Goverdhan Singh

Florent Masseglia

Celine Fiot

Alice Marascu

Pascal Poncelet
email: poncelet@lirmm.fr

Collaborative Outlier Mining for Intrusion Detection

Intrusion detection is an important topic dealing with security of information systems. Most successful Intrusion Detection Systems (IDS) rely on signature detection and need to update their signature as fast as new attacks are emerging. On the other hand, anomaly detection may be utilized for this purpose, but it suffers from a high number of false alarms. Actually, any behaviour which is significantly different from the usual ones will be considered as dangerous by an anomaly based IDS. Therefore, isolating true intrusions in a set of alarms is a very challenging task for anomaly based intrusion detection. In this paper, we consider to add a new feature to such isolated behaviours before they can be considered as malicious. This feature is based on their possible repetition from one information system to another. We propose a new outlier mining principle and validate it through a set of experiments.

Introduction

Protecting a system against new attacks, while keeping an automatic and adaptive framework is an important topic in this domain. One answer to that problem could rely on data mining. Actually, Data Mining for intrusion detection aims to provide new tools in order to detect cyber threats [START_REF] Luo | Integrating fuzzy logic with data mining methods for intrusion detection[END_REF][START_REF] Dokas | Data mining for network intrusion detection[END_REF][START_REF] Bloedorn | Data mining for network intrusion detection : How to get started[END_REF][START_REF] Manganaris | A data mining analysis of rtid alarms[END_REF][START_REF] Wu | Factor analysis based anomaly detection[END_REF]. Among those data mining approaches, anomaly detection tries to deduce intrusions from atypical records [START_REF] Lazarevic | A comparative study of anomaly detection schemes in network intrusion detection[END_REF][START_REF] Eskin | A geometric framework for unsupervised anomaly detection : Detecting intrusions in unlabeled data[END_REF]. The overall principle is generally to build clusters, or classes, of usage and find outliers (i.e. events that do not belong to any class or group identifying normal usage). Actually, outlier detection aims to find records that deviate significantly from a well-defined notion of normality. It has a wide range of applications, such as fraud detection for credit card [START_REF] Aleskerov | Cardwatch : A neural network based database mining system for credit card fraud detection[END_REF], health care, cyber security [START_REF] Bloedorn | Data mining for network intrusion detection : How to get started[END_REF] or safety of critical systems [START_REF] Fujimaki | An approach to spacecraft anomaly detection problem using kernel feature space[END_REF].

However, the main drawback of detecting intrusions by means of anomaly (outliers) detection is the high rate of false alarms since an alarm can be triggered because of a new kind of usages that has never been seen before (and is thus considered as abnormal). Considering the large amount of new usage patterns emerging in the Information Systems, even a weak percent of false positive will give a very large amount of spurious alarms that would be overwhelming for the analyst. Therefore, the goal of this paper is to propose an intrusion detection algorithm that is based on the analysis of usage data coming from multiple partners in order to reduce the number of false alarms. Our main idea is that a new usage is likely to be related to the context of the information system on which it occurs (so it should only occur on this system). On the other hand, when a new security hole has been found on a system, the hackers will want to use it in as many information systems as possible. Thus a new anomaly that occurs on two (or more) information systems is probably not a new kind of usage, but rather an intrusion attempt. Let us consider A x , an anomaly detected in the usage of web site S 1 corresponding to a php request on the staff directory for a new employee : John Doe, who works in room 204, floor 2, in the R&D department. The request will have the following form : staff.php?FName=John\&LName=Doe \&room=204\&floor=2\&Dpt=RD. This new request, due to the recent recruitment of John Due in this department, should not be considered as an attack. On the other hand, let us consider A y , an anomaly that corresponds to a true intrusion. A y will be based on a security hole of the system (for instance a php vulnerability) and might, for instance, look like : staff.php?path=../etc/passwd%00. One can see in this request that the parameters are not related to the data accessed by the php script, but rather to a security hole that has been discovered on the staff script. If two or more firms use the same script (say, a directory resquesting script bought to the same software company) then the usage of this security hole will certainly be repeated from one system to another and the request having parameter ../etc/passwd%00 will be the same for all the victims.

