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ABSTRACT

As common criteria in data mining methods, the diescy-based interestingness measures
provide a statistical view of the correlation iretbata, such as sequential patterns. However,
when we consider domain knowledge within the mirpngcess, the unexpected information that
contradicts existing knowledge on the data has miees importance than the regularly frequent
information. For this purpose, we present the aagitdJSER for mining nexpected sguential
rules in sequence databases. We propose a beliefddformalization of the unexpectedness
contained in sequential data, with which we prop8strms of unexpected sequences. We
further propose the notion of unexpected sequepditierns and implication rules for determining
the structures and implications of the unexpectesln€he experimental results on various types
of data sets show the usefulness and effectivasfess approach.
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INTRODUCTION

Most real world applications process the data gtimesequence format, where the elements in
data are sequentially ordered with temporal origpaglation. For instances, in a customer retail
database, a sequence can be all purchases ofcenensirdered by the time of transaction; in a
Web access log file, a sequence can be all of theseurces accessed during a user session
ordered by the time of request; in a telecommuitnatetwork monitoring database, a sequence
can be all events during a period ordered by thee tof occurrence; in a DNA segment, a
sequence is a succession of nucleotide subunits spitial order, etc. In order to discover the
knowledge hidden in such sequential data, sequdsizemining techniques (Dong & Pei, 2007;



Han & Kamber, 2006) have been highly developed waitkly applied in many application
domains.

As one of the most important models of sequenca mhiting, the sequential pattern proposed
by Agrawal and Srikant (1995) provides a statistfoaquency based view of the correlations
between the elements in sequential data. The proloie mining sequential patterns can be
formally described as follows.

Given a set of binary-valued attributBs= {i,i,...,in}, an attribute is antem An itemset
denoted as = (jiiz...im), is an unordered collection of items. s&kquencas an ordered list of
itemsets, denoted as= (l1l»...1x). A sequence databasdenoted ab, is a large set of sequences.
Given two sequences= (l1l»...Im) ands' = (I'1l'z...1'y), if there exist integersgii<i>< ... <im
<nsuchthat, Oy, 20 I'i, ..., Im O I'iy, then the sequensds asubsequencef the sequencg

and the sequenceis asuper sequencef the sequencsg denoted as C s', and we say that the

sequencsis included inthe sequencg, or the sequencg supportsthe sequence If a sequence
sis not included in any other sequences, theneahjgences is amaximal sequenc& hesupport
(or thefrequency of a sequencein a sequence databd3edenoted aw (s, D), is the fraction of
the total number of sequences in the dataliadbat supports. Given a minimal frequency
thresholdminimum supporspecified by user, denoted asn, a sequenceis frequentif ¢ (s, D)

> omin. A sequential patterris a frequent maximal sequence, so that the pmoldémining
sequential patternis to find all frequent maximal sequences in aisege database.

Example 1. Let D be a customer retail database, with the mund supporiomin = 0.5, we
may find the sequential pattern s (€Sci-Fi-Novel)(Action-Film Sci-Fi-Film)(Rock-Musi¢)
whereg (s, D) = 0.6, which can be interpreted as “60%¢uwétomers purchase a Sci-Fi novel,

then purchase action and Sci-Fi films later, amshiburchase a rock music CH.

Example 2. Let D be a Web access log database, with the minimurmpostpmi» = 0.5, we
may find the sequential pattesn= ((login)(msglis)(msgreagimsgread(logoud) whereo (s, D)
= 0.8, which can then be interpreted 88% of users visit the login page, then visit tressage
list page, then read messages, and at last IGg@8ut

Up to now, a great deal of research work focusegftectively mining sequential patterns
(Ayres et al, 2002; Li et al, 2007; Masseglia etl@98; Pei et al, 2004; Srikant & Agrawal, 1996;
Zaki, 2001) and the variances (Garofalakis et @391 Lo et al, 2007; Mannila et al, 1997; Wang
& Han, 2004; Yan et al, 2003). With sequential @atttmining, we can extract the sequences that
reflect the most general behaviors within the canté sequential data, which can be further
interpreted as domain knowledge for different pggm However, although sequential patterns
are essential for behavior recognition, when wesittsr domain knowledge within the mining
process, the unexpected sequences that contragitthg knowledge on the data have never less
importance than the frequent sequences. On the b#rel, such unexpected sequences do not
mean that they cannot be frequent, so that theist ftlowing problems in discovering the
unexpectedness in data with the frequency-basetesttngness measures.

First, the redundancy problem of frequency-baséd aéning methods undermines many real
world applications where the exponential pattersaauence sets generated by mining processes
make the post analysis extremely hard. Hence dimtification of unexpected information might
be impossible when the support of such unexpeagdences, within the context of sequence



data mining, is very low such that the unexpectssimaay be hidden in millions of sequential
patterns.

Example 3. Let us consider the instance illustrated in ExaniplAssume that in the database
D, there exist 6% of customers who purchase a Scidvel then action and Sci-Fi films,
purchase a classical music CD instead of a rockan@®B. This behavior is unexpected to the
frequent behavior described in Example 1 and camteeesting for product promotion. In fact,
with sequential pattern mining, we are able to fudh a behavior only if the minimum support
threshold is no greater than 0.06. However, with, = 0.06, the result sequence set of all
sequential patterrssuch thatg (s, D) > 0.06 might be very large and that makes it impaedb

identify the above behavidll

Secondly, if an unexpected sequence is “incomplée’'tomparison with an expected
sequence, it is impossible to determine the formith classical sequential pattern mining:
according to the definition of sequential pattetre former is included in the latter so that the
former will not appear in the result sequence seileanthe latter is frequent. The following
example illustrates this issue (notice that we @b strictly indicate the difference between
sequenceand sequential patternhowever, we use the tersequencefor a full sequence
contained in the database, and the teegquential patterfor a potentially frequent part of a full
sequence contained in the database).

