
HAL Id: lirmm-00344758
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00344758

Submitted on 24 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Unexpected Sequential Patterns and Implication
Rules

Haoyuan Li, Anne Laurent, Pascal Poncelet

To cite this version:
Haoyuan Li, Anne Laurent, Pascal Poncelet. Mining Unexpected Sequential Patterns and Implication
Rules. Yun Sing Koh and Nathan Rountree. Rare Association Rule Mining and Knowledge Discovery:
Technologies for Infrequent and Critical Event Detection, pp.20, 2009, Advances in Data Warehousing
and Mining Book Series. �lirmm-00344758�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00344758
https://hal.archives-ouvertes.fr


Mining Unexpected Sequential Mining Unexpected Sequential Mining Unexpected Sequential Mining Unexpected Sequential 

Patterns and Implication RulesPatterns and Implication RulesPatterns and Implication RulesPatterns and Implication Rules    
 
 
Dong (Haoyuan) Li 
LGI2P, École des Mines d’Alès, France 
 
Anne Laurent 
LIRMM, Université Montpellier II, France 
 
Pascal Poncelet 
LIRMM, Université Montpellier II, France 
 
 
ABSTRACT 
As common criteria in data mining methods, the frequency-based interestingness measures 
provide a statistical view of the correlation in the data, such as sequential patterns. However, 
when we consider domain knowledge within the mining process, the unexpected information that 
contradicts existing knowledge on the data has never less importance than the regularly frequent 
information. For this purpose, we present the approach USER for mining unexpected sequential 
rules in sequence databases. We propose a belief-driven formalization of the unexpectedness 
contained in sequential data, with which we propose 3 forms of unexpected sequences. We 
further propose the notion of unexpected sequential patterns and implication rules for determining 
the structures and implications of the unexpectedness. The experimental results on various types 
of data sets show the usefulness and effectiveness of our approach. 
 
 
KEYWORDS 
Sequence Data Mining, Interestingness Measure, Belief, Unexpected Sequence, Unexpected 
Sequential Pattern, Unexpected Sequential Implication Rule. 
 
 
INTRODUCTION 
Most real world applications process the data stored in sequence format, where the elements in 
data are sequentially ordered with temporal or spatial relation. For instances, in a customer retail 
database, a sequence can be all purchases of a customer ordered by the time of transaction; in a 
Web access log file, a sequence can be all of those resources accessed during a user session 
ordered by the time of request; in a telecommunication network monitoring database, a sequence 
can be all events during a period ordered by the time of occurrence; in a DNA segment, a 
sequence is a succession of nucleotide subunits with spatial order, etc. In order to discover the 
knowledge hidden in such sequential data, sequence data mining techniques (Dong & Pei, 2007; 



Han & Kamber, 2006) have been highly developed and widely applied in many application 
domains. 

As one of the most important models of sequence data mining, the sequential pattern proposed 
by Agrawal and Srikant (1995) provides a statistical frequency based view of the correlations 
between the elements in sequential data. The problem of mining sequential patterns can be 
formally described as follows. 

Given a set of binary-valued attributes R = { i1,i2,…,in}, an attribute is an item. An itemset, 
denoted as I = (i1i2…im), is an unordered collection of items. A sequence is an ordered list of 
itemsets, denoted as s = 〈I1I2…Ik〉. A sequence database, denoted as D, is a large set of sequences. 
Given two sequences s = 〈I1I2…Im〉 and s' = 〈I'1I'2…I'n〉, if there exist integers 1 ≤ i1 ≤ i2 ≤ … ≤ im 
≤ n such that I1 ⊆ I' i1, I2 ⊆ I' i2, …, Im ⊆ I' im, then the sequence s is a subsequence of the sequence s' 

and the sequence s' is a super sequence of the sequence s, denoted as s ⊑ s', and we say that the 

sequence s is included in the sequence s', or the sequence s' supports the sequence s. If a sequence 
s is not included in any other sequences, then the sequence s is a maximal sequence. The support 
(or the frequency) of a sequence s in a sequence database D, denoted as σ (s, D), is the fraction of 
the total number of sequences in the database D that support s. Given a minimal frequency 
threshold minimum support specified by user, denoted as σmin, a sequence s is frequent if σ (s, D) 
≥ σmin. A sequential pattern is a frequent maximal sequence, so that the problem of mining 
sequential patterns is to find all frequent maximal sequences in a sequence database. 

 
Example 1. Let D be a customer retail database, with the minimum support σmin = 0.5, we 

may find the sequential pattern s = 〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)(Rock-Music)〉 
where σ (s, D) = 0.6, which can be interpreted as “60% of customers purchase a Sci-Fi novel, 

then purchase action and Sci-Fi films later, and then purchase a rock music CD”. ■ 

 
Example 2. Let D be a Web access log database, with the minimum support σmin = 0.5, we 

may find the sequential pattern s = 〈(login)(msglist)(msgread)(msgread)(logout)〉 where σ (s, D) 
= 0.8, which can then be interpreted as “80% of users visit the login page, then visit the message 

list page, then read messages, and at last logout”. ■ 

 
Up to now, a great deal of research work focuses on effectively mining sequential patterns 

(Ayres et al, 2002; Li et al, 2007; Masseglia et al, 1998; Pei et al, 2004; Srikant & Agrawal, 1996; 
Zaki, 2001) and the variances (Garofalakis et al, 1999; Lo et al, 2007; Mannila et al, 1997; Wang 
& Han, 2004; Yan et al, 2003). With sequential pattern mining, we can extract the sequences that 
reflect the most general behaviors within the context of sequential data, which can be further 
interpreted as domain knowledge for different purposes. However, although sequential patterns 
are essential for behavior recognition, when we consider domain knowledge within the mining 
process, the unexpected sequences that contradict existing knowledge on the data have never less 
importance than the frequent sequences. On the other hand, such unexpected sequences do not 
mean that they cannot be frequent, so that there exist following problems in discovering the 
unexpectedness in data with the frequency-based interestingness measures. 

First, the redundancy problem of frequency-based data mining methods undermines many real 
world applications where the exponential pattern or sequence sets generated by mining processes 
make the post analysis extremely hard. Hence, the identification of unexpected information might 
be impossible when the support of such unexpected sequences, within the context of sequence 



data mining, is very low such that the unexpectedness may be hidden in millions of sequential 
patterns. 

 
Example 3. Let us consider the instance illustrated in Example 1. Assume that in the database 

D, there exist 6% of customers who purchase a Sci-Fi novel then action and Sci-Fi films, 
purchase a classical music CD instead of a rock music CD. This behavior is unexpected to the 
frequent behavior described in Example 1 and can be interesting for product promotion. In fact, 
with sequential pattern mining, we are able to find such a behavior only if the minimum support 
threshold is no greater than 0.06. However, with σmin = 0.06, the result sequence set of all 
sequential patterns s such that σ (s, D) ≥ 0.06 might be very large and that makes it impossible to 

identify the above behavior. ■ 

 
Secondly, if an unexpected sequence is “incomplete” in comparison with an expected 

sequence, it is impossible to determine the former with classical sequential pattern mining: 
according to the definition of sequential pattern, the former is included in the latter so that the 
former will not appear in the result sequence set while the latter is frequent. The following 
example illustrates this issue (notice that we do not strictly indicate the difference between 
sequence and sequential pattern, however, we use the term sequence for a full sequence 
contained in the database, and the term sequential pattern for a potentially frequent part of a full 
sequence contained in the database). 