In this paper, we propose to provide the end-user with a method that takes only one parameter : n, the number of desired alarms. Then, based on the analysis of the usage data coming from the different partners, our algorithm will detect n common outliers they share. Such common outliers are likely to be true attacks and will trigger an alarm. In a real-world application of this technique, privacy preserving will be a major issue in order to protect partners' data.

In this paper we focus on clustering and outlier detection techniques in a distributed environment. However, privacy issues in our framework are presented in another paper currently being submitted.

The paper is organized as follows. In Section 2 we present the motivation of this approach and our general framework and Section 3 gives an overview of existing works in this domain. Section 4 presents COD, our method for detecting outliers and triggering true alarms. Eventually, our method is tested through a set of experiments in Section 5 and Section 6 gives the conclusion.

Motivation and General Principle

Anomaly-based IDS [START_REF] Eskin | A geometric framework for unsupervised anomaly detection : Detecting intrusions in unlabeled data[END_REF] can be divided into two categories ; semi-supervised and unsupervised. The semi-supervised methods build a model of "normal" behaviours on the system. Every behaviour that is not considered as normal is an anomaly and should trigger an alarm. The unsupervised methods do not use any labelled data. Usually, based on a clustering algorithm, they try to detect outliers and consider them as anomalies. Obviously, anomalybased IDS will suffer from a very high number of false alarms since a new kind of behaviour will be considered as an anomaly (and an attack). In this paper, we propose to improve the results of unsupervised IDS by means of a collaborative framework involving different networkbased systems. Section 3 gives an overview of the existing IDS based on the principles presented above and the existing collaborative IDS. However, to the best of our knowledge, our proposal is the first unsupervised IDS using the common anomalies of multiple partners in or-der to detect the true intrusion attempts. The main idea of our proposal is that multiple partners do not share the same data, but they share the same systems (the Web server can be Apache or IIS, the data server can run Oracle, the scripts accessing the data can be written with PHP or CGI, etc). When a security hole has been found for one system (say a php scripts with specific parameters leading to privileged access to the hard drive), then this weakness will be the same for all the partners using the same technology. Our goal is to reduce the rate of false alarms based on this observation, as explained in section 2

In this paper we present COD (Common Outlier Detection) a framework and algorithm intended to detect the outliers shared by at least two partners in a collaborative IDS. Outliers are usually small clusters. Some methods used to find them are presented in section 3. Our goal is to use such outlier lists from different systems (based on a similar clustering, involving the same similarity measure). If an outlier occurs for at least two systems, then it is considered as an attack. COD is indeed based on the assumption that an intrusion attempt trying to find a weakness of a script will look similar for all the victims of this attack. We propose to detect intrusion attempts among the records of a Web server, such as an Apache access log file. Such a file keeps record, for each access on the Web site, of the IP, date, requested URL and referrer (among other informations). For clarity of presentation we present our framework on the collaboration of two Web sites, S 1 and S 2 and we consider the requests that have been received by the scripts of each site (cgi, php, sql, etc). Our goal is to perform a clustering on the usage patterns of each site and find the common outliers. However, that would not be enough to meet the second constraint of our objective : to require only one parameter, n, the number of alarms to return. Our similarity measure (presented in section 4) will allow normal usage patterns to be grouped together rather than grouped with intrusion patterns. On the other hand, our similarity measure also has to ensure distinguishing an intrusion pattern from normal usage patterns and from other intrusion patterns (since different intrusion patterns will be based on a different security hole and will have very different characteristics). Our algorithm performs successive clustering steps for each site. At each step we check the potentially matching outliers between both sites. The clustering algorithm is agglomerative and depends on the maximum dissimilarity (M D) that has to be respected between two objects.

This work is intended to explore the solutions for monitoring a network in real time. Then, the potential alarms will be triggered at each step of the monitoring (for instance with a frequency of one hour). Depending on the number of true or false alarms, the user might want to adjust n for the next step, until no (or very few) false alarm is returned. Our assumption is that common outliers, sorted by similarity from one site to another, will give the intrusions at the beginning of the list. Our challenge, in this paper, is to reply to important questions underlying our method ; what is the similarity between two usage patterns ? How to separate clusters in order to give the list of outliers ? How to detect common outliers ? Our main algorithm, corresponding to the framework presented in this section, is given in section 4.

