the neighbour nodes. We have
called this notion the context, which represents, given a current nodenc, the nodes
denotedni in its neighbourhood. In fact, all nodes in the schema may be considered
in the neighbourhood ofnc. However, it is quite obvious that the closest nodesni are
semantically closer to the nodenc. Given this assumption, we calculate the weight
of each nodeni according to the nodenc, which evaluates how semantically close
the context nodeni is to the nodenc. First we calculate∆ d, which represents the
difference between thenc level and theni level:

∆d = |lev(nc) − lev(ni)| [1]

wherelev(n) is the depth of noden from the root. Then we can calculate the weight
denotedω(nc, ni) between the nodesnc andni:

ω(nc, ni) =

8

<

:

ω1(nc, ni), ifAnc(nc, ni) or Desc(nc, ni)

ω2(nc, ni), otherwise

[2]

A flexible and scalable approach 65

whereAnc(n, m) (resp.Desc(n, m)) is a boolean function indicating whether node
n is an ancestor (resp. descendant) of nodem. This weight formula is divided into two
cases, according to the relationship between the two related nodes. Ifn is an ancestor
or a descendant ofm, the Formula 3 is applied. Otherwise we apply Formula 4. The
idea behind this weight formula is based on the fact that the closer two nodes are in
the tree, the more similar their meaning is.

ω1(nc, ni) = 1 +
K

∆d + |lev(nc) − lev(na)| + |lev(ni) − lev(na)|
[3]

ω2(nc, ni) = 1 +
K

2 × (|lev(nc) − lev(na)| + |lev(ni) − lev(na)|)
[4]

wherena represents the lowest common ancestor tonc andni, andK is a parameter
to allow some flexibility with the context. This is describedin more detail in Section
3.5. The value of this weight is in the interval]1,2] forK = 1. Note that this formula,
for a given noden, gives the same weight to all descendants and ancestors of this
noden which are at the same level.

Example: let us consider the nodeAcademic Stafffrom schema 1(a). We look
for the importance ofStaff for the nodeAcademic Staff. As Staff is an ancestor of
Academic Staff, we apply Formula3. ∆d, the difference between their levels in the
tree hierarchy, is equal to 1. Their lowest common ancestor isStaff, and the difference
in level between this common ancestor with itself is 0, whileit is equal to 1 with the
nodeAcademic Staff, thus giving us the following result:

ω(Academic Staff, Staff) = 1 +
1

1 + 1 + 0
= 1.5 [5]

Now we compute the weight of the nodeCourseswith regards toAcademic Staff.
They have no ancestor or descendant relationship, so Formula 4 is applied. Their
lowest common ancestor is the root node, namelyCS Dept Australia. Academic Staff
is 2 levels away from the common ancestor, andCoursesis 1 level away from it. The
weight ofCoursesfor the nodeAcademic Staffgives:

ω(Academic Staff, Courses) = 1 +
1

2 × (2 + 1)
= 1.17 [6]

We can then generalize to obtain the following set of pairs (neighbour, associated
weight), also called context vector, which represents the context of the nodeAcademic
Staff. {(CS Dept Australia, 1.25), (Courses, 1.17), (Staff, 1.5),(Technical Staff, 1.25),
(Lecturer, 1.5), (Senior Lecturer, 1.5), (Professor, 1.5)} Note that some parameters
(described later in this section) have an impact on the context.

66 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

3.4. Semantic match algorithm

The semantic aspect of BMatch is based on two steps: first we replace terms in the
context vectors when they have close character strings. This step uses the Levenshtein
distance and 3-gram algorithms (see Section 3.2). Secondly, we calculate the cosine
measure between two vectors to determine if their context isclose or not.

3.4.1. Step one: terminological measures to replace terms

The following describes in detail the first part of the semantic aspect. The two
schemas are traversed in preorder traversal and all nodes are compared two by two
with the Levenshtein distance and the 3-grams. Both measures are processed and,
according to the adopted strategy1, the highest one or the average is kept. The
obtained value is denotedSM for String Measure. If SM is above a certain threshold,
which is defined by an expert, then some replacements may occur. The threshold will
be discussed in Section 5. We decided to replace the term withthe greater number
of characters by the term with the smaller number of characters. Indeed, we consider
that the smaller sized term is more general than the larger sized one. This assumption
can be checked easily since some terms may be written in singular or plural. After
this first step, we finally obtain the initial schemas that have possibly been modified
with character string replacements.

We have also noted polysemia or synonymy problems. The typical polysemous
example ismouse, which can represent both an animal and a computer device. In
those cases, the string replacement obviously occurs but has no effect since the terms
are similar. On the contrary, two synonyms are mainly detected as dissimilar by string
matching algorithms. However, the second part of our algorithm, by using the context,
enables us to avoid these two problems.