 
Example 4. Considering again the Web access log database D illustrated in Example 2, let the 

sequential pattern s0 = 〈(login)(msglist)(logout)〉 be an expected access sequence with respect to 
the workflow of the service, where we do not require the access of the resource “msgread” in the 
workflow since there can be no new unread messages for a user. Assume that the sequence s = 
〈(login)(logout)〉 is unexpected to the workflow s0 and it is caused by failing to list all messages 
of a user. Let s1 = 〈(login)(msglist)(msgread)(msgread)(logout)〉 and s2 = 〈(login)(option) 
(password)(logout)〉 be two sequential patterns (in order to simplify the example, s1 and s2 are not 
included in a same sequence), then we have σ (s, D) ≥ σ (s0, D) ≥ σ (s1, D) and σ (s, D) ≥ σ (s2, 
D). Assume that s1 and s2 are the only sequential patterns other than s0 that include s, then we can 
conclude the existence of the unexpected sequence s if and only if σ (s, D) > σ (s1, D) + σ (s2, D). 
Nevertheless, if s is unknown, then we have to examine the support values of all possible 
combinations of subsequences of s0, s1 and s2 for seeking the unexpected information, and the 
computation and identification tasks will become extremely hard. ■ 

 
The complex constraint based approaches like SPIRIT proposed by Garofalakis et al (1999) 

can find the unexpected sequences, however the premise is that we must know the composition of 
an unexpected sequence before the extraction, and an important drawback is that we cannot find 
all sequences representing the behavior. The closed sequential pattern mining (Yan et al, 2003) 
may tell the existence of the unexpected one by computing the difference of the support values of 
all sequences that include the unexpected sequence, however, only if we have already known 
what the unexpected sequences are, we have to seek the unexpectedness in the result set of all 
possible combinations of candidate unexpected sequences. 

In this chapter, we propose a novel approach USER (Mining unexpected sequential rules) for 
finding unexpected sequential rules in large sequence databases. Furthermore, when we consider 



the unexpectedness in sequential data, we are interested not only in the internal structures, but 
also in the premises and consequences represented as rules on the discovered unexpected 
sequences. Such rules are important to a lot of real world applications, especially to the early 
prediction of critical events or behaviors in the domains such as telecommunication network 
monitoring, credit card fraud detection, financial risk investigation, DNA segment analysis, and 
so on. Notice that our goal is not to find infrequent rules from sequence databases, but to find the 
rules disclosing the information that contradicts existing knowledge. 

The rest of this chapter is organized as follows. Section 2 the related work on unexpected 
pattern and sequence mining. Section 3 presents the discovery of unexpected sequences and 
sequential implication rules for determining the unexpectedness in sequence databases. Section 4 
shows the results of the experimental evaluation of our approach on real data and synthetic data 
for testing the effectiveness and the scalability. Finally, we discuss our further research direction 
and we conclude in Section 5. 
 
 
RELATED WORK 
In this chapter, we propose a subjective measure for sequence data mining. McGarry (2005) 
systematically investigated the interestingness measures for data mining, which are classified into 
two categories: the objective measures based on the statistical frequency or properties of 
discovered patterns, and the subjective measures based on the domain knowledge or the class of 
users. Silberschatz and Tuzhilin (1995) studied the subjective measures, in particular the 
unexpectedness and actionability. The term unexpectedness stands for the newly discovered 
(sequential) patterns that are surprising to users. For example, if most of the customers who 
purchase Sci-Fi movies purchase rock music, then the customers who purchase Sci-Fi movies but 
purchase classical music are unexpected. The term actionability stands for reacting to the 
discovered (sequential) patterns to user’s advantage. For example, for the customers who 
purchase Sci-Fi movies without purchasing any kind of music, it is actionable to improve the 
promotion of rock music, even though it is unexpected. Therefore, in many cases, the 
unexpectedness and actionability exist at the same time, however, clearly, some actionable 
(sequential) patterns can be expected and some unexpected (sequential) patterns can also be non-
actionable (Silberschatz & Tuzhilin, 1995). 

Silberschatz and Tuzhilin (1995) further introduced two types of beliefs, hard belief and soft 
belief, for addressing unexpectedness. According to authors’ proposition, the hard belief is a 
belief that cannot be changed by new evidences in data, and any contradiction of such a belief 
implies data error. For example, in the Web access log analysis, the error “404 Not Found” can be 
considered as a contradiction of a head belief: “the resources visited by users must be available”; 
however, the soft belief corresponds to the constraints on data that are measured by a degree, 
which can be modified with new evidences in data that contradict such a belief and 
interestingness of new evidences is measured by the change of the degree.  For example, when 
more and more users visit the Web site at night, the degree of the belief “users access the Web 
site at day time” will be changed. The computation of the degree can be handled by various 
methods, such as the Bayesian approach and the conditional probability. 

With the unexpectedness measure, Padmanabhan and Tuzhilin (1998) propose a belief-driven 
approach for finding unexpected association rules. In that approach, a belief is given from 
association rule, and the unexpectedness is stated by semantic contradictions of patterns. Given a 
belief X → Y, a rule A → B is unexpected if: (1) the patterns B and Y semantically contradict each 



other; (2) the support and confidence of the rule A ∪ X → B hold in the data; (3) the support and 

confidence of the rule A ∪ X → Y do not hold in the data. The discovery process is performed 

within the framework of the a priori algorithm. 
Spiliopoulou (1999) proposed an approach for mining unexpectedness with sequence rules 

transformed from frequent sequences. The sequence rule is built by dividing a sequence into two 
adjacent parts, which are determined by the support, confidence and improvement from 
association rule mining. A belief on sequences is constrained by the frequency of the two parts of 
a rule, so that if a sequence respects a sequence rule but the frequency constraints are broken, 
then this sequence is unexpected. Although this work considers the unexpected sequences and 
rules, it is however very different to our problem in the measure and the notion of unexpectedness 
contained in data. 

The outlier mining focuses on finding infrequent patterns in data with objective measures of 
interestingness, which are mostly distance-based (Angiulli & Pizzuti, 2002, 2005; Jin et al, 2001; 
Knorr & Ng, 1998; Ramaswamy et al, 2000). The study of outlier mining in sequential data is 
very limited. To the best of our knowledge, the approach proposed by Sun et al (2006) is 
currently the unique one. In our approach, the unexpectedness is stated by the semantics and 
temporal occurrences, instead of the statistical frequency or distance. Moreover, we concentrate 
on finding sequential implication rules of unexpectedness, which is not covered by outlier 
mining. For these meanings, we consider the unexpectedness within the context of domain 
knowledge and the aspect “valid” within the contact of the classical notions of support and 
confidence. 
 