Example 4. Considering again the Web access log datababastrated in Example 2, let the
sequential patters, = ((login)(msglis)(logoud) be an expected access sequence with respect to
the workflow of the service, where we do not reguite access of the resourcesgread in the
workflow since there can be no new unread messages user. Assume that the sequeace
{(login)(logoup) is unexpected to the workfloss and it is caused by failing to list all messages
of a user. Lets; = ((login)(msglis)(msgreadimsgreadilogoud)y and s, = ((login)(option)
(password(logoud) be two sequential patterns (in order to simplifgy examples; ands, are not
included in a same sequence), then we (g D) > g (%, D) = g(s1, D) ando (s, D) = o (s,

D). Assume tha$; ands; are the only sequential patterns other thahat includes, then we can
conclude the existence of the unexpected sequsihead only if g (s, D) > g (s1, D) + o (S, D).
Nevertheless, ifs is unknown, then we have to examine the suppduesgaof all possible
combinations of subsequencessafs: ands, for seeking the unexpected information, and the
computation and identification tasks will becomé&exely hardll

The complex constraint based approaches like SPHRbposed by Garofalakis et al (1999)
can find the unexpected sequences, however thagagésthat we must know the composition of
an unexpected sequence before the extraction, rmimd@ortant drawback is that we cannot find
all sequences representing the behavior. The clesgdential pattern mining (Yan et al, 2003)
may tell the existence of the unexpected one bypewimg the difference of the support values of
all sequences that include the unexpected sequbnegyver, only if we have already known
what the unexpected sequences are, we have talseelexpectedness in the result set of all
possible combinations of candidate unexpected segse

In this chapter, we propose a novel approach US#Rirfg unexpected spuential_ules) for
finding unexpected sequential rules in large secu@atabases. Furthermore, when we consider



the unexpectedness in sequential data, we areegtéel not only in the internal structures, but
also in the premises and consequences represesntedles on the discovered unexpected
sequences. Such rules are important to a lot dfwedd applications, especially to the early
prediction of critical events or behaviors in thendins such as telecommunication network
monitoring, credit card fraud detection, finanaisk investigation, DNA segment analysis, and
so on. Notice that our goal is not to find infrequeules from sequence databases, but to find the
rules disclosing the information that contradictsng knowledge.

The rest of this chapter is organized as followexcti®n 2 the related work on unexpected
pattern and sequence mining. Section 3 presentslittevery of unexpected sequences and
sequential implication rules for determining theexipectedness in sequence databases. Section 4
shows the results of the experimental evaluatioausfapproach on real data and synthetic data
for testing the effectiveness and the scalabikipally, we discuss our further research direction
and we conclude in Section 5.

RELATED WORK

In this chapter, we propose a subjective measuresdquence data mining. McGarry (2005)
systematically investigated the interestingnesssmmes for data mining, which are classified into
two categories: the objective measures based onstduestical frequency or properties of
discovered patterns, and the subjective measusesilim the domain knowledge or the class of
users. Silberschatz and Tuzhilin (1995) studied shbjective measures, in particular the
unexpectedness and actionability. The tarnexpectednesstands for the newly discovered
(sequential) patterns that are surprising to ugdeos.example, if most of the customers who
purchase Sci-Fi movies purchase rock music, themrtistomers who purchase Sci-Fi movies but
purchase classical music are unexpected. The tationability stands for reacting to the
discovered (sequential) patterns to user’'s advent&gpr example, for the customers who
purchase Sci-Fi movies without purchasing any kifidnusic, it is actionable to improve the
promotion of rock music, even though it is unexpdct Therefore, in many cases, the
unexpectedness and actionability exist at the same, however, clearly, some actionable
(sequential) patterns can be expected and someectexi (sequential) patterns can also be non-
actionable (Silberschatz & Tuzhilin, 1995).

Silberschatz and Tuzhilin (1995) further introdude types of beliefshard beliefandsoft
belief for addressing unexpectedness. According to asitipwoposition, the hard belief is a
belief that cannot be changed by new evidencesia, @nd any contradiction of such a belief
implies data error. For example, in the Web aclmgsanalysis, the error “404 Not Found” can be
considered as a contradiction of a head beliet tgsources visited by users must be available”;
however, the soft belief corresponds to the comgtraon data that are measured by a degree,
which can be modified with new evidences in datat tlhontradict such a belief and
interestingness of new evidences is measured bghaege of the degree. For example, when
more and more users visit the Web site at niglet,ddgree of the belief “users access the Web
site at day time” will be changed. The computatadrnthe degree can be handled by various
methods, such as the Bayesian approach and thé&icoatiprobability.

With the unexpectedness measure, Padmanabhan ahdifm (1998) propose a belief-driven
approach for finding unexpected association rulasthat approach, a belief is given from
association rule, and the unexpectedness is dtgtedmantic contradictions of patterns. Given a
beliefX - Y, aruleA _, Bis unexpected if: (1) the patterBsandY semantically contradict each



other; (2) the support and confidence of the Allg¢ X —. B hold in the data; (3) the support and
confidence of the ruld U X — Y do not hold in the data. The discovery procegseiformed

within the framework of tha priori algorithm.

Spiliopoulou (1999) proposed an approach for minimgxpectedness with sequence rules
transformed from frequent sequences. The sequeleésrbuilt by dividing a sequence into two
adjacent parts, which are determined by thport confidence and improvementfrom
association rule mining. A belief on sequence®isstrained by the frequency of the two parts of
a rule, so that if a sequence respects a sequaleéut the frequency constraints are broken,
then this sequence is unexpected. Although thikwonsiders the unexpected sequences and
rules, it is however very different to our problémthe measure and the notion of unexpectedness
contained in data.

The outlier mining focuses on finding infrequenttpens in data with objective measures of
interestingness, which are mostly distance-basedi(Mi & Pizzuti, 2002, 2005; Jin et al, 2001;
Knorr & Ng, 1998; Ramaswamy et al, 2000). The staflputlier mining in sequential data is
very limited. To the best of our knowledge, the rapgh proposed by Sun et al (2006) is
currently the unique one. In our approach, the paetedness is stated by the semantics and
temporal occurrences, instead of the statistiejuency or distance. Moreover, we concentrate
on finding sequential implication rules of unexmettess, which is not covered by outlier
mining. For these meanings, we consider the unéggress within the context of domain
knowledge and the aspectdlid” within the contact of the classical notions ofppart and
confidence.