Related Works

Over time many techniques have been developped to detect outliers, leading to a number of surveys and review articles [START_REF] Hodge | A survey of outlier detection methodologies[END_REF][START_REF] Chandola | Anomaly detection -a survey[END_REF]. Some of them more precisely focus on the topic of outlier detection within the context of intrusion detection in computer networks [START_REF] Lazarevic | A comparative study of anomaly detection schemes in network intrusion detection[END_REF][START_REF] Patcha | An overview of anomaly detection techniques : Existing solutions and latest technological trends[END_REF]. In this paper, we focus on this specific area and we propose an unsupervised anomaly-based detection system. On the opposite to semi-supervised anomaly detection systems, consisting of describing normal behaviours to detect deviating patterns [START_REF] Marchette | A statistical method for profiling network traffic[END_REF][START_REF] Wu | Factor analysis based anomaly detection[END_REF][START_REF] Vinueza | Unsupervised outlier detection and semi-supervised learning[END_REF], unsupervised techniques do not require a preliminary identification of the normal usage by a human expert. Our application will thus be more usable in a real-world context.

Statistic community has quite extensively studied the concept of outlyingness [START_REF] Barnett | BACON : blocked adaptive computationally efficient outlier nominators[END_REF][START_REF] Schölkopf | Estimating the support of high-dimensional distribution[END_REF][START_REF] Markou | Novelty detection : a review -part 1 : statistical approaches[END_REF][START_REF] Kwitt | Unsupervised anomaly detection in network traffic by means of robust pca[END_REF]. Statistical approaches construct probability distribution models under which outliers are objects of low probability [START_REF] Rousseeuw | Robust Regression and Outlier Detection[END_REF]Billor et al., 2000;[START_REF] Lee | Information-theoretic measures for anomaly detection[END_REF] However, within the context of intrusion detection, dimensionality of data is high. Therefore, to improve overall performance and accuracy, it has become necessary to develop data mining algorithms using the whole data distribution as well as most of data features [START_REF] Knorr | Algorithms for mining distance-based outliers in large datasets[END_REF][START_REF] Breunig | Lof : identifying density-based local outliers[END_REF][START_REF] Aggarwal | Outlier detection for high dimensional data[END_REF].

Most of these approaches are based on clustering-based outlier detection algorithms [START_REF] Jain | Algorithms for Clustering Data[END_REF][START_REF] Ng | Efficient and effective clustering methods for spatial data mining[END_REF][START_REF] Ester | A density-based algorithm for discovering clusters in large spatial databases with noise[END_REF][START_REF] Portnoy | Intrusion detection with unlabeled data using clustering[END_REF][START_REF] Tax | Combining one-class classifiers[END_REF][START_REF] Eskin | A geometric framework for unsupervised anomaly detection : Detecting intrusions in unlabeled data[END_REF][START_REF] He | Discovering cluster-based local outliers[END_REF][START_REF] Papadimitriou | LOCI : fast outlier detection using the local correlation integral[END_REF]. Such techniques rely on the assumption [START_REF] Chandola | Anomaly detection -a survey[END_REF] that normal points belong to large and dense clusters while anomalies (or outliers, atypical instances) either do not belong to any clusters [START_REF] Knorr | Algorithms for mining distance-based outliers in large datasets[END_REF][START_REF] Ramaswamy | Efficient algorithms for mining outliers from large data sets[END_REF][START_REF] Duan | A local density based spatial clustering algorithm with noise[END_REF] or form very small (or very sparse) clusters [START_REF] Otey | Towards nicbased intrusion detection[END_REF][START_REF] Chimphlee | Unsupervised anomaly detection with unlabeled data using clustering[END_REF][START_REF] Pires | Using clustering and robust estimators to detect outliers in multivariate data[END_REF][START_REF] Fan | A nonparametric outlier detection for effectively discovering top-n outliers from engineering data[END_REF][START_REF] Ceglar | Curio : A fast outlier and outlier cluster detection algorithm for large datasets[END_REF]. In other words anomaly detection consists in identifying those among the data that are far from significant clusters -either isolated or in small clusters.