 
MINING IMPLICATION RULES IN UNEXPECTED SEQUENCES 
Let sα → sβ be a sequential rule of sequences, where sα , sβ are two sequences. Let τ be the 
constraint on the number of itemsets, or the occurrence distance, between the sequences sα and sβ 

. Let η be the constraint on the semantics of sequences that sβ ≠sem sγ , where sγ is a sequence that 
semantically opposite to the sequence sβ . A belief is considered as a sequential rule and the 
constraints τ and η on the rule. A sequence s is unexpected if s contradicts a belief. 

We concentrate on finding the premises that possess the unexpectedness in sequences and the 
consequences engendered in the sequential data. In this section, we present the discovery of 
unexpected sequences and sequential implication rules for determining the unexpectedness in 
sequence databases. 
 
 
Belief Base 
In order to construct the belief base for mining unexpected sequences, let us first introduce some 
additional notions on sequential data. 

The length of a sequence s is the number of itemsets contained in the sequence, denoted as |s|. 
An empty sequence is denoted as φ, where |φ| = 0. The concatenation of sequences is denoted as 
the form s1⋅s2, so that we have |s1⋅s2| = |s1| + |s2|. We denote [s the first itemset of the sequence s, 

and s] the last itemset of the sequence s. For two sequences s and s' such that s ⊑ s', we note s ⊑[ 

s' if we have [s ⊆ [s', note s ⊑] s' if we have s] ⊆ s'], and note s ⊑[⋅] s' if we have [s ⊆ [s' and s] ⊆ 



s']. We denote s ⊑c s' that the sequence s is a consecutive subsequence of the sequence s'. For 

example, we have 〈(a)(b)(c)〉 ⊑c 〈(b)(a)(ab)(c)(d)〉, but 〈(a)(b)(c)〉 c⊑  〈(a)(b)(ab)(c)(d)〉. 

Given sequences s, s1 and s2 such that s1⋅s2 ⊑ s, the occurrence relation, denoted as ֏τ, is a 

relation r between the occurrences of s1 and s2 in s, where τ = [min..max] (min, max ∈ℕ and min 

≤ max) is the constraint on the occurrence distance between s1 and s2. Let |s| ⊨ [min..max] (or |s| ⊨ 

τ) denote that the length of the sequence s satisfies the constraint [min..max], that is, min ≤ |s| ≤ 

max, then the relation s1 ֏τ s2 represents 

( ) ( )1 2 1 2 cs s s s s s s s τ′ ′⋅ ⇒ ⋅ ⋅ ∧⊑ ⊑ ⊨ . 

When max is not specified (or cannot be specified, like max = ∞), we note max as ∗, that is, τ 

= [min..∗]. In the particular cases, for min = max = 0, we note s1 ֏[0..0] s2 as s1 ֏ s2; for min = 0 

and max = ∗, we note s1 ֏[0..∗] s2 as s1 ֏∗ s2. Given a sequence s and an occurrence relation r, we 

note s ⊨ r if the sequence s satisfies the relation r. 

 

Example 5. Given an occurrence relation r = 〈(a)〉 ֏[1..2] 〈(c)〉, we have 〈(a) (c)〉 ⊭ r, 

〈(a)(b)(c)〉 ⊨ r, 〈(a)(b)(b)(c)〉 ⊨ r, 〈(a)(be)(b)(c)〉 ⊨ r, and 〈(a)(b)(b)(b)(c)〉 ⊭ r. ■ 

 
Given a sequential rule sα → sβ , the semantic constraint sβ ≠sem sγ requires that the occurrence 

of the sequence sβ should not be replaced by the occurrence of the sequence sγ , since sβ and sγ are 
semantically opposite to each other. That is, with this meaning, since the rule sα → sβ can be 

interpreted as the implication sα ⊑ s ⇒ sα⋅sβ ⊑ s, according to sβ ≠sem sγ we have the implication 

sα ⊑ s ⇒ sα⋅sγ ⊑  s. Moreover, considering the semantic constraint η together with the 

occurrence constraint τ, we have the following relation: 

( ) ( ) ( )c cs s s s s s s s s s sα α β α γ τ′ ′ ′⇒ ⋅ ⋅ ∧ ⋅ ⋅ ∧⊑ ⊑ ⊑ ⊨ . 

From these constraints, we define the belief on user behaviors as follows. 
 
Definition 1. A belief on sequences consists of a sequential rule sα → sβ , an occurrence 

constraint τ = [min..max] (min, max ∈ℕ and min ≤ max), and a semantic constraint η : sβ ≠sem sγ 

on the rule, denoted as b = [sα ; sβ ; sγ ; min..max], such that for any sequence s satisfies the belief 

b, denoted as s ⊨ b, we have that sα ⊑ s implies sα⋅s'⋅sβ ⊑c s and sα⋅s'⋅sγ c⊑  s, where |s'| ⊨ τ. ■ 

 
Beliefs can be generated from existing domain knowledge on common behaviors of the data, 

or from the predefined workflows. Let us examine the Example 3 and 4 for illustrating how 
beliefs work. 

 
Example 6. Let us consider Example 3. According to customer purchase behaviors, we first 

create the sequential rule 〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉 → 〈(Rock-Music)〉, which 
indicates that the purchases of a Sci-Fi novel then action and Sci-Fi films later imply the purchase 
of a rock music CD. If we just expect that a purchase of rock music CD should be performed after 



the precedent purchases, then the following belief can be established for describing this 
requirement: 

[〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; φ; 0..∗], 

where the position of the sequence sγ is empty since at this moment we are not yet taking 
the semantic opposition into account. 

 Now we consider the classical music to be semantically opposite to the rock music, then we 
have the semantic constraint as 〈(Rock-Music)〉 ≠sem 〈(Classical-Music)〉, then the above belief can 
be rewritten as follows: 

[〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; 〈(Classical-Music)〉; 0..∗]. 