MINING IMPLICATION RULES IN UNEXPECTED SEQUENCES

Let s, » sz be asequential ruleof sequences, whes , s; are two sequences. Letbe the
constraint on the number of itemsets, ordheurrence distancéetween the sequencgsands;

. Let 7 be the constraint on the semantics of sequenags;thens,, Wheres, is a sequence that
semantically opposite to the sequersge A belief is considered as a sequential rule and the
constraintsr andz on the rule. A sequenesas unexpected s contradicts a belief.

We concentrate on finding the premises that pogkesgnexpectedness in sequences and the
consequences engendered in the sequential dathislrsection, we present the discovery of
unexpected sequences and sequential implicati@s fior determining the unexpectedness in
sequence databases.

Belief Base

In order to construct the belief base for miningxected sequences, let us first introduce some
additional notions on sequential data.

Thelengthof a sequenceis the number of itemsets contained in the seqyatenoted als|.
An empty sequenas denoted ag, where|g = 0. Theconcatenatiorof sequences is denoted as
the forms,[S,, so that we havsi[S;| = |si] + |s2]. We denotgs the first itemset of the sequenge

ands] the last itemset of the sequersc€&or two sequencesands' such thas C s', we notes C!

s'if we have[s [ [s', notesC! s'if we haves] [ s, and notes L7 s' if we have[s [ [s'ands] [



s]. We denotes L. s' that the sequenceis aconsecutive subsequenctthe sequencs’. For

example, we havga)(b)(0)) Cc ((b)(@)(ab)(9)(d)), but((a)(b)(c)y ¥ ((@)(b)(ab)(©)(d)).
Given sequences s, ands, such thasi[S, E s, theoccurrence relationdenoted as-/, is a

relationr between the occurrencessefands; in s, wherer = [min.may (min, maxON andmin

< may is the constraint on the occurrence distance dxte; ands,. Let|s| = [min.maX (or|s| F
1) denote that the length of the sequessatisfies the constraifinin.max, that is,min< |s| <
max then the relatios; —’s; represents

sBC $=(s0asc, 30( |s7).

Whenmaxis not specified (or cannot be specified, likax= «), we notemaxas[j that is,r
= [min..[J. In the particular cases, farin = max= 0, we notes; —[%%s, ass; — 5 for min=0
andmax= [] we notes, —%7 s, ass, —s,. Given a sequenceand an occurrence relationwe
notesk r if the sequencs satisfies the relation

Example 5. Given an occurrence relatian = ((a)) —3 ((c)), we have((@)_(c)) ¥ r,

(@®d)(C) F 1. (@0)(b)(C)) =, (@) (be)(b)(c)) = r, and((a)(b)(b)(b)(c)) < r. W

Given a sequential rulg, . s;, the semantic constraig} ZsemS, requires that the occurrence
of the sequencs; should not be replaced by the occurrence of thaesgces,, sinces; ands, are
semantically opposite to each other. That is, \his meaning, since the rug -, s; can be

interpreted as the implicatia) C s— s,[S; C s, according tes; #semS, We have the implication

S C s = 8,8, Z s Moreover, considering the semantic constrajntogether with the
occurrence constraint we have the following relation:
s,Cs=(s080sC, O s1'8,¢, )8 |is7).

From these constraints, we define the belief om nskaviors as follows.

Definition 1. A belief on sequences consists of a sequential syle, s;, an occurrence
constraintz = [min.maxX (min, maxON andmin < maX, and a semantic constraint. s; ZsemS,
on the rule, denoted &s=[s,; sz; S,; min.may, such that for any sequengsatisfies the belief
b, denoted ask b, we have thas, C simpliess,[3TS; E. sands,STS, ZC s, where|s|F 7. i

Beliefs can be generated from existing domain kedgé on common behaviors of the data,
or from the predefined workflows. Let us examine txample 3 and 4 for illustrating how
beliefs work.

Example 6. Let us consider Example 3. According to customecipase behaviors, we first
create the sequential ruléSci-Fi-Nove)(Action-Film Sci-Fi-Film)) - ((Rock-Musig), which
indicates that the purchases of a Sci-Fi novel #ation and Sci-Fi films later imply the purchase
of a rock music CD. If we just expect that a pusghaf rock music CD should be performed after



the precedent purchases, then the following bet@fi be established for describing this
requirement:
[{(Sci-Fi-Nove)(Action-Film Sci-Fi-Film)); ((Rock-Musig); ¢; 0..],

where the position of the sequersgés empty since at this moment we are not yet takin
the semantic opposition into account.

Now we consider the classical music to be semahtiopposite to the rock music, then we
have the semantic constraint(é@Rock-Musi}) Zsem((Classical-Musiy), then the above belief can
be rewritten as follows:

[{(Sci-Fi-Nove)(Action-Film Sci-Fi-Film)); ((Rock-Musig); ((Classical-Musig); 0..0].

Moreover, if the customer transaction records shioat most of customers purchase a
rock music CD in a short delay after purchasingcaFs novel then action and Sci-Fi
films, for example in the next 3 to 5 purchasegntlthe second belief can be further
rewritten as:

[{(Sci-Fi-Nove)(Action-Film Sci-Fi-Film)); ((Rock-Musig); ((Classical-Musiy); 3..5. B

Example 7. Considering Example 4, the user access sequgloggn)(msglisj(logoud) is
expected to be frequent. According to the workflofnthe Web site, the following rules can be
generated:((login)(msglis}) - ((logou)) and ((login)) - {(logoud), respectively with the
occurrence constrain{®..[] and[1..[], since the access tdgout should not just be after the
access ofogin. Hence, we have the following beliefs without satiaconstraint:

[((login)(msglis}); ((logoup); ¢ 0. and[((login); ((logoup); @ 1.0].
In order to constrain the relation betwelegin and logout the above two beliefs can be
rewritten as:
[((login)); (msglis)); ((logoud); 0..q,
wherelogout is semantically opposite tmsglistaccording to the access login. Other
user behaviors can also be represented by belieésfollowing belief,
[{(login)(msglis}); ((msgreadh; ((logoud); 0..5
depicts that we expect that users will not logouhe system too early, for example, after at least
5 visits of other resourcelll

In our approach, we consider tbensistent beliein the semantics, that is, for any belef
[Sas Spi Sy; min.may, we haves, Z . For example, considering a bellef [((a)); ((b)(c));
{(c)); 0..3, although we cannot assert that the sequébdE)) is not semantically opposite to the
sequencé(c)) (such aslf) stands for fiot’ and () stands for §ood within the context of text

mining), such a belief is rather ambiguous in tamantics: sincgc)) C ((b)(c)), we can say that

{(c)y is more general thajib)(c)), which means thahe unexpectedness is more general than the
expectedness a sequence. In this case, any unexpected segjiealways expected. Notice that
our goal is to find the unexpectedness, but notetgectedness, so that the inverse, that
expectedness is more general than the unexpecgdmatiowed in a sequence. Obviously, as to
be consistent, the semantics of two beliefs insémae belief base must not contradict each other.
For instance, the beliefs:; S; S3; min.maxy and[s;; s; s2; min.may semantically contradict
each other, and must be take into account duriemgadhnstruction of a belief base.