On the contrary, misuse techniques (i.e. approaches that detect elements similar to wellknown malicious usage) will precisely detect attacks but they will miss every intrusion that differs from these already known attack signatures. Therefore some works proposed collaborative frameworks in order to improve performance and both true and false alarm rates [START_REF] Valdes | Probabilistic alert correlation[END_REF][START_REF] Yegneswaran | Global intrusion detection in the domino overlay system[END_REF]. These approaches rely on propagating in a distributed IDS IP blacklist after individual misuse or anomaly detection. Also this communication can lead to more accurate results, it does not allow the system to uncover totally unknown attacks or to avoid high false alarm rates. For these reasons we propose in this paper an anomaly detection approach that uses collaboration between systems in order to discriminate attacks from emerging or novel usage behaviours, thus leading to a reduced number of false alarms.

Depending on the approach, the number of parameters required to run the algorithm can be high and will lead to different outliers. To avoid this, some works return a ranked list of potential outliers and limit the number of parameters to be specified [START_REF] Ramaswamy | Efficient algorithms for mining outliers from large data sets[END_REF][START_REF] Jin | Mining top-n local outliers in large databases[END_REF][START_REF] Fan | A nonparametric outlier detection for effectively discovering top-n outliers from engineering data[END_REF].

COD : Common Outlier Detection

The principle of COD is to perform successive clustering steps on usage patterns of different partners sites, until the number of common outliers meets the number of alarms desired by the user. We present in this section an algorithm designed for two information systems. Extending this work to more than two systems would require a central node coordinating the comparisons and triggering the alarms, or a peer-to-peer communication protocol. This is not the goal of this paper. Our objects are the parameters given to script files in the requests re-ceived on a Web site. In other words, the access log file is filtered and we only keep lines corresponding to requests with parameters to a script. For each such line, we separate the parameters and for each parameter we create an object. Let us consider, for instance, the following request : staff.php?FName=John&LName=Doe. The corresponding objects are o 1 =John and o 2 =Doe. Once the objects are obtained from the usage data of multiple Web sites, COD is applied and gives their common outliers.

Algorithm Cod

Input : U 1 and U 2 the usage patterns of sites S 1 and S 2 and n the number of alarms. Output : I the set of clusters corresponding to malicious patterns.

1. Build M , the distance matrix between each pattern ; 2. ∀p ∈ M, N eighbours p ← sorted list of neighbours for p (the first usage pattern in the list of p is the closest to p).

DensityList ← sorted list of patterns by density

; 4. M D ← 0 ; 5. M D ← M D + 0.05 ; 6. C 1 ← Clustering(U 1 , M D) ; C 2 ← Clustering(U 2 , M D) ; 7. O 1 ← Outliers(C 1) ; O 2 ← Outliers(C 2) ; 8. I ← CommonOutliers(O 1 , O 2 , M

End algorithm Cod

As explained in section 2, COD algorithm will process the usage patterns of both sites step by step. For each step, a clustering result is provided and analyzed for intrusion detection. First, M D is set to obtain very tight and numerous clusters (very short similarity is allowed between two objects in a cluster). Then, M D is relaxed by an amount of 0.05 step after step in order to increase the size of resulting clusters, decrease their number and lower the number of alarms. When the number of alarms desired by the user is reached, then COD ends.

Clustering

Algorithm Clustering Input : U , the usage patterns and M D, the Maximum Dissimilarity. Output : C, the set of as large clusters as possible, respecting M D.

1. i ← 0 ; C ← ∅ ; 2. p ← next unclassified pattern in DensityList ; 3. i + + ; c i ← p ; 4. C ← C + c i ;
5. q ← next unclassified pattern in N eighbours p ; 6. ∀o ∈ c i If d(o, q) > M D then return to step 2 ; 7. add q to c i ; 8. C c ← LCS(C c , q) ; //C c is the center of C 9. return to step 5 ; 10. If unclassified patterns remain then return to step 2 ; 11. return C ; End algorithm Clustering COD Clustering algorithm is based on an agglomerative principle. The goal is to increase the volume of clusters by adding candidate objects, until the Maximum Dissimilarity (M D) is broken (i.e. there is one object o i in the cluster such that the similarity between o i and the candidate object o c is greater than M D). Similarity between objects. We consider each object as a sequence of characters. Our similarity is then based on the longest common subsequence (LCS), as described in definition 1. Definition 1 Let s 1 and s 2 be two sequences. Let LCS(s 1 , s 2) be the length of the longest common subsequences between s 1 and s 2 . The dissimilarity d(s 1 , s 2) between s 1 and s 2 is defined as follows :