3.4.2. Step two: cosine measure applied to context vectors

In the second part of our algorithm, the schemas - in which some string replace-
ments may have occurred by means of step 1 - are traversed again. And the context
vector of a current element is extracted in each schema. The neighbour elements
composing this vector may be ancestors, descendants, siblings or further nodes of the
current element, but each of them has a weight, illustratingthe importance of this
neighbour with regards to the current node. The two context vectors are compared
using the cosine measure, in which we include the node weight. Indeed, when
counting the number of occurrences of a term, we multiply this number by its weight.
This processing enables us to calculateCM , the cosine measure between two context
vectors, and thus also the similarity between the two nodes related to these contexts.

1. The maximum and average strategies are reported to be a goodtradeoff in the literature.

A flexible and scalable approach 67

The cosine measure (Wilkinsonet al., 1991) is widely used in Information Re-
trieval. The cosine measure between the two context vectors, denotedCM , is given
by the following formula:

CM(v1, v2) =
v1 · v2

p

(v1 · v1)(v2 · v2)
[7]

CM value is in the interval [0,1]. A result close to 1 indicates that the vectors tend to
be in the same direction, and a value close to 0 denotes total dissimilarity between the
two vectors.

Example: during step 2, the following replacement occurred: Faculty↔

Academic Staff. Now consider the two current nodesStaff and People respec-
tively from schemas 1(a) and 1(b). Their respective and limited2 context vectors,
composed of pairs of a neighbour node and its associated weight, are {(CS Dept
Australia, 1.5), (Faculty, 1.5), (Technical Staff, 1.5) }and {(CS Dept U.S., 1.5),
(Faculty, 1.5), (Staff, 1.5) }. As the only common term between the two vectors is
Facultywith a weight of1.5, the cosine measure between those context vectors is 0.44.

The context enables to discover or disambiguate a match between polysemous
or synonymous pairs. It also enables to discover matches which share other kind of
relationships. In the previous example,Staff is a “subclassOf” ofPeoplewhile in
Section 3.1,Academic Staffis a synonym ofFaculty. Note that our approach is not
able to discover the kind of relationship between the pair elements, it simply indicates
whether it should be a match with regards to the computed similarity.

Finally, we obtain two similarity measures,SMandCM, with the first one based on
terminological algorithms while the second takes the context into account. Here again,
a strategy must be adopted to decide how to aggregate those similarity measures. In
our approach, the maximum and average were chosen because they generally give bet-
ter results in experiments than other formulas where one of the measures is favoured.
At the end of the process, BMatch deals with a set of matches consisting of all element
pairs whose similarity value is above a threshold given by anexpert.

3.5. Tuning the parameters

Like most matchers, our approach includes some parameters.Although this may
be seen as a drawback, since a domain expert is often requiredto tune them, this is off-
set by the fact that our application is generic and works withno dictionary regardless
of the domain or language.

2. To clarify the example, the context has been voluntarily limited in terms of number of neigh-
bours thanks to the parameters.

68 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

– NB_LEVELS: this parameter is used to know the number of levels, both up and
down in the hierarchy, to search in order to find the context nodes.

– MIN _WEIGHT: combined withNB_LEVELS, it represents the minimum weight
to be accepted as a context node. This is quite useful to avoidhaving many cousin
nodes (that do not have a significant importance) included inthe context.

– REPLACE_THRESHOLD: this threshold is the minimum value to be reached to
make any replacement between two terms.

– SIM_THRESHOLD: this threshold is the minimal value to be reached to accept a
similarity between two schema nodes based on terminological measures.

– K: this coefficient used in formula 2 allows more flexibility. Indeed, it represents
the importance we give to the context when measuring similarities.

Given that the number of parameters is important, such an application needs to
be tuned correctly to give acceptable results. In (Duchateau et al., 2007), several
experiments show the flexibility of BMatch by testing different configurations. This
enabled us to set some of the parameters at default values. Besides, we note that some
tools like eTuner (Leeet al., 2007) aim at automatically tuning matching tools.

Semantic aspect is hampered by the same drawback as the othermatchers,i.e. low
time performance. This is due to the large number of possibilities, i.e. each element
from one schema is tested with each element of another schema. The next section
presents an indexing structure to accelerate the schema matching process by reducing
the search space.

4. BMatch: performance aspect

The first part of this section introduces the B-tree, an indexing structure. Then we
explain how this structure is integrated with the semantic part to improve the perfor-
mance.

4.1. An indexing structure: the B-tree

In our approach, we use the B-tree as the main structure to locate matches and
create matches between schemas. The advantage of searchingfor matches using
the B-tree approach is that B-trees have indexes that significantly accelerate this
process. For example, if you consider the schemas 1(a) and 1(b), they have 8 and
9 elements respectively, implying 72 matching possibilities with an algorithm that
tries all combinations. And those schemas are small examples, but in some domains,
schemas may contain up to 6 000 elements. By indexing in a B-tree, we are able to
reduce this number of matching possibilities, thus providing better time performance.