A belief base denoted a®B, is a set of consistent beliefs, which are stdred prefix
representetielief treg denoted a3, defined below.

ROOT 06
1 Sei-Fi-Nowvel
2 Action-Film
0 © 3 Sci-Fi-Film
i 4 Rock-Music
o 5 Classical-Music
2 & login
griree e o 7 mEglist
8 logout
9 msgread

Figure 1. The belief tree for Example 6 and 7.

1. The belief tre€Tl consists of one root node and three groups oftrads @-tree,
treesand jtreeg as the children of the root, where each groupaetively represents
thes,, sz, ands, parts of each belidf [ B.

2. Only onea-treeis contained in a belief base, which consistsvof kinds of nodes-
node and -node where i-node constitutes the prefix-tree representation o§,a
sequence andnodeconsists of two fields for holding threin andmaxvalues. The
prefix tree representation of sequences is detailetie approach PSP proposed by
Masseglia et al (1998).

Eachi-nodeis connected by set-edger aseq-edgdor representing sequences.

4. A [treeis a prefix tree representation of sequencesjsacdnnected with @&nodein
the a-tree by ther-link, a special edge inter-sub-trees.

5. A ptree consists ofi-nodesfor storing sequences andnodesidentifying unique
unexpectedness IDs, and is connected with a leaf/®free by the 7-link, another
special edge inter-sub-trees.

6. Eachz-link has a copy connected to its parenbdefor the needs of skippirsy.

For instance, all beliefs concentrated in Examplné 7 are shown in Figure 1 as a belief
tree.

Based on the above definition and the semanticistemee of a belief, we propose the
following belief tree construction algorithm.

Algorithm 1 (Belief tree construction
Input: A belief treeT and a belieb =[s,; s;; S,; min.max.
Output: The belief tred with the beliet appended.

1. If the belief treeT is empty, then initialize the global belief baséormation (e.g.,
number of nodes, number of beliefs, etc.) and erdwt root node for the belief tree.



2. Verify the input belieb. If s,C sz, min >max or min < 0, then rejecb and exit the
construction procedure.

3. Appends, as prefix tree to the root node of the belief tnekere each item is dn
node Any two items inter-itemsets are connected I8eq-edgeand any two items
within an itemset are connected bget-edgeAppend ar-nodewith min andmaxto
the last-nodeof s,.

4. Transformsg to prefix tree representation and connect it ®nbwly created-node
by rlink.

5. Transforms, to prefix tree representation and connect it ®riewly created leaf of
the BFtree by #-link and copy this link to the parernode and then label the belibf
by a unique identification.

6. Update the global belief base information and #étconstruction procedure.

Given a belief tred constructed from a belief baBea sequence can be verified in at most
|B| traverses of the belief tr@ewith respect to each belibfin the belief base.

UNEXPECTED SEQUENCES AND FEATURES

Given a belieb and a sequencg if s satisfies the belidb, thens is anexpected sequeneéth
respect to the belidd, denoted asF b, ands ¥ b denotes that does not verify the belidf; if s

contradicts the belieb, thens is anunexpected sequencdenoted as ¥ b. We denote the

unexpectedneghat “contradicting the belidf’ as {¥b}. According to the occurrence constraint

and the semantic constraint, we propose three fofrasiexpected sequencesunexpecteds
unexpecte@nd -unexpected

Definition 2. Given a belieb =[s,; s5; S,; 0. and a sequenceif s, C s and there does not

existsg, s, such that,$3;C sors,S,C s, then the sequensds ang-unexpectedequencetated

by the beliefo, denoted as ¥, b. The g-unexpectednesstated by the belidf is denoted aslf,
b}. &

A belief with the occurrence constraint= [0..[] states thats; should occur after the
occurrence 0§, in a sequence Hence, the sequenseontradicts the constraimt=[0..] if and

only if s, £ s ands,[S; Z s. Notice that for not confusing the unexpected segas caused by

the occurrence constraint or the semantic constigishould not occur after the occurrencesof
in an g-unexpected sequence.

Example 8. Let us consider the beliefs listed in Example Bere the two beliefs
b: = [((Sci-Fi-Nove)(Action-Film Sci-Fi-Film); ((Rock-Musiy); ¢; 0..]
and
b2 = [{(Sci-Fi-Nove)(Action-Film Sci-Fi-Filn)); ((Rock-Musig); ((Classical-Musig); 0..[]



determineg-unexpected sequences. The belieflepicts that a purchase of rock music CD is
expected after the purchases of a Sci-Fi novel #aion and Sci-Fi films later. The belibf
further requires that the purchase of a classieadienCD should not occur. Therefore, given the
sequence

s ={(Sci-Fi-Nove)(Printer)(Action-Film Sci-Fi-Film)(Classical-MusiyPS3-Statio}y,

we haves ¥, by buts¥ by, that is,sis not ang-unexpected sequence with respect to the belief

b,. B

Now let us consider the recognition gfunexpected sequences with respect to a belief base
i.e., a set of beliefs. For instance, given a lbblse consists of 3 beliefs
by = [((a)); (b)) @i 0.7,
b = [((a)); ((©)); @ 0.,
bs = [((@)); ((d)); @ 0.7,

and a set of sequences

s =((a)(b)),

s =((a)(c)),

sz =((a)(d)),

sS4 =((a)(e)),
we have the following relations:

SI%abZ, Sluﬁgb&

&%gbly&%ab3;

S31'#abl, S3H’£gb25
and

S, by, sl b2, i bs.
Clearly, the beliefd, by, andbs depicts that/(b)), ((c)), or ((d)) should occur after the

occurrence of((a)), thus, in this meaning, only the sequerseis unexpected. However,
according to Definition 2, all of the 4 sequences g-unexpected. In order to avoid this

redundancy problem, we further define the notiog-oinexpected sequence within the context of
belief base as below.

