Asymptotic Behavior of the Number of Solutions for Non-Archimedean Diophantine Approximations with Restricted Denominators

Valerie Berthe 1 Hitoshi Nakada 2 Rie Natsui 3
1 ARITH - Arithmétique informatique
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : We consider metric results for the asymptotic behavior of the number of solutions of Diophantine approximation inequalities with restricted denominators for Laurent formal power series with coefficients in a finite field. We consider, in particular, approximations by rational functions whose denominators are powers of irreducible polynomials, and we study the strong law of large numbers for solutions of the inequalities under consideration
Document type :
Journal articles
Complete list of metadatas

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00344945
Contributor : Valerie Berthe <>
Submitted on : Sunday, December 7, 2008 - 12:36:46 PM
Last modification on : Monday, March 4, 2019 - 2:22:27 PM

Identifiers

  • HAL Id : lirmm-00344945, version 1

Collections

Citation

Valerie Berthe, Hitoshi Nakada, Rie Natsui. Asymptotic Behavior of the Number of Solutions for Non-Archimedean Diophantine Approximations with Restricted Denominators. Finite Fields and Their Applications, Elsevier, 2008, 14, pp.849-866. ⟨lirmm-00344945⟩

Share

Metrics

Record views

215