A flexible and scalable approach 69

As described in (Comer, 1979), B-trees have many features. AB-tree is composed
of nodes, with each of them having a list of indexes. A B-tree of orderM means that
each node can have up toM children nodes and contain a maximum ofM-1 indexes.
Another feature is that the B-tree is balanced, meaning thatall the leaves are at the
same level - thus enabling fast insertion and fast retrievalsince a search algorithm in
a B-tree ofn nodes visits only1+logMn nodes to retrieve an index. This balancing
involves some extra processing when adding new indexes intothe B-tree, however its
impact is limited when the B-tree order is high.

The B-tree is a structure widely used in databases due to its efficient capabilities
of retrieving information. As schema matchers need to quickly access and retrieve
a lot of data when matching, an indexing structure such as B-tree could improve the
performances. The B-tree has been preferred to the B+tree (which is commonly used
in database systems) since we do not need the costly delete operation. Thus, with
this condition, the B-tree seems more efficient than the B+tree because it stores less
indexes and it is able to find an index quicker.

4.2. Principle of our matching algorithm

Contrary to most other matching tools, BMatch does not use a matrix to compute
the similarity of each pair of elements. Instead, a B-tree, whose indexes represent
tokens, is built and enriched as we parse new schemas, and thediscovered matches
are also stored in this structure. The tokens reference all labels that contain it. For
example, after parsing schemas 1(a) and 1(b), thecoursestoken would hold three
labels:coursesfrom schema 1(a),grad coursesandundergrad coursesfrom schema
1(b). Note that the labelsgrad coursesandundergrad coursesare also stored under
thegrad and theundergradtokens respectively.

For each input schema, the same algorithm is applied: the schema is parsed el-
ement by element following a preorder traversal. This enables us to compute the
context vector of each element. The label is split into tokens. We then fetch each of
those tokens in the B-tree, resulting in two possibilities:

– no token is found, so we just add it in the B-tree with a reference to the label,

– or the token already exists in the B-tree, and then we try to find semantic sim-
ilarities between the current label and those referenced bythe existing token. We
assume that in most cases, similar labels have a common token(and, if not, they may
be discovered with the context similarity).

Let us illustrate this case. Whencoursesis parsed in schema 1(a), the label is first
tokenized, resulting in the following set of tokens:courses. We search the B-tree for
this single token, but it does not exist. Thus, we create a token structure whose index
is coursesand which stores the current labelcoursesand it is added to the B-tree.
Later on, we parsegrad coursesin schema 1(b). After the tokenization process,

70 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

we obtain this set of tokens:grad, courses. We then search the B-tree for the first
token of the set, butgrad does not exist. A token structure with thisgrad token as
index is inserted in the B-tree, and it stores thegrad courseslabel. Then the second
token,courses, is searched in the B-tree. As it already exists, we browse all the labels
it contains (here only thecourseslabel is found) to calculate the String Measure
(denoted SM) between them andgrad courses. BMatch can replace one of the labels
by another if they are considered similar (depending on the parameters). Whatever
happens,grad coursesis added in thecoursesstructure. The next parsed element
is undergrad courses, which is composed of two tokens,undergradand courses.
The first one results in an unsuccessful search, implying that an undergradtoken
structure can be created. The second token is already in the B-tree, and it contains
the two previously added labels:coursesandgrad courses. The String Measures are
computed betweenundergrad coursesand the two labels, involving replacements if
SM reaches a certain threshold.undergrad coursesis added in the label list of the
coursestoken structure. In this way, the index enables us to quicklyfind the common
tokens between occurrences, and to limit the String Measurecomputation with only a
few labels.

At this step, some string replacements might have occurred.Then the parser recur-
sively performs the same action for the descendant nodes, sothe children nodes can
then be added to the context. Once all descendants have been processed, similarities
might be discovered by comparing the label with token references using the cosine and
the terminological measures. A parameter can be set to extend the search to the whole
B-tree if no matches have been discovered. Let us extend our example. After process-
ing undergrad courses, we should go on to its children elements. As it is a leaf, we
then search the B-tree again for all tokens which compose thelabelundergrad courses.
Under theundergradtoken, we find only one label, so nothing happens. Under the
coursestoken, only one of the three existing labels, namelycourses, is interesting
(one isundergrad coursesand the other,grad courses, is in the same schema). The
String Measure is thus applied betweencoursesandundergrad courses. The Cosine
Measure is also performed between their respective contexts, and aggregation of these
two measures results in the semantic measure between those labels. If this semantic
measure reaches the given threshold, then a match may be discovered.

5. Experiments

As our matching tool deals with both quality and performanceaspects, this section
is organized in two parts. The first one shows that BMatch provides an acceptable
quality of matching regarding the existing matching tools.The second part deals
with the performance. For this purpose, large schemas are matched to evaluate the
benefit of the B-tree. These experiments were performed on a 2Ghz Pentium 4 laptop
running Windows XP, with 2 Gb RAM. Java Virtual Machine 1.5 isthe current version
required to launch our prototype. To evaluate our matching tool, we have chosen five

A flexible and scalable approach 71

real-world scenarios, each composed of two schemas. These are widely used in the
literature. The first one describes aperson, the second is related touniversity courses
from Thalia (Hammeret al., 2005), the third one onbusiness orderextracted from
OAGIS3 and XCBL4. Finally, currencyand smsare popular web services5. Their
main features are given in Table 1.