Definition 3. Given a belieb = [s,; s5; s,; 0.[] and a sequencg let B be the belief base
such thab [J B. Let B, be a subset d@ such that for each’ (J B, whereb' =[s';; s'5; s',; 0.0,

we haves', = s, impliesb’' 0 B,. If s, C sand there does not exIst(] B, whereb' =[s';; s's; S,
0.0, such thas,8'; C s ors,s', C s, then the sequenads ang-unexpectegequencetated by

the beliefb of the belief bas®, denoted as ¥, bg. Respectively, the-unexpectednesstated
by the belieb of the belief basB is denoted asf,bg}. B

In fact, ang-unexpected sequence stated by a bélief a belief basd is an unexpected
sequence determined by all sub-trees of a sanmlewheremin = 0 andmax= [J In the rest of



the paper, without special notice, the notat®i¥, b and {£, b} denote theag-unexpected
sequence ang-unexpectedness stated by a bdligfithin the context of a given belief baBe

Figure 2. Determiningr-unexpected sequences in a belief base.

Definition 4. Given a belieb =[s,; s5; S,; min.maX (minz 0 ormax# [) and a sequenc®
if 5,85 C s and there does not exist a sequesisaich thafs'| F [min.may ands,SS; C. s, then

the sequencs is a funexpectedsequencestated by the belielh, denoted as ¥, b. The 5
unexpectednesdated by the belidfis denoted asi;b}. B

A Bunexpected sequence reflects that the occurremtstraint7 = [min.max (r# [0..0]) on
the sequential ruls, - s;is broken because the occurrencesoih the sequence contradicts
the constraint.

Example 9. Let us consider the below belief proposed in EXartp
[{(Sci-Fi-Nove)(Action-Film Sci-Fi-Film)); ((Rock-Musig); ((Classical-Musiy); 3..5.

The purchase of a rock music CD is expected within next 3 to 5 purchases after the
purchases of a Sci-Fi novel then action and SdikfAs later. In this case, the customers who
purchase a rock music CD just in the next purcloasdter many purchases of other products are
unexpected to this belief and might be valuablenttke new promotion strategies on related
products. Notice tha{(Classical-Musigy in this belief is not considered within the corttek 3

unexpected sequencdik.

Definition 5. Given a belieb = [s,; s;; s,; min.maxX and a sequencg if s,[8,C s and there

exists a sequencg such that|s| F [min.maX ands,S'S, C. s, then the sequenceis a )

unexpectesdequencetated by the belidd, denoted as ¥, b. The -unexpectednestated by the
beliefb is denoted asi{ b}. B

A yunexpected sequence is concentrated on the sesiaht occurrence sf is replaced by
its semantic oppositios, within the occurrence constraint [min.max.

Example 10. Let us consider again the belief studied in Exangpl
[{(Sci-Fi-Nove)(Action-Film Sci-Fi-Film)); ((Rock-Musig); ((Classical-Musi}); 3..5.



The rock music can be considered as being opptmsitee classical music. Therefore, the
purchase of a rock music CD cannot be replacethéyptirchase of a classical music CD. In this
example, since the purchase of a rock music CRpeaed within the next 3 to 5 purchases after
the purchases of a Sci-Fi novel then action andF&&ims later, the purchase of a classical
music CD is not expected within the interval of tlext 3 to 5 purchases. Of course, in this case,
the purchase of a classical music CD is allowedhiwithe next 3 purchases or after the next 5

purchases according the purpose of this bdllef.

A feature is the unexpected part of an unexpecegience, which informs the internal
structure of the unexpectedness.

Definition 6. Given a belieb = [s,; s5; s,; min.maxX and an unexpected sequesaich that
sk b, thefeatureof the unexpected sequergis the maximum consecutive subsequanoéthe

sequence such that: (1) iE}¥, b, we haves.[u = s, wheres, is a sequence such thaf> 0; (2) if
skEsb, we haves,Us: = s, wheres, ands; are two sequences such tfsgt= 0, |s| = 0,s, Z s,
s, Elu, ands; Tl u (i.e., s,8; EP u); (3) if sk, b, we havesiU[s = s, wheres, ands. are two
sequences such thef = 0,|%| = 0,s, Z s, s,Clu, ands,C! u (i.e.,s,8,CP u). The feature of

an unexpected sequerswith respect to a belidfis denoted asF (s¥ b). &

Figure 3. Features of unexpected sequences.

Example 11. Let us consider a belidd = [((€)(f)); ((d)); ((c)); 0..3, Figure 3 shows the
features of a set gF-unexpected op-unexpected sequencdik.

Based on the definitions of unexpected sequenadshanstructure of belief tree, we have the
following algorithm for mining unexpected sequences

Algorithm 2 (USE: Mining unexpected sequerices
Input: A sequence databaBe a belief bas® stored as a belief trde
Output: All unexpected sequences with respect to eachftieli B.

1. Read a sequencefrom the sequence databd3e If all sequences iD have been
processed, exit the procedure.



2. Use depth-first method for traversing threree of the belief tred, till to reach ar-
node If no -node can be reached, reject current sequence and bastep 1 for
restarting with next sequence.

3. If current -nodeconsists 0f0..[, then use depth-first method for traversingll
treesby following eachr-link. If no leaf-node of any*tree and of anyytree can be
reached, mark current sequerscas a-unexpected. If any leaf-node of apygree can
be reached, mark current sequeses jrunexpected. If the sequensé unexpected,
output the sequence the featureu, the antecedent and consequent sequences with
belief identification. Continue step 2.