Moreover, if the customer transaction records show that most of customers purchase a 
rock music CD in a short delay after purchasing a Sci-Fi novel then action and Sci-Fi 
films, for example in the next 3 to 5 purchases, then the second belief can be further 
rewritten as: 

[〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; 〈(Classical-Music)〉; 3..5]. ■ 

 
Example 7. Considering Example 4, the user access sequence 〈(login)(msglist)(logout)〉 is 

expected to be frequent. According to the workflow of the Web site, the following rules can be 
generated: 〈(login)(msglist)〉 → 〈(logout)〉 and 〈(login)〉 → 〈(logout)〉, respectively with the 
occurrence constraints [0..∗] and [1..∗], since the access of logout should not just be after the 
access of login. Hence, we have the following beliefs without semantic constraint: 

[〈(login)(msglist)〉; 〈(logout)〉; φ; 0..∗] and [〈(login)〉; 〈(logout)〉; φ; 1..∗]. 
In order to constrain the relation between login and logout, the above two beliefs can be 

rewritten as: 
[〈(login)〉; 〈(msglist)〉; 〈(logout)〉; 0..0], 

where logout is semantically opposite to msglist according to the access of login. Other 
user behaviors can also be represented by beliefs. The following belief, 

[〈(login)(msglist)〉; 〈(msgread)〉; 〈(logout)〉; 0..5] 
depicts that we expect that users will not logout to the system too early, for example, after at least 
5 visits of other resources. ■ 

 
In our approach, we consider the consistent belief in the semantics, that is, for any belief b = 

[sα ; sβ ; sγ ; min..max], we have sγ ⊑  sβ . For example, considering a belief b = [〈(a)〉; 〈(b)(c)〉; 

〈(c)〉; 0..3], although we cannot assert that the sequence 〈(b)(c)〉 is not semantically opposite to the 
sequence 〈(c)〉 (such as (b) stands for “not” and (c) stands for “good” within the context of text 

mining), such a belief is rather ambiguous in the semantics: since 〈(c)〉 ⊑ 〈(b)(c)〉, we can say that 

〈(c)〉 is more general than 〈(b)(c)〉, which means that the unexpectedness is more general than the 
expectedness in a sequence. In this case, any unexpected sequence is always expected. Notice that 
our goal is to find the unexpectedness, but not the expectedness, so that the inverse, that the 
expectedness is more general than the unexpectedness, is allowed in a sequence. Obviously, as to 
be consistent, the semantics of two beliefs in the same belief base must not contradict each other. 
For instance, the beliefs [s1 ; s2 ; s3 ; min..max] and [s1 ; s3 ; s2 ; min..max] semantically contradict 
each other, and must be take into account during the construction of a belief base. 



A belief base, denoted as B, is a set of consistent beliefs, which are stored in a prefix 
represented belief tree, denoted as T, defined below. 

 

 

 
Figure 1. The belief tree for Example 6 and 7. 

 

1. The belief tree T consists of one root node and three groups of sub-trees (α-tree, β-
trees and γ-trees) as the children of the root, where each group respectively represents 
the sα , sβ , and sγ parts of each belief b ∈ B. 

2. Only one α-tree is contained in a belief base, which consists of two kinds of nodes: i-
node and τ-node, where i-node constitutes the prefix-tree representation of a sα 
sequence and τ-node consists of two fields for holding the min and max values. The 
prefix tree representation of sequences is detailed in the approach PSP proposed by 
Masseglia et al (1998). 

3. Each i-node is connected by a set-edge or a seq-edge for representing sequences. 

4. A β-tree is a prefix tree representation of sequences, and is connected with a τ-node in 
the α-tree by the τ-link, a special edge inter-sub-trees. 

5. A γ-tree consists of i-nodes for storing sequences and u-nodes identifying unique 
unexpectedness IDs, and is connected with a leaf of a β-tree by the η-link, another 
special edge inter-sub-trees. 

6. Each η-link has a copy connected to its parent τ-node for the needs of skipping sβ. 
 
For instance, all beliefs concentrated in Example 6 and 7 are shown in Figure 1 as a belief 

tree. 
Based on the above definition and the semantic consistence of a belief, we propose the 

following belief tree construction algorithm. 
 
Algorithm 1 (Belief tree construction). 
Input: A belief tree T and a belief b = [sα ; sβ ; sγ ; min..max]. 
Output: The belief tree T with the belief b appended. 

1. If the belief tree T is empty, then initialize the global belief base information (e.g., 
number of nodes, number of beliefs, etc.) and create the root node for the belief tree. 



2. Verify the input belief b. If sγ ⊑ sβ , min > max, or min < 0, then reject b and exit the 

construction procedure. 

3. Append sα as prefix tree to the root node of the belief tree, where each item is an i-
node. Any two items inter-itemsets are connected by a seq-edge and any two items 
within an itemset are connected by a set-edge. Append a τ-node with min and max to 
the last i-node of sα. 

4. Transform sβ to prefix tree representation and connect it to the newly created τ-node 
by τ-link. 

5. Transform sγ to prefix tree representation and connect it to the newly created leaf of 
the β-tree by η-link and copy this link to the parent τ-node, and then label the belief b 
by a unique identification. 

6. Update the global belief base information and exit the construction procedure. 
 
Given a belief tree T constructed from a belief base B, a sequence s can be verified in at most 

|B| traverses of the belief tree T with respect to each belief b in the belief base B. 
 
 
UNEXPECTED SEQUENCES AND FEATURES 
Given a belief b and a sequence s, if s satisfies the belief b, then s is an expected sequence with 

respect to the belief b, denoted as s ⊨ b, and s ⊭ b denotes that s does not verify the belief b; if s 

contradicts the belief b, then s is an unexpected sequence, denoted as s ⊯ b. We denote the 

unexpectedness that “contradicting the belief b” as {⊯b}. According to the occurrence constraint 

and the semantic constraint, we propose three forms of unexpected sequences: α-unexpected, β-
unexpected and γ-unexpected. 

 

Definition 2. Given a belief b = [sα ; sβ ; sγ ; 0..∗] and a sequence s, if sα ⊑ s and there does not 

exist sβ , sγ such that sα⋅sβ ⊑ s or sα⋅sγ ⊑ s, then the sequence s is an α-unexpected sequence stated 

by the belief b, denoted as s ⊯α b. The α-unexpectedness stated by the belief b is denoted as {⊯α 

b}. ■ 

 
A belief with the occurrence constraint τ = [0..∗] states that sβ should occur after the 

occurrence of sα in a sequence s. Hence, the sequence s contradicts the constraint τ = [0..∗] if and 

only if sα ⊑ s and sα⋅sβ ⊑  s. Notice that for not confusing the unexpected sequences caused by 

the occurrence constraint or the semantic constraint, sγ should not occur after the occurrence of sα 
in an α-unexpected sequence. 

 
Example 8. Let us consider the beliefs listed in Example 6, where the two beliefs 

b1 = [〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; φ; 0..∗] 
and 

b2 = [〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; 〈(Classical-Music)〉; 0..∗] 



determine α-unexpected sequences. The belief b1 depicts that a purchase of rock music CD is 
expected after the purchases of a Sci-Fi novel then action and Sci-Fi films later. The belief b2 
further requires that the purchase of a classical music CD should not occur. Therefore, given the 
sequence 

s = 〈(Sci-Fi-Novel)(Printer)(Action-Film Sci-Fi-Film)(Classical-Music)(PS3-Station)〉, 

we have s ⊯α b1 but s ⊭ b2, that is, s is not an α-unexpected sequence with respect to the belief 

b2. ■ 

 
Now let us consider the recognition of α-unexpected sequences with respect to a belief base, 

i.e., a set of beliefs. For instance, given a belief base consists of 3 beliefs 
b1 = [〈(a)〉; 〈(b)〉; φ; 0..∗], 
b2 = [〈(a)〉; 〈(c)〉; φ; 0..∗], 
b3 = [〈(a)〉; 〈(d)〉; φ; 0..∗], 

and a set of sequences 

s1 = 〈(a)(b)〉, 

s2 = 〈(a)(c)〉, 

s3 = 〈(a)(d)〉, 

s4 = 〈(a)(e)〉, 

we have the following relations: 
s1 ⊯α b2, s1 ⊯α b3; 

s2 ⊯α b1, s2 ⊯α b3; 

s3 ⊯α b1, s3 ⊯α b2; 

and 
s4 ⊯α b1, s4 ⊯α b2, s4 ⊯α b3. 