Table 1. Features of the different scenarios
Person University Order Currency SMS

Number of nodes (S1/S2) 11/10 8/9 20/844 12/35 46/64
Avg number of nodes 11 9 432 24 55
Max depth (S1/S2) 4/4 4/4 3/3 3/3 4/4
Number of mappings 5 9 10 6 20

5.1. Matching quality

We present three metrics to evaluate the quality of our matching tool, namely pre-
cision, recall and F-measure, that we use to compare BMatch results with those of
COMA++ and Similarity Flooding (SF). To the best of our knowledge, these tools are
the only ones publicly available.

5.1.1. Precision, recall and F-measure

Precision, recall and F-measure formulas are based on Table2. Precision is an
evaluation criterion that is very appropriate for an unsupervised approach. Precision
calculates the proportion of relevant pairs extracted among extracted pairs. 100%
precision means that all pairs extracted by the system are relevant. Using the notations
of Table 2, the precision is given by the Formula 8.

Precision =
TP

TP + FP
[8]

Table 2. Contingency table at the base of evaluation measures
Relevant pairs Irrelevant pairs

Pairs evaluated as relevant by the system TP (True Positive) FP (False Positive)
Pairs evaluated as irrelevant by the systemFN (False Negative) TN (True Negative)

Another typical measure of the machine learning approach isrecall, which com-
putes the proportion of relevant pairs extracted among relevant pairs. 100% recall

3. http://www.oagi.org
4. http://www.xcbl.org
5. http://www.seekda.com

72 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

means that all relevant pairs of elements have been found. The recall is given by
Formula 9.

Recall =
TP

TP + FN
[9]

It is often important to find a tradeoff between recall and precision. We can use
a measure that takes these two evaluation criteria into account by calculating the F-
measure (Van-Risbergen, 1979) :

F − measure(β) =
(β2 + 1) × Precision × Recall

(β2 × Precision) + Recall
[10]

Theβ parameter of Formula 10 regulates the respective influence of precision and
recall. It is often set at 1 to give the same weight to these twoevaluation measures.
This measure is widely used in the research field (e.g. INEX6, TREC7 or the evaluation
of schema matching (Doet al., 2002)).

5.1.2. Comparison with other matching tools

In this part, the quality of BMatch is compared with two matching tools known
to provide an acceptable matching quality: COMA++ and Similarity Flooding (SF).
COMA++ (Aumuelleret al., 2005) uses 17 similarity measures to build a matrix be-
tween every pair of elements to finally aggregate the similarity values and extract
matches. Conversely, SF (Melniket al., 2002) builds a graph between input schemas
and then processes some initial matches with a string matching measure. The matches
are refined thanks to the propagation mechanism. Both matching tools are described
with more detail in Section 6.

We analysed the set of matches returned by the matching toolsto compute the pre-
cision, recall, and F-measure. We first focus on our running scenario which describes
two universities. BMatch obtained matches for this scenario are shown in Table 3. Our
application was tuned with the following configuration, according to the experiments
from (Duchateauet al., 2007): the adopted strategy isavg − max, the replacement
threshold is0.2, the similarity threshold is0.15. The number of levels in the context
is limited to2, K and theminimum_weight are respectively set at1 and1.5. For
COMA++, all its strategies have been tried and the best obtained results are shown in
the following Table 4. Similarity Flooding matches are listed in Table 5. Both match-
ing tools are responsible for their thresholds. Note that inthese three tables, a+ in the
relevance column indicates that the match is relevant.

In Table 3, the fourth match betweenCS Dept AustraliaandPeopleis irrelevant.
However, the relevant matches are also noted on line 3 and 6. BMatch is currently
not able to determine if one of the matches should be removed or not. Indeed, some
complex matches can be discovered, for instance the labelCourseswith both Grad

6. http://xmlmining.lip6.fr
7. http://trec.nist.gov

A flexible and scalable approach 73

CoursesandUndergrad Courseson line 2 and 5. Applying a strategy to detect com-
plex matches and remove irrelevant ones is the focus of ongoing research. Similarity
Flooding also discovers an irrelevant match.