4. If current -nodedoes not consist ¢0..[], then use depth-first method for traversing
all nodes of al-treeshy following eachz-link. If any leaf-node of ang-tree can be
reached and the path can be verified with respetheé complement dfmin..max
contained in current-node mark current sequensasunexpected. Use depth-first
method for traversing altreesby following eachs-link from current leaf-node of
currentFtree If any leaf-node of anytree can be reached, mark current sequence
as jrunexpected. If the sequensé unexpected, output the sequegncthne featuray,
the antecedent and consequent sequences with ideligification. Continue step 2.

Unexpected Sequential Patterns and Implication Rules

According to Definition 6, given an unexpected sxpes stated by a belidb, the featurau is
the part of the sequenedhat causes the unexpectednegsb}{ With features, we can study the
internal structure of the unexpectedness via thiemof unexpected sequential patterns.

Definition 7. Given a belieb and a sequence datab&sdet Dy, be a subset of the sequence
databas® consisting of all sequences$] D such thas ¥ b, and letU;,.; be the feature set af
F (s ¥ b) of each unexpected sequerse@] Dy.. Given a user specified minimum support
thresholdomin, anunexpected sequential pattdma maximal sequengein the feature satl,.,
such thatg (p, Ugyt) = Ghin. B

Notice that in the feature skk,.,, the support value of the unexpected part (§£in a-

unexpected sequencesis; in f-unexpected sequences, ajd, in junexpected sequences) is
100% with perforce. For example, for tainexpectedness, the support of the sequs/gein

the feature set);., is 100%, since for each featwe] U;.y, we have the same structure=
S.8'Ss Therefore, for extracting unexpected sequentitepns, we do not consider the
subsequences, , s; and (or)s, in the feature set;.,. Since any existing sequential pattern

mining algorithms can extract the unexpected sdiplgratterns, we do not repeat such a process
in this chapter.

Example 12. For the sequence database shown in Figure 3eifettiure set gf-unexpected
sequences, we find that the seque((@@)(a)) is an unexpected sequential pattern that its



presence gives thgunexpectedness; in the feature sejsahexpected sequences, we find that
the presence of the sequential pattéoj(b)(b)) indicatesg-unexpectednesil

Given an unexpected sequergand its featurel, the sequence can be represented as
SUS, wherelsy|, || = 0 (we haves| = 0 for ana-unexpected sequence). The sequescands.
are called thantecedent sequenaad theconsequent sequenoéan unexpected sequence.

Definition 8. Given a beliefo and a sequence databddglet D".; be the subset of the
databasé® that consists of the antecedent sequesgeseach sequence] D such thas ¥ b.
An antecedent ruleof the unexpectednes##} is a rulea - {/¥b} where a is a frequent
sequence in the sequence34t.,. B

Antecedent rules reflect the causes of the unegdaess contradicting a given belefwith
respect to a belidd, the support of an antecedent rule in a sequeaiabasdd, denoted agr (a

_. {¥b}, D), is the fraction of the total number of the semes in the sequence &, that
support the sequeneson the sequence datab@zehat is,

(sliac 90( w, )}

Dl

o@a-{kg D =

The confidence of an antecedent rule in the sequéatabas®, denoted a® (a -
{}¥b}, D), is the fraction of the total number of the semes in the sequence databBse
that support the sequenagthat is,

‘{s‘(ag S)D( SHI» )H |
{sl(ac 90(<1 D}

oa-{¥hQ D=

Example 13. Considering the sequence database shown in F&jwecording to the belidf
= [K(e)®)); ((d)y; ((c)); 0..3, given a minimum support 50% and a minimum comfcde50%, we

have the rul€¢(ab)) - {#zb}, whose support is 60% and confidence is 10l%0.

Definition 9. Given a beliefo and a sequence databd3glet D,.; be the subset of the
databas® that consists of the consequent sequeaceteach sequence] D such thas J¥ b.
An antecedent ruleof the unexpectednessl} is a rule §¢¥b} — c wherec is a frequent
sequence in the sequence38t.y,. B

Consequent rules reflect the causes of the uneegheess contradicting a given belefWith
respect to a belidh, the support of a consequent rule in a sequeniabakeD, denoted agr

({¥b} - c, D), is the total number of sequences in the sequeat®®.y; that support the
sequence on the sequence datab&zehat is,



feec 90 = )
Dl
The confidence of a consequent rule in the sequéatdas®, denoted a® ({¥b} - c, D), is

o{¥d -¢D =

the fraction of the total number of the sequenceshe sequence s&.; that support the
sequence, that is,

Hs‘(c; QD( @ Oy )H |

o{¥ ~cD = o
s

)

Example 14. Considering again the sequence database showiguneR3, according to the
belief b = [((e)(f)); ((d)); ((c)); 0..3, given a minimum support 50% and a minimum comfage

50%, we have the ruled;b} - ((bc)), whose support is 60% and confidence is 100%.

For globally illustrating the purpose of mining wupected sequential rules including the
antecedent rules and the consequent rules, létidyg the following example.

Example 15. Considering a WebMail system, assume a log filatainoing 10,000 user
sessions ofime IP, RequesgtwhereTimeidentifies the time range of the sessithhjdentifies
the range of remote IP addresses, Raduestdentifies the resources requested suchRleguest
O {Begin-SessignEnd-SessignHelp, Login, Logout Mailbox, Reset-Password...}, where
Help, Login, Logout Reset-Passworatc. note Web pages. In such a log file, eachsession is
a sequence. A valid user login process (the aafdszgin) should redirect the user session to the
mailbox page (the access Mhilbox), so that a belief on such a behavior car le[((Login));
(Mailbox)y; ((Logou)y; 0..9. Suppose that we found 1@unexpected sequences.

Assume that we found that 100 sequences in theewlag file with 80 funexpected
sequences support the antecedent sequgntelP1, Begin-Sessigiy, 9,000 sequences in the
whole log file with 203-unexpected sequences support the antecedent seq(i&2, Begin-
Sessio}); 90 p-sequences support the consequent sequgiide IP1, End-Session; 15 g
unexpected sequences support the consequent seq(#P2, Reset-Passwo)P2, End-
Sessioj); 10 punexpected sequences support the frequent comgedsgjuence((IP2,
Help)(IP2, End-Sessiop.