d(s 1 , s 2) = 1 -2×LCS(s1,s2) |s1|+|s2|
Example 1 Let us consider two parameters p 1 =intrusion and p 2 =induction. The LCS between p 1 and p 2 is L=inuion. L has length 6 and the similarity between p 1 and p 2 is d = 1 -2×L |p1|+|p2| = 33.33%. Which also means a similarity of 77.77% between both parameters.

Centre of clusters.

When an object is inserted into a cluster we maintain the centre of this cluster, since it will be used in the CommonOutliers algorithm. The centre of a cluster C is the LCS between all the objects in C. When object o i is added to C, its center C c is updated. The new value of C c is the LCS between the current value of C c and o i .

Wavelet-based Outlier Detection

Most previous work in outlier detection require a parameter [START_REF] Zhong | Clustering-based network intrusion detection[END_REF][START_REF] Portnoy | Intrusion detection with unlabeled data using clustering[END_REF][START_REF] Oldmeadow | Adaptive clustering for network intrusion detection[END_REF], such as a percent of small clusters that should be considered as outliers, or the top-n outliers. Their key idea is generally to sort the clusters by size and/or tightness. We consider that our clusters will be as tight as possible, according to our clustering algorithm and we want to extract outliers by sorting the cluster by size. The problem is to separate "big" and "small" clusters. Our solution is based on an analysis of cluster distribution, once they are sorted by size. The usual distribution of clusters is illustrated by Figure 1 (screenshot made with our real data). We propose to use a wavelet transform to cut down the distribution. In figure 1, the y axis stands for the size of the clusters, whereas their index in the sorted list is represented on x, and the two plateaux allow separating small and big clusters.

The wavelet transform is a tool that cuts up data or functions or operators into different frequency components, and then studies each component with a resolution matched to its scale FIG. 1 -Detection of outliers by means of Haar Wavelets [START_REF] Daubechies | Ten lectures on wavelets[END_REF]. Mathematically, the continuous wavelet transform is defined by :

T wav f (a, b) = 1 √ a +∞ -∞ f (x)ψ * (x-b a
)dx where z * denotes the complex conjugate of z, ψ * (x) is the analyzing wavelet, a (> 0) is the scale parameter and b is the translation parameter. We use the Haar wavelets to illustrate our outlier detection method. Let us consider the following series of values : [1,1,1,2,7,10,11,12]. Its Haar wavelet transform is illustrated by the following table : Level Approximations Coefficients 8

1, 1, 1, 2, 7, 10, 11, 12 4 1, 1.5, 8.5, 11.5 0, -0.5, -1.5, -0.5 2 1.25, 10 -0.25, -1.5 1 5.625 -4.375

Then, we keep only the most two significant coefficients and we make the others zero. In our series of coefficients ([5.625, -4, 375, -0.25, -1.5, 0, -0.5, -1.5, -0.5]) the most two significant ones are 5.625 and -4, 375, meaning that the series becomes [5.625, -4, 375, 0, 0, 0, 0, 0, 0]. In the following step, the inverse operation is calculated and we obtain an approximation of the original data [1. 25, 1.25, 1.25, 1.25, 10.0, 10.0, 10.0, 10.0]. This gives us two plateaux and allows cutting the series after index 4 in order to separate big and small values.

Comparing Outliers

Since we want our global algorithm to require only one parameter (the number of alarms), we want to avoid introducing a similarity degree for comparing two lists of outliers. For this comparison, CommonOutliers algorithm will use the centre of outliers. For each pair of outliers, CommonOutliers calculates the similarity between centers of these outliers. If this similarity is below the current M D (C.f. Subsection 4.1), then we consider those outliers as similar and add them to the alarm list.

Algorithm CommonOutliers

Input : O 1 and O 2 , two lists of outliers and M D, the maximum dissimilarity. Output : A, the list of alarms (common outliers).