Clearly, the beliefs b1, b2, and b3 depicts that 〈(b)〉, 〈(c)〉, or 〈(d)〉 should occur after the 
occurrence of 〈(a)〉, thus, in this meaning, only the sequence s4 is unexpected. However, 
according to Definition 2, all of the 4 sequences are α-unexpected. In order to avoid this 
redundancy problem, we further define the notion of α-unexpected sequence within the context of 
belief base as below. 

 
Definition 3. Given a belief b = [sα ; sβ ; sγ ; 0..∗] and a sequence s, let B be the belief base 

such that b ∈ B. Let Bα be a subset of B such that for each b' ∈ B, where b' = [s'α ; s'β ; s'γ ; 0..∗], 
we have s'α = sα implies b' ∈ Bα . If sα ⊑ s and there does not exist b' ∈ B, where b' = [s'α ; s'β ; s'γ ; 

0..∗], such that sα⋅s'β ⊑ s or sα⋅s'γ ⊑ s, then the sequence s is an α-unexpected sequence stated by 

the belief b of the belief base B, denoted as s ⊯α b(B). Respectively, the α-unexpectedness stated 

by the belief b of the belief base B is denoted as {⊯α b(B)}. ■ 

 
In fact, an α-unexpected sequence stated by a belief b of a belief base B is an unexpected 

sequence determined by all sub-trees of a same τ-node where min = 0 and max = ∗. In the rest of 



the paper, without special notice, the notation s ⊯α b and {⊯α b} denote the α-unexpected 

sequence and α-unexpectedness stated by a belief b within the context of a given belief base B. 
 

 

 
Figure 2. Determining α-unexpected sequences in a belief base. 

 
Definition 4. Given a belief b = [sα ; sβ ; sγ ; min..max] (min ≠ 0 or max ≠ ∗) and a sequence s, 

if sα⋅sβ ⊑ s and there does not exist a sequence s' such that |s'| ⊨ [min..max] and sα⋅s'⋅sβ ⊑c s, then 

the sequence s is a β-unexpected sequence stated by the belief b, denoted as s ⊯β b. The β-

unexpectedness stated by the belief b is denoted as {⊯β b}. ■ 

 
A β-unexpected sequence reflects that the occurrence constraint τ = [min..max] (τ ≠ [0..∗]) on 

the sequential rule sα → sβ is broken because the occurrence of sβ in the sequence s contradicts 
the constraint τ. 

 
Example 9. Let us consider the below belief proposed in Example 6: 

[〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; 〈(Classical-Music)〉; 3..5]. 
The purchase of a rock music CD is expected within the next 3 to 5 purchases after the 

purchases of a Sci-Fi novel then action and Sci-Fi films later. In this case, the customers who 
purchase a rock music CD just in the next purchase or after many purchases of other products are 
unexpected to this belief and might be valuable to make new promotion strategies on related 
products. Notice that 〈(Classical-Music)〉 in this belief is not considered within the context of β-

unexpected sequences. ■ 

 

Definition 5. Given a belief b = [sα ; sβ ; sγ ; min..max] and a sequence s, if sα⋅sγ ⊑ s and there 

exists a sequence s' such that |s'| ⊨ [min..max] and sα⋅s'⋅sγ ⊑c s, then the sequence s is a γ-

unexpected sequence stated by the belief b, denoted as s ⊯γ b. The γ-unexpectedness stated by the 

belief b is denoted as {⊯γ b}. ■ 

 
A γ-unexpected sequence is concentrated on the semantics: the occurrence of sβ is replaced by 

its semantic opposition sγ within the occurrence constraint τ = [min..max]. 
 
Example 10. Let us consider again the belief studied in Example 9: 

[〈(Sci-Fi-Novel)(Action-Film Sci-Fi-Film)〉; 〈(Rock-Music)〉; 〈(Classical-Music)〉; 3..5]. 



The rock music can be considered as being opposite to the classical music. Therefore, the 
purchase of a rock music CD cannot be replaced by the purchase of a classical music CD. In this 
example, since the purchase of a rock music CD is expected within the next 3 to 5 purchases after 
the purchases of a Sci-Fi novel then action and Sci-Fi films later, the purchase of a classical 
music CD is not expected within the interval of the next 3 to 5 purchases. Of course, in this case, 
the purchase of a classical music CD is allowed within the next 3 purchases or after the next 5 

purchases according the purpose of this belief. ■ 

 
A feature is the unexpected part of an unexpected sequence, which informs the internal 

structure of the unexpectedness. 
 
Definition 6. Given a belief b = [sα ; sβ ; sγ ; min..max] and an unexpected sequence s such that 

s ⊯ b, the feature of the unexpected sequence s is the maximum consecutive subsequence u of the 

sequence s such that: (1) if s ⊯α b, we have sa⋅u = s, where sa is a sequence such that |sa| ≥ 0; (2) if 

s ⊯β b, we have sa⋅u⋅sc = s, where sa and sc are two sequences such that |sa| ≥ 0, |sc| ≥ 0, sα ⊑  sa , 

sα ⊑[ u , and sβ ⊑
] u (i.e., sα⋅sβ ⊑

[⋅] u); (3) if s ⊯γ b, we have sa⋅u⋅sc = s, where sa and sc are two 

sequences such that |sa| ≥ 0, |sc| ≥ 0, sα ⊑  sa , sα ⊑
[ u , and sγ ⊑

] u (i.e., sα⋅sγ ⊑
[⋅] u). The feature of 

an unexpected sequence s with respect to a belief b is denoted as u ⊨ (s ⊯ b). ■ 

 

 

 
Figure 3. Features of unexpected sequences. 

 
Example 11. Let us consider a belief b = [〈(e)(f)〉; 〈(d)〉; 〈(c)〉; 0..3], Figure 3 shows the 

features of a set of β-unexpected or γ-unexpected sequences. ■ 

 
Based on the definitions of unexpected sequences and the structure of belief tree, we have the 

following algorithm for mining unexpected sequences. 
 
Algorithm 2 (USE: Mining unexpected sequences). 
Input: A sequence database D, a belief base B stored as a belief tree T. 
Output: All unexpected sequences with respect to each belief b ∈ B. 

1. Read a sequence s from the sequence database D. If all sequences in D have been 
processed, exit the procedure. 



2. Use depth-first method for traversing the α-tree of the belief tree T, till to reach a τ-
node. If no τ-node can be reached, reject current sequence and back to step 1 for 
restarting with next sequence. 