According to the above assumes, we have: the atgateule((T1, IP1, Begin-Session -

{}¥;b} with support 80/10,000 = 0.8% and confidence 80/ 80%; the antecedent ry(@P2,
Begin-Sessigh - {#;b} with support 10/10,000 = 0.1% and confidence J@i9 [10.1%; the
consequent rule )z b} - ((T1, IP1, End-Session with support 90/10,000 = 0.09% and
confidence 90/100 = 90%; the consequent ruiig B} - ((IP2, Reset-Passwo)@iP2, End-

Sessio}) with support 15/10,000 = 0.15% and confidence QB4 15%; the consequent rulé {

b} - ((IP2, Help)(IP2, End-Session with support 10/10,000 = 0.1% and confidence 10/£0
10%.

Obviously, we can interpret the antecedent {(ld, IP1, Begin-Sessioh — {¥ b} and the
consequent rulel{zb} - ((T1, IP1, End-Session as that the connections from IP range 1 at



time range 1 can be considered as critical eventesthe confidences of these two rules are
strong, however, the antecedent r((Il€2, Begin-Sessioh —. {¥;b} can be safely ignored not
only because the very low confidence, but alsodtesequent rulesi{; b} - ((IP2, Reset-
Password(IP2, End-Session and {,; b} - ((IP2, Help)(IP2, End-Session show that the
connections from IP2 do not contain strong behawioat can be interpreted as critical evellits.

Based on the above propositions, Algorithm 3 shtwes procedure of mining unexpected
antecedent and consequent rules in a sequenceas@tatith user defined minimum support and
confidence threshold values.

Algorithm 3 (USR: Mining unexpected sequential ryles

Input: A sequence databaBe a belief bas® stored as a belief trée minimum suppormin,
minimum confidencein.

Output: All antecedent and consequent rules stated by leelodf b (0 B, with respect to the
minimum supporigmin and minimum confidencénin.

1. Call the procedurdJSE for extract the antecedent sequence B8&Ly, and the
consequent s@, stated by each beliefd B.

2. For each antecedent sequerszein the antecedent sequence Elé‘{%b}, find all
sequential patterrs 1D",,, such that the suppott(a, D) = G If the fraction ofo
(a, D"upy) 0 (8, D) = dnin, OUtpUL the rul@ - {#b}.

3. For each consequent sequerssdn the consequent sequence Bét.y, find all
sequential patterns(1D%,y such that the suppogt(c, D) > gmin. If the supporio (c,
D%b)) = dmin, OUtPUL the rulefb} — c.

Notice that we separate the process of mining usetep sequential implication rules into two
standalone sub-routines: we first compute the stpadue of the premisa or the consequence
¢, then we compute the confidence of the rules,rieioto obtain the best performance and
flexibility.

EXPERIMENTAL EVALUATION

To evaluate the effectiveness and scalability afapproach, we have performed two groups of
experiments. The first group of experiments is quaned on large log files of two real Web

servers, with the belief base defined by domaineasp The second group of experiments is
performed on various dense synthetic data filessgdad by the IBM Quest Synthetic Data
Generatar, where we use a set of random generated belietfsealselief bases. All experiments

have been performed on a Sun Fire V880 system&vitt2GHz UltraSPARC Il processors and

32GB main memory running Solaris 10 operating syste

! http://www.almaden.ibm.com/cs/quest/



Experiments on Web Access Logs

We performed a group of experiments on two larggfiles containing the access records of two
Web servers during a period of 3 months. The firgtfile, labeled a$ OGBBS, corresponds to a
PHP based discussion forum Web site of an onlimeegarovider; the second log file, labeled as
LOGWAW corresponds to a Web site that hosts personakmages of researchers and teaching
staffs. We split each log file into three 1-monthripd files, i.e.,LOGBBS-{1, 2, 3} and
LOGWAWY {1, 2, 3}. Table 1 details the number of sequences, disttrots, and the average
length of the sequences contained in the Web atagss

AccessLog | Sessions | Distinct Items | Average L ength
LOGBBS- 1 27,294 38,678 12.8934
LOGBBS- 2 47,868 42,052 20.3905
LOGBBS- 3 28,146 33,890 8.5762
L OGN 1 6,534 8,436 6.3276
L OGN 2 11,304 49,242 7.3905
L OGN 3 28,400 50,312 9.5762

Table 1. Web access logs in experiments.

In order to compare our approach with the sequieptigtern mining, we first apply the
sequential pattern mining algorithm to find theqgitent behaviors frohOGBBS-{ 1, 2, 3} and
LOGWA {1, 2, 3} with different minimum support thresholds, shownHFigure 4 (a) and (b);
Figure 4 (c) and (d) show the number of unexpestgiential implication rules discovered by
USER Post analysis of the experimental results shbe®ffectiveness of our approach.

The result set of our approach is much less thamestremely large sequence set generated by
sequential pattern mining, where the many discavéreguent sequences are similar in the data
setsLOGBBS- { 1, 2, 3} . One important reason is that the accesses aete server of OGBBS-

{1, 2,3} are very regular and the most frequent behavioessamilar. Moreover, with the
minimum confidence 20%, totally 15 antecedent rudewl 2 consequent rules are finally
recognized as representing new navigation behawsfansers, however, such behaviors have low
support values (< 1%) and cannot be discovered rbguéncy based approaches in our
experiments, since according to Figure 4 (a), \ligh minimum support 2%, more than 1000
frequent sequences are extracted.

The experiments on the data se&WWV {1, 2, 3} show that the comparison of the result
size is similar to the experiments data 9606BBS-{ 1, 2, 3}. An important note is that the
antecedent rules discovered BERwith the minimum confidence 10%, totally 12 rusow
the relevant information of Web security problefdswever, in the data set©GNWV { 1, 2, 3},
only 1 consequent rule shows a weak connectionelf ¥écurity.

Experiments on Synthetic Data

The scalability of theJSERapproach has been tested first with a fixed belighber of 20 by
increasing the size of sequence database from A@@&fuences to 500,000 sequences, and then



with a fixed sequence database size of 100,000eseqs by increasing the number of beliefs
from 5 to 25.
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Figure 4. (a) Sequential patterns in data sef¥BBS-{1, 2, 3}. (b) Unexpected sequential
implication rules in data setsOGBBS-{1, 2, 3}. (c) Sequential patterns in data S&QGWANV
{1, 2, 3}. (b) Unexpected sequential implication rules itadsetd OGWAN { 1, 2, 3}.