1. A ← ∅ 2. ∀i ∈ O 1 do 3. ∀j ∈ O j do 4. centre i ← centre(i) ; 5.
centre j ← centre(j) ; 6.

If d(centre i , centre j) < M D Then A ← A + i ∪ j ; 7.

done ; 8. done ; 9. Return A ;

End algorithm CommonOutliers

Experiments

The goal of this section is to analyze our results (i.e. the number of outliers and true intrusions and the kind of intrusions we have detected). Our datasets come from two different research organizations ; (anonymized for submission). We have analyzed their Web access log files from March 1 to March 31. The first log file represents 1.8 Gb of rough data. In this file, the total number of objects (parameters given to scripts) is 30,454. The second log file represents 1.2 Gb of rough data and the total number of objects is 72,381. COD has been written in Java and C++ on a PC (2.33GHz i686) running Linux with 4Gb of main memory. Parameters that are automatically generated by the scripts have been removed from the datasets since they cannot correspond to attacks (for instance "publications.php?Category=Books"). This can be done by listing all the possible generation of parameters in the scripts of a Web site.

As described in Section 2, COD proceeds by steps and slowly increases the value of M D, which stands for a tolerance value when grouping objects during the clustering process. In our experiments, M D has been increased by steps of 0.05 from 0.05 to 0.5. For each step, we report our measures in table 1. The meaning of each measure is as follows. O 1 (resp. O 2) is the number of outlying objects in site 1 (resp. site 2). % 1 (resp % 2) is the fraction of outlying objects on the number of objects in site 1 (resp. site 2). For instance, when M D is set to 0.3, for site 1 we have 5,607 outlying objects, which represents 18.4% of the total number of objects (i.e. 30,454) in site 1. COD is the number of common outliers between both sites and % F A is the percentage of false alarms within the common outliers. For instance, when M D is set to 0.05, we find 101 alarms among which 5 are false (which represents 4.9%). One first observation is that outliers cannot be directly used to trigger alarms. Obviously, a number as high as 5,607 alarms to check, even for one month, is not realistic. On the other hand, the results of COD show its ability to separate malicious behaviour from normal usage. Our false alarms correspond to normal requests that are common to both sites but rarely occur. For instance, on the references interrogation script of anonym_lab1, a user might request papers of "John Doe" and the request will be publications.php?FName=John\&LName=Doe. If another user requests papers of "John Rare" on the Web site of anonym_lab2), the request will be biblio.php?FName=John\&LName=Rare and the parameter "John" will be given as a common outlier and trigger an alarm. As we can see, % F A is very low (usually we have at most 5 false alarms in our experiments for both Web sites) compared to the thousands of outliers that TAB. 1 -Results on real data have been filtered by COD. Another lesson from these experiments is that a low M D implies very small clusters and numerous outliers. These outliers are shared between both sites, among which some are false alarms due to rare but common normal usage. When M D increases, the clustering process gets more agglomerative and alarms are grouped together. Then one alarm can cover several ones of the same kind (e.g. the case of easter eggs explained further). At the same time, the number of outliers corresponding to normal usage decreases (since they are also grouped together). Eventually, a too large value of M D implies building clusters that do not really make sense. In this case, outliers will get larger, and the matching criteria will get too tolerant, leading to a large number of matching outliers capturing normal usage. In a streaming environment involving the real data of these experiments, one could decide to keep 70 as the number of desired alarms and watch the ratio of false alarms. If this ratio decreases, then the end-user should consider increasing the number of desired alarms.

Conclusion

In this paper, we have proposed i) an unsupervised clustering scheme for isolating atypical behaviours, ii) a parameterless outlier detection method based on wavelets and iii) a new feature for characterizing intrusions. This new feature is based on the repetition of an intrusion attempt from one system to another. Actually, our experiments show that atypical behaviours cannot be directly used to trigger alarms since most of them correspond to normal requests. On the other hand, this very large number of outliers can be effectively filtered (reducing the amount of atypical behaviours up to 0.21%) in order to find true intrusion attempts (or attacks) if we consider more than one site. Eventually, our method guarantees a very low ratio of false alarms, thus making unsupervised clustering for intrusion detection effective, realistic and feasible.

 D) ; 9. If |I| ≤ n then return I ; 10. If M D = 1 then return I ; // No common outlier 11. Else return to step 5 ;