3. If current τ-node consists of [0..∗], then use depth-first method for traversing all β-
trees by following each τ-link. If no leaf-node of any β-tree and of any γ-tree can be 
reached, mark current sequence s as α-unexpected. If any leaf-node of any γ-tree can 
be reached, mark current sequence s as γ-unexpected. If the sequence s is unexpected, 
output the sequence s, the feature u, the antecedent and consequent sequences with 
belief identification. Continue step 2. 

4. If current τ-node does not consist of [0..∗], then use depth-first method for traversing 
all nodes of all β-trees by following each τ-link. If any leaf-node of any β-tree can be 
reached and the path can be verified with respect to the complement of [min..max] 
contained in current τ-node, mark current sequence s as β-unexpected. Use depth-first 
method for traversing all γ-trees by following each η-link from current leaf-node of 
current β-tree. If any leaf-node of any γ-tree can be reached, mark current sequence s 
as γ-unexpected. If the sequence s is unexpected, output the sequence s, the feature u, 
the antecedent and consequent sequences with belief identification. Continue step 2. 

 
 
Unexpected Sequential Patterns and Implication Rules 
According to Definition 6, given an unexpected sequence s stated by a belief b, the feature u is 
the part of the sequence s that causes the unexpectedness {⊯b}. With features, we can study the 

internal structure of the unexpectedness via the notion of unexpected sequential patterns. 
 

Definition 7. Given a belief b and a sequence database D, let D{⊯b} be a subset of the sequence 

database D consisting of all sequences s ∈ D such that s ⊯ b, and let U{⊯b}  be the feature set of u 

⊨ (s ⊯ b) of each unexpected sequence s ∈ D{⊯b}. Given a user specified minimum support 

threshold σmin, an unexpected sequential pattern is a maximal sequence p in the feature set U{⊯b} 

such that σ (p, U{⊯b}) ≥ σmin. ■ 

 
Notice that in the feature set U{⊯b}, the support value of the unexpected part (i.e., sα in α-

unexpected sequences, sα⋅sβ in β-unexpected sequences, and sα⋅sγ in γ-unexpected sequences) is 
100% with perforce. For example, for the β-unexpectedness, the support of the sequence sα⋅sβ in 

the feature set U{⊯b}  is 100%, since for each feature u ∈ U{⊯b}, we have the same structure u = 

sα⋅s'⋅sβ. Therefore, for extracting unexpected sequential patterns, we do not consider the 

subsequences sα , sβ and (or) sγ in the feature set U{⊯b} . Since any existing sequential pattern 

mining algorithms can extract the unexpected sequential patterns, we do not repeat such a process 
in this chapter. 

 
 
Example 12. For the sequence database shown in Figure 3, in the feature set of β-unexpected 

sequences, we find that the sequence 〈(a)(a)(a)〉 is an unexpected sequential pattern that its 



presence gives the β-unexpectedness; in the feature set of γ-unexpected sequences, we find that 

the presence of the sequential pattern 〈(b)(b)(b)〉 indicates β-unexpectedness. ■ 

 
Given an unexpected sequence s and its feature u, the sequence s can be represented as s = 

sa⋅u⋅sc, where |sa|, |sc| ≥ 0 (we have |sc| ≡ 0 for an α-unexpected sequence). The sequences sa and sc 
are called the antecedent sequence and the consequent sequence of an unexpected sequence. 

 

Definition 8. Given a belief b and a sequence database D, let DA
{⊯b}  be the subset of the 

database D that consists of the antecedent sequences sa of each sequence s ∈ D such that s ⊯ b. 

An antecedent rule of the unexpectedness {⊯b} is a rule a → {⊯b} where a is a frequent 

sequence in the sequence set DA
{⊯b}. ■ 

 
Antecedent rules reflect the causes of the unexpectedness contradicting a given belief b. With 

respect to a belief b, the support of an antecedent rule in a sequence database D, denoted as σ (a 

→ {⊯b}, D), is the fraction of the total number of the sequences in the sequence set DA
{⊯b}  that 

support the sequence a on the sequence database D, that is, 

( ) { }( ){ }
( { }, )

A
bs a s s D

a b D
D

σ
∧ ∈

→ =
⊯

⊯

⊑
. 

The confidence of an antecedent rule in the sequence database D, denoted as δ (a → 
{⊯b}, D), is the fraction of the total number of the sequences in the sequence database D 

that support the sequence a, that is, 

( ) { }( ){ }
{ }

( { }, )
( ) ( )

A
bs a s s D

a b D
s a s s D

δ
∧ ∈

→ =
∧ ∈

⊯

⊯

⊑

⊑

. 

 
Example 13. Considering the sequence database shown in Figure 3, according to the belief b 

= [〈(e)(f)〉; 〈(d)〉; 〈(c)〉; 0..3], given a minimum support 50% and a minimum confidence 50%, we 

have the rule 〈(ab)〉 → {⊯β b}, whose support is 60% and confidence is 100%. ■ 

 

Definition 9. Given a belief b and a sequence database D, let DC
{⊯b}  be the subset of the 

database D that consists of the consequent sequences sc of each sequence s ∈ D such that s ⊯ b. 

An antecedent rule of the unexpectedness {⊯b} is a rule {⊯b} → c where c is a frequent 

sequence in the sequence set DC
{⊯b} . ■ 

 
Consequent rules reflect the causes of the unexpectedness contradicting a given belief b. With 

respect to a belief b, the support of a consequent rule in a sequence database D, denoted as σ 

({⊯b} → c, D), is the total number of sequences in the sequence set DC
{⊯b}  that support the 

sequence c on the sequence database D, that is, 



( ) { }( ){ }
({ } , )

C
bs c s c D

b c D
D

σ
∧ ∈

→ =
⊯

⊯

⊑
. 

The confidence of a consequent rule in the sequence database D, denoted as δ ({⊯b} → c, D), is 

the fraction of the total number of the sequences in the sequence set DC
{⊯b}  that support the 

sequence c, that is, 

( ) { }( ){ }
{ }

({ } , )

C
b

C
b

s c s c D
b c D

D
δ

∧ ∈
→ =

⊯

⊯

⊯

⊑

. 

 
Example 14. Considering again the sequence database shown in Figure 3, according to the 

belief b = [〈(e)(f)〉; 〈(d)〉; 〈(c)〉; 0..3], given a minimum support 50% and a minimum confidence 

50%, we have the rule {⊯β b} → 〈(bc)〉, whose support is 60% and confidence is 100%. ■ 

 
For globally illustrating the purpose of mining unexpected sequential rules including the 

antecedent rules and the consequent rules, let us study the following example. 
 