Figure 5(a) shows that, when the belief numberixedf the number of all unexpected
sequences increases linearly with the increasinthefsize of sequence database. Because the
data sets generated by the IBM Quest Synthetic Bataerator contain repeated blocks, the
unexpected sequences with respect to the samelig@skare repeated. Therefore, Figure 5(b)
shows that, when the belief number is fixed totB8,run time of the extraction of all unexpected
sequences increases linearly with the increasinligeo$ize of sequence database.

Figure 5(c) shows that, when the size of sequeratabdse is fixed, the number of all
unexpected sequences extracted increases, buheatly, when the number of beliefs increases.
This is a previewed result since the number of peeted sequences depends on the structure of
beliefs. In this test the last 10 beliefs addresshrless unexpected sequences than others. Figure
5(d) shows the increment of run time of the extoacbf all unexpected sequences illustrated in
Figure 5(c), and from which we can find that ther@asing rate of extracting time depends on the
number of unexpected sequences. In our implementati the USER approach, to predict and
process a non-matched sequence is much fastetatipaedict and process a matched sequence.
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Figure 5. (a) Number of all unexpected sequenaedty 20 beliefs. (b) Run time for extracting
all unexpected sequences stated by 20 beliefbluiTiber of all unexpected sequences in 100,000
sequences. (d) Run time for extracting all unexgzesequences from 100,000 sequences.

CONCLUSIONS

In this chapter, we introduce a belief-driven apgioUSERfor mining unexpected sequential
patterns and implication rules in sequence datgbask first formalize the belief base and
propose 3 forms of unexpected of sequences, andvitbgropose the notions and discoveries of
the unexpected sequential patterns and implicatides, including antecedent rules and
consequent rules for measuring the unexpected khan sequence data.

The approactUSERIs evaluated with different types of Web accegs land synthetic data.
Our experimental results show that: (1) our approaermits to extract unexpected sequential
patterns and implication rules with low supportuel (2) our approach is capable to find
unexpected sequences that are included in expsetgaences; (3) the unexpected sequences
depend on the belief base and the characteridtib® cequence database.

Our approach can be extended with an applicaticsofifbeliefs. For example, in a data set,
we know that 90% of customers purchase a Sci-Felnavd then action and Sci-Fi films later, so
it is possible to create a soft belief like “therghase of a Sci-Fi novel implies the purchase of
action and Sci-Fi films”, and its degree can beardef by a soft measure functign(0.9). If in
another data set, there are only 10% of customéars aenfirm this belief, then the change of
degree can be computed by the a soft measure dangt{0.9, 0.1). We are also interested in
mining unexpected sequences and sequential rulés tve notion of hierarchies and soft
hierarchies.



REFERENCES

Agrawal, R., & Srikant, R. (1995). Mining sequehpatterns. INCDE (pp. 3-14).

Angiulli, F., & Pizzuti, C. (2002). Fast outlier @etion in high dimensional spaces.RKDD
(pp. 15-26).

Angiulli, F., & Pizzuti, C. (2005). Outlier miningn large high-dimensional data setEEE
Trans. Knowl. Data Engl17(2), 203-215.

Ayres, J., Flannick, J., Gehrke, J., & Yiu, T. (2D0Sequential PAttern Mining using a bitmap
representation. IKDD (pp. 429-435).

Dong, G., & Pei, J. (2007%equence Data Mining (Advances in Database SystSmshger.
Garofalakis, M. N., Rastogi, R., & Shim, K. (1999PIRIT: Sequential pattern mining with
regular expression constraints.MhDB (pp. 223-234).

Han, J., & Kamber, M. (2006)Data Mining: Concepts and Techniquéand ed.): Morgan
Kaufmann Publishers.

Jin, W., Tung, A. K. H., & Han, J. (2001). Miningg-n local outliers in large databasesKbD
(pp. 293-298).

Knorr, E. M., & Ng, R. T. (1998). Algorithms for ming distance-based outliers in large datasets.
In VLDB (pp. 392-403).

Li, D. H., Laurent, A., & Teisseire, M. (2007). Gransversal hypergraph enumeration in mining
sequential patterns. IDEAS(pp. 303-307).

Lo, D., Khoo, S.-C., & Liu, C. (2007). Efficient mihg of iterative patterns for software
specification discovery. IKDD (pp. 460-469).

Mannila, H., Toivonen, H., & Verkamo, A. |. (199Miscovery of frequent episodes in event
sequencedata Min. Knowl. Discoy.1(3), 259-289.

Masseglia, F., Cathala, F., & Poncelet, P. (1998)e PSP approach for mining sequential
patterns. IlPKDD (pp. 176-184).

McGarry, K. (2005). A survey of interestingness mgas for knowledge discovelynowl. Eng.
Rev, 20(1), 39-61.

Padmanabhan, B., & Tuzhilin, A. (1998). A beliefven method for discovering unexpected
patterns. IrKDD (pp. 94-100).

Ramaswamy, S., Rastogi, R., & Shim, K. (2000). d#fit Algorithms for Mining Outliers from
Large Data Sets. IBIGMOD (pp. 427-438).

Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., ®ii., Chen, Q., et al. (2004). Mining sequential
patterns by pattern-growth: the PrefixSpan approd€BE Trans. Knowl. Data Engl16(11),
1424-1440.

Spiliopoulou, M. (1999). Managing interesting rulesequence mining. IRKDD (pp. 554-560).
Srikant, R., & Agrawal, R. (1996). Mining sequehipatterns: generalizations and performance
improvements. IfEDBT (pp. 3-17).

Sun, P., Chawla, S., & Arunasalam, B. (2006). Minfar Outliers in Sequential Databases. In
SDM (pp. 94-105).

Wang, J., & Han, J. (2004). BIDE: Efficient mininf frequent closed sequencesIGDE (pp.
79-90).

Yan, X., Han, J., & Afshar, R. (2003). CloSpan: Mip closed sequential patterns in large
databases. ISDM (pp. 166-177).

Zaki, M. J. (2001). SPADE: An efficient algorithnorf mining frequent sequencedglachine
Learning 42(1-2).