Table 3. Matches obtained with BMatch for university scenario
Element from schema 1 Element from schema 2 Relevance

Professor Professor +
Courses Grad Courses +

CS Dept Australia CS Dept U.S. +
CS Dept Australia People

Courses Undergrad Courses +
Staff People +

Academic Staff Faculty +
Technical Staff Staff +

Table 4. Matches with COMA++ for university scenario
Element from schema 1 Element from schema 2 Relevance

Professor Professor +
Technical Staff Staff +

CS Dept Australia CS Dept U.S. +
Courses Grad Courses +
Courses Undergrad Courses +

Table 5. Matches with SF for university scenario
Element from schema 1 Element from schema 2 Relevance

Professor Professor +
Staff Staff

CS Dept Australia CS Dept U.S. +
Courses Grad Courses +
Faculty Academic Staff +

After this detailed example for the university scenario, wegive the results in terms
of precision, recall and F-measure for all scenarios. Figure 2 depicts the precision
obtained by the matching tools for the five scenarios. COMA++is a tool that favours
the precision, and achieves a score higher than70% in three scenarios (university,
person and currency). However, we also note that COMA++ obtains the lowest score
for the order scenario. BMatch achieves the best precision for two scenarios (order and
sms), but the experiments also show that in the other cases, the difference between
BMatch and COMA++ precisions is not very significant (10% at most). Although
Similarity Flooding scores a100% precision for the person scenario, it obtains low
precision for the others, thus discovering many irrelevantmatches.

74 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

Figure 2. Precision obtained by the matching tools in the five scenarios

Figure 3 depicts the recall for the five scenarios. We first note that the matching
tools do not discover many relevant matches for the order andsms scenarios (recall
less than40%). BMatch performs best in four scenarios, but it misses many relevant
matches for the person scenario (recall equals32%). This poor recall is mainly due
to the numerous tokens in the person schemas and the parameters configuration: with
a replacement threshold set at0.2 and a similarity threshold set at0.15, our approach
missed many relevant matches because terminological measures did not return values
which reach these thresholds. We have also demonstrated in (Duchateauet al., 2007)
that BMatch is able to obtain100% recall for the university scenario when its param-
eters are tuned in an optimal configuration. COMA++ is the only matching tool to
obtain a recall above80% for the person scenario. However, in three scenarios, its re-
call is at least15% worse than that of BMatch. Similarity Flooding obtains thelowest
recall in four scenarios.

F-measure, the tradeoff between precision and recall, is given in Figure 4. Due to
its previous results, Similarity Flooding achieves the lowest F-measure for most sce-
narios, except for a73% F-measure for person. BMatch obtains the best F-measure for
four scenarios and it outperforms COMA++ by almost10%. However, both BMatch
and COMA++ did not perform well in one scenario (person for BMatch and order for
COMA++).

A flexible and scalable approach 75

Figure 3. Recall obtained by the matching tools in the five scenarios

Figure 4. F-measure obtained by the matching tools in the five scenarios

5.2. Time performance aspect

A matching tool that ensures good performance is required inlarge scale scenar-
ios, or on the Internet where numerous data sources are available. By focusing on

76 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

performance, we mainly mean the time spent to match a large number of schemas.
Since the matching tools which are dedicated to large scale scenarios are not available,
we compare our BMatch application with a BMatch version without any indexing
structure. In this case, the matching algorithm tries to match every pair of nodes for
each schema by traversing the trees in preorder.

Table 6 shows the different features of the sets of schemas weused in our exper-
iments. Two large scale scenarios are presented: the first one involves more than a
thousand average sized schemas about business-to-business e-commerce taken from
the XCBL8 standards. In the second case, we deal with OASIS9 schemas which are
also business domain related. Note that it is very hard to evaluate the obtained quality
when matching large and numerous schemas, because an expertmust first manually
match them. An example of matching quality with this kind of schema is shown by
the order scenario in the previous section.

Table 6. Characterization of schema sets
XCBL set OASIS set

Average number of nodes per schema 21 2 065
Largest / smallest schema size 426 / 3 6 134 / 26
Maximum depth 7 21

5.2.1. XCBL Scenario

Here we compare the performance of BMatch and BMatch withoutthe indexing
structure (thus limited to the semantic part) on a large set of average schemas. The
results are illustrated by the graph depicted in figure 5. We can see that the version
without indexing structure is efficient when there is not a large number of nodes (less
than 1600). This is due to the fact that the B-tree requires some maintenance cost to
keep the tree balanced. BMatch enhanced with indexing provides good performance
with a larger number of nodes, since two thousand schemas arematched in 220 sec-
onds.

5.2.2. OASIS Scenario

In this scenario, we are interested in matching 430 large schemas, with an average
of 2000 nodes. The graph depicted in figure 6 shows that the version without indexing
structure is not suited for large schemas. On the contrary, BMatch is able to match
a high number of large schemas in 60 seconds. The graph also shows that BMatch
is quite linear. Indeed, it has also been tested for 900 schemas, and BMatch needs
around 130 seconds to perform the matching.