Example 15. Considering a WebMail system, assume a log file containing 10,000 user 

sessions of (Time, IP, Request) where Time identifies the time range of the session, IP identifies 
the range of remote IP addresses, and Request identifies the resources requested such that Request 
∈ {Begin-Session, End-Session, Help, Login, Logout, Mailbox, Reset-Password, …}, where 
Help, Login, Logout, Reset-Password, etc. note Web pages. In such a log file, each user session is 
a sequence. A valid user login process (the access of Login) should redirect the user session to the 
mailbox page (the access of Mailbox), so that a belief on such a behavior can be b = [〈(Login)〉; 
(Mailbox)〉; 〈(Logout)〉; 0..0]. Suppose that we found 100 β-unexpected sequences. 

Assume that we found that 100 sequences in the whole log file with 80 β-unexpected 
sequences support the antecedent sequence 〈(T1, IP1, Begin-Session)〉; 9,000 sequences in the 
whole log file with 20 β-unexpected sequences support the antecedent sequence 〈(IP2, Begin-
Session)〉; 90 β-sequences support the consequent sequence 〈(T1, IP1, End-Session)〉; 15 β-
unexpected sequences support the consequent sequence 〈(IP2, Reset-Password)(IP2, End-
Session)〉; 10 β-unexpected sequences support the frequent consequent sequence 〈(IP2, 
Help)(IP2, End-Session)〉. 

According to the above assumes, we have: the antecedent rule 〈(T1, IP1, Begin-Session)〉 → 

{⊯β b} with support 80/10,000 = 0.8% and confidence 80/100 = 80%; the antecedent rule 〈(IP2, 

Begin-Session)〉 → {⊯β b} with support 10/10,000 = 0.1% and confidence 10/9,000 ≅ 0.1%; the 

consequent rule {⊯β b} → 〈(T1, IP1, End-Session)〉 with support 90/10,000 = 0.09% and 

confidence 90/100 = 90%; the consequent rule {⊯β b} → 〈(IP2, Reset-Password)(IP2, End-

Session)〉 with support 15/10,000 = 0.15% and confidence 15/100 = 15%; the consequent rule {⊯β 

b} → 〈(IP2, Help)(IP2, End-Session)〉 with support 10/10,000 = 0.1% and confidence 10/100 = 
10%. 

Obviously, we can interpret the antecedent rule 〈(T1, IP1, Begin-Session)〉 → {⊯β b} and the 

consequent rule {⊯β b} → 〈(T1, IP1, End-Session)〉 as that the connections from IP range 1 at 



time range 1 can be considered as critical event since the confidences of these two rules are 
strong, however, the antecedent rule 〈(IP2, Begin-Session)〉 → {⊯β b} can be safely ignored not 

only because the very low confidence, but also the consequent rules {⊯β b} → 〈(IP2, Reset-

Password)(IP2, End-Session)〉 and {⊯β b} → 〈(IP2, Help)(IP2, End-Session)〉 show that the 

connections from IP2 do not contain strong behaviors that can be interpreted as critical events. ■ 

 
Based on the above propositions, Algorithm 3 shows the procedure of mining unexpected 

antecedent and consequent rules in a sequence database, with user defined minimum support and 
confidence threshold values. 

 
Algorithm 3 (USR: Mining unexpected sequential rules). 
Input: A sequence database D, a belief base B stored as a belief tree T, minimum support σmin, 

minimum confidence δmin. 
Output: All antecedent and consequent rules stated by each belief b ∈ B, with respect to the 

minimum support σmin and minimum confidence δmin. 

1. Call the procedure USE for extract the antecedent sequence set DA
{⊯b}  and the 

consequent set DC
{⊯b}  stated by each belief b ∈ B. 

2. For each antecedent sequence sa in the antecedent sequence set DA
{⊯b} , find all 

sequential patterns a ∈DA
{⊯b}  such that the support σ (a, D) ≥ σmin. If the fraction of σ 

(a, DA
{⊯b} )/σ (a, D) ≥ δmin, output the rule a → {⊯b}. 

3. For each consequent sequence sc in the consequent sequence set DC
{⊯b} , find all 

sequential patterns c ∈DC
{⊯b}  such that the support σ (c, D) ≥ σmin. If the support σ (c, 

DC
{⊯b}) ≥ δmin, output the rule {⊯b} → c. 

 
Notice that we separate the process of mining unexpected sequential implication rules into two 

standalone sub-routines: we first compute the support value of the premise a or the consequence 
c, then we compute the confidence of the rules, in order to obtain the best performance and 
flexibility. 
 
 
EXPERIMENTAL EVALUATION 
To evaluate the effectiveness and scalability of our approach, we have performed two groups of 
experiments. The first group of experiments is performed on large log files of two real Web 
servers, with the belief base defined by domain experts. The second group of experiments is 
performed on various dense synthetic data files generated by the IBM Quest Synthetic Data 
Generator1, where we use a set of random generated beliefs as the belief bases. All experiments 
have been performed on a Sun Fire V880 system with 8 1.2GHz UltraSPARC III processors and 
32GB main memory running Solaris 10 operating system. 
 

                                                 
1 http://www.almaden.ibm.com/cs/quest/ 



 
Experiments on Web Access Logs 
We performed a group of experiments on two large log files containing the access records of two 
Web servers during a period of 3 months. The first log file, labeled as LOGBBS, corresponds to a 
PHP based discussion forum Web site of an online game provider; the second log file, labeled as 
LOGWWW, corresponds to a Web site that hosts personal home pages of researchers and teaching 
staffs. We split each log file into three 1-month period files, i.e., LOGBBS-{1,2,3} and 
LOGWWW-{1,2,3}. Table 1 details the number of sequences, distinct items, and the average 
length of the sequences contained in the Web access logs. 

 
Access Log Sessions Distinct Items Average Length 
LOGBBS-1 27,294 38,678 12.8934 

LOGBBS-2 47,868 42,052 20.3905 

LOGBBS-3 28,146 33,890 8.5762 

LOGWWW-1 6,534 8,436 6.3276 

LOGWWW-2 11,304 49,242 7.3905 

LOGWWW-3 28,400 50,312 9.5762 
 

Table 1. Web access logs in experiments. 
 
In order to compare our approach with the sequential pattern mining, we first apply the 

sequential pattern mining algorithm to find the frequent behaviors from LOGBBS-{1,2,3} and 
LOGWWW-{1,2,3} with different minimum support thresholds, shown in Figure 4 (a) and (b); 
Figure 4 (c) and (d) show the number of unexpected sequential implication rules discovered by 
USER. Post analysis of the experimental results shows the effectiveness of our approach. 

The result set of our approach is much less than the extremely large sequence set generated by 
sequential pattern mining, where the many discovered frequent sequences are similar in the data 
sets LOGBBS-{1,2,3}. One important reason is that the accesses of the Web server of LOGBBS-
{1,2,3} are very regular and the most frequent behaviors are similar. Moreover, with the 
minimum confidence 20%, totally 15 antecedent rules and 2 consequent rules are finally 
recognized as representing new navigation behaviors of users, however, such behaviors have low 
support values (< 1%) and cannot be discovered by frequency based approaches in our 
experiments, since according to Figure 4 (a), with the minimum support 2%, more than 1000 
frequent sequences are extracted. 