8. http://www.xcbl.org
9. http://www.oagi.org

A flexible and scalable approach 77

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 1000 1200 1400 1600 1800 2000

tim
e

in
 s

ec
on

ds

number of nodes

BMatch
Without index

Figure 5. Matching time with XCBL schemas depending on the number of nodes

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 150 200 250 300 350 400 450

tim
e

in
 s

ec
on

ds

number of schemas

BMatch
Without index

Figure 6. Matching time with OASIS schemas depending on the number of schemas

5.2.3. Comparison with other Matching Tools

Now, we compare the time performance of the three matching tools for the five
scenarios. The time includes both the parsing of the input schemas and the matching
process. Table 7 depicts the matching performance of each matching tool for each
scenario. All matchers are able to match small schemas (university and order) in less
than one second. However, with larger schemas (order, sms),COMA++ and Similarity

78 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

Flooding are less efficient. On the other hand, BMatch still ensures good performance
while providing the best matching quality (see Section 5.1.2). These matching tools
use several methods to store information: COMA++ extracts information from the
schemas and stores them in a MySQL database. Then, this information is loaded into
memory in directed graphs. The matching matrix, which stores similarities between
pairs of elements, is not efficient when the number of pairs isvery important. Similar-
ity Flooding stores information in a graph, and then the propagation process runs, and
it requires 1 or 2 seconds to perform according to the schemassize. Its time perfor-
mance are quite similar with that of BMatch. On the contrary,we store all information
in the B-tree, and elements are quickly accessed thanks to indexes.

Table 7. Time performance of COMA++, Similarity Flooding and BMatchon the
different scenarios

Person University Order Currency Sms
Average Number of Nodes 11 9 432 24 55
COMA++ ≤ 1 s ≤ 1 s 43 s 5 s 19 s
SF ≤ 1 s ≤ 1 s 2 s 1 s 2 s
BMatch ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s ≤ 1 s

5.3. Discussion

In this section, we conducted some experiments to demonstrate both the quality
and time performance of BMatch. We first tuned some parameters to show their in-
fluence on the results and to set some of them. Then our matching tool is compared
with COMA++ and Similarity Flooding, and we have shown that BMatch provides an
acceptable matching quality: in four scenarios out of five, BMatch obtains the highest
F-measure. BMatch also performed well in the performance aspect: even with sce-
narios involving large schemas, there is no impact on BMatchperformance, contrary
to COMA++ and Similarity Flooding. We also proved the efficiency of the B-tree
indexing structure. Indeed, it enables matching of 430 schemas in 50 seconds, while
the BMatch version without indexing structure requires 160seconds. Thus, BMatch
is suitable for a large scale scenario.

6. Related work

Many approaches have been devoted to schema matching. Most of them are
based on both terminological and structural measures (Melnik et al., 2002; Mad-
havanet al., 2001; Aumuelleret al., 2005; Drummet al., 2007). However, they
mainly aim at matching a small number of schemas. SAT techniques were used in
(Avesaniet al., 2005) while (Hernandezet al., 2002; Berlinet al., 2002; Doanet
al., 2001) deal with instances. Similarly, in the ontology domain, several tools (Ehrig
et al., 2004a; Euzenatet al., 2004b; Doanet al., 2003; Ehriget al., 2004b; Tanget

A flexible and scalable approach 79

al., 2006) have been designed to fulfill the alignment task. Thissection only focuses on
schema matching tools that we compared BMatch with. Furtherdetails about the other
approaches are given in surveys (Euzenatet al., 2004a; Rahmet al., 2001; Yatske-
vich, 2003; Noy, 2004).

6.1. COMA++

As described in (Aumuelleret al., 2005; Doet al., 2007), COMA++ is a hybrid
matching tool that can incorporate many independent matching algorithms. Differ-
ent strategies, e.g. reuse-oriented matching or fragment-based matching, can be in-
cluded, offering different results. When loading a schema,COMA++ transforms it
into a rooted directed acyclic graph. Specifically, the two schemas are loaded from
the repository and the user selects the required match algorithms from thematcher
library. For each algorithm, each element from the source schema is attributed a
threshold value between 0 (no similarity) and 1 (total similarity) with each element
of the target schema, resulting in acube of similarity values. The final step involves
combining the similarity values given by each matcher algorithm by means of aggre-
gation operators likemax, min, average, etc. Finally, COMA++ displays all match
possibilities and the user checks and validates their accuracy.

The shortcoming of COMA++ is the time required, both for adding files into the
repository and matching schemas. In a large scale context, spending several minutes
with those operations can entail performance degradation and the other drawback is
that it does not support direct matching of many schemas. COMA++ is more com-
plete than BMatch, it uses many algorithms and selects the most appropriate function
to aggregate them. However, BMatch is designed for a large scale scenario while
COMA++ focuses on the matching quality and is able to match only two schemas at
a time. Besides, our approach does not only rely on terminological measures, but it
considers the node context too.

6.2. Similarity Flooding

Similarity Flooding is a matching tool described in (Melniket al., 2002) and is
based on structural approaches. Input schemas are converted into directed labeled
graphs and the aim is to find terminological relationships between those graphs. Then
the following structural rule is applied: two nodes from different schemas are consid-
ered similar if their adjacent neighbours are similar. Whensimilar nodes are discov-
ered, this similarity is then propagated to adjacent nodes until there are no longer any
changes. As in most of matchers, Similarity Flooding generates matches for nodes
having a similarity value above a certain threshold.

Our experiment results show that Similarity Flooding does not give good results
when labels from the same schema are quite similar (e.g they share several common
tokens) or with small schemas. BMatch uses the same structural rule which states

80 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

that two nodes from different schemas are similar if most of their neighbours are
similar. But BMatch is a combination of terminological and structural measures while
Similarity Flooding uses only terminological measures as an initial step, and then the
structural aspect to refine the initial matches.

6.3. Approaches for matching large schemas

To the best of our knowledge, two works have dealt with large schemas. The first
one (Rahmet al., 2004) is based on the COMA++ tool. First, the user divides the
schema into fragments and then each fragment from the sourceschema is mapped
to target schema fragments in order to find interfragment matches. Next, these frag-
ment matches are merged to compute the schema level matches.Thus, the tool is not
able to directly process large schemas. Another issue related to this approach is the
fragmentation criteria of large schemas. The second approach is Porsche (Saleemet
al., 2008), which presents a robust mapping method that createsa mediated schema
tree from a large set of input XML schemas (converted to trees) and defines mappings
from the contributing schema to the mediated schema. It combines tree mining with
semantic label clustering which minimizes the target search space and improves time
performance, thus making the algorithm suitable for large scale data sharing.

7. Conclusion

In this paper, we have presented our BMatch approach which deals with both the
semantic aspect and performance aspect by using an indexingstructure, the B-tree.
Moreover, our method is generic and flexible. The semantic aspect is based on the
combination of two terminological measures and a structural one, which compares
the contexts of two elements using the cosine measure.

Experiments have shown that BMatch provides the best matching quality in most
scenarios. The experiments have shown that the B-tree indexing structure enables
to improve performance in most cases, especially when the number of information
that needs to be stored becomes important. An indexing structure could be needed
when the schemas are either very large or numerous. Furthermore, experiments also
showed that BMatch is able to match large schemas faster thanCOMA++ or Similarity
Flooding. Thus, our method is scalable and provide good performance while ensuring
an acceptable matching quality. We are planning to seek for schemas involving more
heterogeneity, thus we need to enhance BMatch by adding specific parsers for each
format file. Another part of our ongoing work is to detect complex mappings and
remove irrelevant ones, probably by an automatic post-match process.

A flexible and scalable approach 81

8. References

Aumueller D., Do H. H., Massmann S., Rahm E., “ Schema and ontology matching with
COMA++”, ACM SIGMOD Conference, DEMO paper, p. 906-908, 2005.

Avesani P., Giunchiglia F., Yatskevich M., “ A Large Scale Taxonomy Mapping Evaluation”,
International Semantic Web Conference, p. 67-81, 2005.

Berlin J., Motro A., “ Database Schema Matching Using Machine Learning with Feature Selec-
tion”, CAiSE, 2002.

Cohen W., Ravikumar P., Fienberg S., “ A comparison of stringdistance metrics for name-
matching tasks”,Proceedings of the IJCAI-2003, 2003.

Comer D., “ The Ubiquitous Btree”,Computing Surveys, 1979.

Do H. H., Melnik S., Rahm E., “ Comparison of Schema Matching Evaluations”,Proceedings
of the 2nd Int. Workshop on Web Databases, 2002.

Do H. H., Rahm E., “ Matching large schemas: Approaches and evaluation”, Information Sys-
tems, vol. 32, n° 6, p. 857-885, 2007.

Doan A., Domingos P., Halevy A. Y., “ Reconciling Schemas of Disparate Data Sources - A
Machine Learning Approach”,IACM SIGMOD, 2001.

Doan A., Madhavan J., Dhamankar R., Domingos P., Halevy A. Y., “ Learning to match ontolo-
gies on the Semantic Web”,VLDB J., vol. 12, n° 4, p. 303-319, 2003.

Doan A., Madhavan J., Domingos P., Halevy A., “ Ontology Matching: A Machine Learning
Approach”,Handbook on Ontologies in Information Systems, 2004.

Drumm C., Schmitt M., Do H.-H., Rahm E., “ Quickmig: automatic schema matching for data
migration projects”,CIKM, ACM, p. 107-116, 2007.

Duchateau F., Bellahsene Z., Roche M., “ A Context-based Measure for Discovering Approxi-
mate Semantic Matching between Schema Elements”,RCIS, p. 9-20, 2007.

Ehrig M., Haase P., Stojanovic N., “ Similarity for ontologies - a comprehensive framework”,
Proc. of Practical Aspects of Knowledge Management, 2004a.

Ehrig M., Staab S., “ QOM - Quick Ontology Mapping”,ISWC, 2004b.

Euzenat J. et al., State of the art on ontology matching, Technical Report n°
KWEB/2004/D2.2.3/v1.2, Knowledge Web, 2004a.