The experiments on the data sets LOGWWW-{1,2,3} show that the comparison of the result 
size is similar to the experiments data sets LOGBBS-{1,2,3}. An important note is that the 
antecedent rules discovered by USER with the minimum confidence 10%, totally 12 rules show 
the relevant information of Web security problems. However, in the data sets LOGWWW-{1,2,3}, 
only 1 consequent rule shows a weak connection of Web security. 
 
 
Experiments on Synthetic Data 
The scalability of the USER approach has been tested first with a fixed belief number of 20 by 
increasing the size of sequence database from 10,000 sequences to 500,000 sequences, and then 



with a fixed sequence database size of 100,000 sequences by increasing the number of beliefs 
from 5 to 25. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
  

Figure 4. (a) Sequential patterns in data sets LOGBBS-{1,2,3}. (b) Unexpected sequential 
implication rules in data sets LOGBBS-{1,2,3}. (c) Sequential patterns in data sets LOGWWW-

{1,2,3}. (b) Unexpected sequential implication rules in data sets LOGWWW-{1,2,3}. 
 
Figure 5(a) shows that, when the belief number is fixed, the number of all unexpected 

sequences increases linearly with the increasing of the size of sequence database. Because the 
data sets generated by the IBM Quest Synthetic Data Generator contain repeated blocks, the 
unexpected sequences with respect to the same 20 beliefs are repeated. Therefore, Figure 5(b) 
shows that, when the belief number is fixed to 20, the run time of the extraction of all unexpected 
sequences increases linearly with the increasing of the size of sequence database. 

Figure 5(c) shows that, when the size of sequence database is fixed, the number of all 
unexpected sequences extracted increases, but not linearly, when the number of beliefs increases. 
This is a previewed result since the number of unexpected sequences depends on the structure of 
beliefs. In this test the last 10 beliefs address much less unexpected sequences than others. Figure 
5(d) shows the increment of run time of the extraction of all unexpected sequences illustrated in 
Figure 5(c), and from which we can find that the increasing rate of extracting time depends on the 
number of unexpected sequences. In our implementation of the USER approach, to predict and 
process a non-matched sequence is much faster than to predict and process a matched sequence. 



 

(a) 

 

(b) 

 

(c) 

 

(d) 
  

Figure 5. (a) Number of all unexpected sequences stated by 20 beliefs. (b) Run time for extracting 
all unexpected sequences stated by 20 beliefs. (c) Number of all unexpected sequences in 100,000 
sequences. (d) Run time for extracting all unexpected sequences from 100,000 sequences. 
 
 
CONCLUSIONS 
In this chapter, we introduce a belief-driven approach USER for mining unexpected sequential 
patterns and implication rules in sequence databases. We first formalize the belief base and 
propose 3 forms of unexpected of sequences, and then we propose the notions and discoveries of 
the unexpected sequential patterns and implication rules, including antecedent rules and 
consequent rules for measuring the unexpected behaviors in sequence data. 

The approach USER is evaluated with different types of Web access logs and synthetic data. 
Our experimental results show that: (1) our approach permits to extract unexpected sequential 
patterns and implication rules with low support value; (2) our approach is capable to find 
unexpected sequences that are included in expected sequences; (3) the unexpected sequences 
depend on the belief base and the characteristics of the sequence database. 

Our approach can be extended with an application of soft beliefs. For example, in a data set, 
we know that 90% of customers purchase a Sci-Fi novel and then action and Sci-Fi films later, so 
it is possible to create a soft belief like “the purchase of a Sci-Fi novel implies the purchase of 
action and Sci-Fi films”, and its degree can be defined by a soft measure function µ (0.9). If in 
another data set, there are only 10% of customers who confirm this belief, then the change of 
degree can be computed by the a soft measure function ψ (0.9, 0.1). We are also interested in 
mining unexpected sequences and sequential rules with the notion of hierarchies and soft 
hierarchies. 
 
 



REFERENCES 
Agrawal, R., & Srikant, R. (1995). Mining sequential patterns. In ICDE (pp. 3-14). 
Angiulli, F., & Pizzuti, C. (2002). Fast outlier detection in high dimensional spaces. In PKDD 
(pp. 15-26). 
Angiulli, F., & Pizzuti, C. (2005). Outlier mining in large high-dimensional data sets. IEEE 
Trans. Knowl. Data Eng., 17(2), 203-215. 
Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2002). Sequential PAttern Mining using a bitmap 
representation. In KDD (pp. 429-435). 
Dong, G., & Pei, J. (2007). Sequence Data Mining (Advances in Database Systems): Springer. 
Garofalakis, M. N., Rastogi, R., & Shim, K. (1999). SPIRIT: Sequential pattern mining with 
regular expression constraints. In VLDB (pp. 223-234). 
Han, J., & Kamber, M. (2006). Data Mining: Concepts and Techniques (2nd ed.): Morgan 
Kaufmann Publishers. 
Jin, W., Tung, A. K. H., & Han, J. (2001). Mining top-n local outliers in large databases. In KDD 
(pp. 293-298). 
Knorr, E. M., & Ng, R. T. (1998). Algorithms for mining distance-based outliers in large datasets. 
In VLDB (pp. 392-403). 
Li, D. H., Laurent, A., & Teisseire, M. (2007). On transversal hypergraph enumeration in mining 
sequential patterns. In IDEAS (pp. 303-307). 
Lo, D., Khoo, S.-C., & Liu, C. (2007). Efficient mining of iterative patterns for software 
specification discovery. In KDD (pp. 460-469). 
Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event 
sequences. Data Min. Knowl. Discov., 1(3), 259-289. 
Masseglia, F., Cathala, F., & Poncelet, P. (1998). The PSP approach for mining sequential 
patterns. In PKDD (pp. 176-184). 
McGarry, K. (2005). A survey of interestingness measures for knowledge discovery. Knowl. Eng. 
Rev., 20(1), 39-61. 
Padmanabhan, B., & Tuzhilin, A. (1998). A belief-driven method for discovering unexpected 
patterns. In KDD (pp. 94-100). 
Ramaswamy, S., Rastogi, R., & Shim, K. (2000). Efficient Algorithms for Mining Outliers from 
Large Data Sets. In SIGMOD (pp. 427-438). 
Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., et al. (2004). Mining sequential 
patterns by pattern-growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng., 16(11), 
1424-1440. 
Spiliopoulou, M. (1999). Managing interesting rules in sequence mining. In PKDD (pp. 554-560). 
Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: generalizations and performance 
improvements. In EDBT (pp. 3-17). 
Sun, P., Chawla, S., & Arunasalam, B. (2006). Mining for Outliers in Sequential Databases. In 
SDM (pp. 94-105). 
Wang, J., & Han, J. (2004). BIDE: Efficient mining of frequent closed sequences. In ICDE (pp. 
79-90). 
Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mining closed sequential patterns in large 
databases. In SDM (pp. 166-177). 
Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine 
Learning, 42(1-2). 