Euzenat J., Valtchev P., “ Similarity-Based Ontology Alignment in OWL-Lite”, ECAI, p. 333-
337, 2004b.

Hammer J., Stonebraker M., , Topsakal O., “ Thalia: Test harness for the assessment of legacy
information integration approaches”,Proceedings of ICDE, p. 485-486, 2005.

Hernandez M. A., Miller R. J., Haas L. M., “ Clio: A Semi-Automatic Tool for Schema Map-
ping (Software Demonstration)”,ACM SIGMOD, 2002.

Kefi H., Ontologies et aide à l’utilisateur pour l’interrogation de sources multiples et
hétérogènes, PhD thesis, Université de Paris 11, 2006.

Lee Y., Sayyadian M., Doan A., Rosenthal A., “ eTuner: tuningschema matching software
using synthetic scenarios”,VLDB J., vol. 16, n° 1, p. 97-122, 2007.

Levenshtein V., “ Binary Codes Capable of Correcting Deletions, Insertions and Reversals”,
Soviet Physics Doklady, vol. 10, p. 707, 1966.

82 RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

Lin D., “ An information-theoretic definition of similarity”, Proc. 15th International Conf. on
Machine Learning, Morgan Kaufmann, p. 296-304, 1998.

Madhavan J., Bernstein P., Rahm E., “ Generic schema matching with Cupid”,VLDB, 2001.

Maedche A., Staab S., “ Measuring Similarity between Ontologies”, Proc. of EKAW, p. 251-
263, 2002.

Melnik S., Molina H. G., Rahm E., “ Similarity Flooding: A Versatile Graph Matching Algo-
rithm and its Application to Schema Matching”,Proc. of ICDE, 2002.

Noy N. F., “ Semantic Integration: A Survey Of Ontology-Based Approaches”,SIGMOD
Record, vol. 33, n° 4, p. 65-70, 2004.

Rahm E., Bernstein P. A., “ A survey of approaches to automatic schema matching”,VLDB
Journal, vol. 10, n° 4, p. 334-350, 2001.

Rahm E., Do H. H., Massmann S., “ Matching large XML schemas”,SIGMOD Rec., vol. 33,
n° 4, p. 26-31, 2004.

Saleem K., Bellahsene Z., Hunt E., “ PORSCHE: Performance Oriented Schema Mediation”,
to appear in Information Systems, 2008.

Shannon C., “ A mathematical theory of communication”,Bell System Technical Journal, vol.
27, p. 379-423, 623-656, 1948.

Tang J., Li J., Liang B., Huang X., Li Y., Wang K., “ Using Bayesian decision for ontology
mapping”,Web Semantic, vol. 4, n° 4, p. 243-262, 2006.

Van-Risbergen C.,Information Retrieval, 2nd edition, London, Butterworths, 1979.

Wilkinson R., Hingston P., “ Using the cosine measure in a neural network for document re-
trieval”, Proc. of ACM SIGIR Conference, p. 202-210, 1991.

Yatskevich M., Preliminary Evaluation of Schema Matching Systems, Technical Report n° DIT-
03-028, Informatica e Telecomunicazioni, University of Trento, 2003.

ANNEXE POUR LE SERVICE FABRICATION
A FOURNIR PAR LES AUTEURS AVEC UN EXEMPLAIRE PAPIER
DE LEUR ARTICLE ET LE COPYRIGHT SIGNE PAR COURRIER

LE FICHIER PDF CORRESPONDANT SERA ENVOYE PAR E-MAIL

1. ARTICLE POUR LA REVUE:

RSTI - ISI – 13/2008. Modèles et langages pour les bases de données

2. AUTEURS :

Fabien Duchateau* — Zohra Bellahsene* — Mathieu Roche*

3. TITRE DE L’ ARTICLE :

Improving Quality and Performance of Schema Matching in Large Scale

4. TITRE ABRÉGÉ POUR LE HAUT DE PAGE MOINS DE40 SIGNES:

A flexible and scalable approach

5. DATE DE CETTE VERSION:

October 29, 2008

6. COORDONNÉES DES AUTEURS:

– adresse postale :
* LIRMM - Université Montpellier 2
161 rue Ada 34000 Montpellier, France

prenom.nom@lirmm.fr
– téléphone : 00 00 00 00 00

– télécopie : 00 00 00 00 00

– e-mail :

7. LOGICIEL UTILISÉ POUR LA PRÉPARATION DE CET ARTICLE:

LATEX, avec le fichier de styleartile-hermes.ls,
version 1.23 du 17/11/2005.

8. FORMULAIRE DE COPYRIGHT:

Retourner le formulaire de copyright signé par les auteurs,téléchargé sur :http://www.revuesonline.om
SERVICE ÉDITORIAL – HERMES-LAVOISIER

14 rue de Provigny, F-94236 Cachan cedex
Tél. : 01-47-40-67-67

E-mail : revues@lavoisier.fr
Serveur web : http://www.revuesonline.com

