N. Billor, A. S. Hadi, and P. F. Velleman, BACON : blocked adaptive computationally efficient outlier nominators, Computational Statistics and Data Analysis, vol.34, pp.279-298, 2000.

E. Bloedorn, A. D. Christiansen, W. Hill, C. Skorupka, and L. M. Talbot, Data mining for network intrusion detection : How to get started, 2001.

M. M. Breunig, H. Kriegel, R. T. Ng, and E. J. Sander, Lof : identifying density-based local outliers, SIGMOD Records, vol.29, issue.2, pp.93-104, 2000.

A. Ceglar, J. F. Roddick, and D. M. Powers, Curio : A fast outlier and outlier cluster detection algorithm for large datasets, 2nd International Workshop on Integrating Artificial Intelligence and Data Mining, pp.37-45, 2007.

V. Chandola, A. Banerjee, and V. Kumar, Anomaly detection -a survey, ACM Computing Surveys, 2008.

W. Chimphlee, A. H. Abdullah, M. N. Sap, and E. S. Chimphlee, Unsupervised anomaly detection with unlabeled data using clustering, International conference on information and communication technology, 2005.

I. Daubechies, Ten lectures on wavelets, 1992.

P. Dokas, L. Ertoz, V. Kumar, A. Lazarevic, J. Srivastava et al., Data mining for network intrusion detection, NSF Workshop on Next Generation Data Mining, 2002.

L. Duan, D. Xiong, J. Lee, and F. Guo, A local density based spatial clustering algorithm with noise, IEEE International Conference on Systems, Man and Cybernetics, 2006.

E. Eskin, A. Arnold, M. Prerau, L. Portnoy, and E. S. Stolfo, A geometric framework for unsupervised anomaly detection : Detecting intrusions in unlabeled data. Applications of Data Mining in Computer Security, pp.333-342, 2002.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, 2nd International Conference on Knowledge Discovery and Data Mining, pp.226-231, 1996.

H. Fan, O. R. Zaiane, A. Foss, and J. Wu, A nonparametric outlier detection for effectively discovering top-n outliers from engineering data, PAKDD, 2006.

R. Fujimaki, T. Yairi, and K. Machida, An approach to spacecraft anomaly detection problem using kernel feature space, 11th ACM SIGKDD, 2005.

Z. He, X. Xu, and E. S. Deng, Discovering cluster-based local outliers, Pattern Recognition Letters, vol.24, pp.1641-1650, 2003.

V. Hodge and J. Austin, A survey of outlier detection methodologies, Artificial Intelligence Review, vol.22, pp.85-126, 2004.

A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, 1988.

W. Jin, A. K. Tung, and J. Han, Mining top-n local outliers in large databases, 7th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.293-298, 2001.

J. Oldmeadow, J. , S. Ravinutala, and C. Leckie, Adaptive clustering for network intrusion detection, 2004.

E. M. Knorr and R. T. Ng, Algorithms for mining distance-based outliers in large datasets, 24rd International Conference on Very Large Data Bases, pp.392-403, 1998.

R. Kwitt and U. Hofmann, Unsupervised anomaly detection in network traffic by means of robust pca, International Multi-Conference on Computing in the Global Information Technology, 2007.

A. Lazarevic, L. Ertoz, V. Kumar, A. Ozgur, and J. Srivastava, A comparative study of anomaly detection schemes in network intrusion detection, 2003.

W. Lee and D. Xiang, Information-theoretic measures for anomaly detection, IEEE Symposium on Security and Privacy, 2001.

J. Luo, Integrating fuzzy logic with data mining methods for intrusion detection, 1999.

S. Manganaris, M. Christensen, D. Zerkle, and K. Hermiz, A data mining analysis of rtid alarms, Computer Networks, vol.34, pp.571-577, 2000.

D. Marchette, A statistical method for profiling network traffic, 1st USENIX Workshop on Intrusion Detection and Network Monitoring, pp.119-128, 1999.

M. S. Markou and . Singh, Novelty detection : a review -part 1 : statistical approaches, Signal Processing, vol.83, pp.2481-2497, 2003.

R. T. Ng and J. Han, Efficient and effective clustering methods for spatial data mining, 20th International Conference on Very Large Data Bases, pp.144-155, 1994.

M. Otey, S. Parthasarathy, A. Ghoting, G. Li, S. Narravula et al., Towards nicbased intrusion detection, 9th ACM SIGKDD international conference on Knowledge discovery and data mining, pp.723-728, 2003.

S. Papadimitriou, H. Kitagawa, P. Gibbons, and C. Faloutsos, LOCI : fast outlier detection using the local correlation integral, 19th ICDE, 2003.

A. Patcha and . Park, An overview of anomaly detection techniques : Existing solutions and latest technological trends, Comput. Networks, vol.51, pp.3448-3470, 2007.

A. Pires and C. Santos-pereira, Using clustering and robust estimators to detect outliers in multivariate data, International Conference on Robust Statistics, 2005.

L. Portnoy, E. Eskin, and E. S. Stolfo, Intrusion detection with unlabeled data using clustering, ACM CSS Workshop on Data Mining Applied to Security, 2001.

S. Ramaswamy, R. Rastogi, and K. Shim, Efficient algorithms for mining outliers from large data sets, SIGMOD Records, vol.29, issue.2, pp.427-438, 2000.

P. Rousseeuw and A. M. Leroy, Robust Regression and Outlier Detection, 1996.

B. Schölkopf, J. Platt, J. Shawe-taylor, A. Smola, and W. R. , Estimating the support of high-dimensional distribution, Neural Computation, vol.13, pp.1443-1471, 2001.

D. M. Tax and R. P. Duin, Combining one-class classifiers, Lecture Notes in Computer Science, vol.2096, pp.299-317, 2001.

A. Valdes and K. Skinner, Probabilistic alert correlation, Recent Advances in Intrusion Detection, pp.54-68, 2001.

A. Vinueza and G. Grudic, Unsupervised outlier detection and semi-supervised learning, 2004.

N. Wu and J. Zhang, Factor analysis based anomaly detection, IEEE Workshop on Information Assurance, 2003.

V. Yegneswaran, P. Barford, and E. S. Jha, Global intrusion detection in the domino overlay system, Network and Distributed Security Symposium, 2004.

S. Zhong, T. M. Khoshgoftaar, and N. Seliya, Clustering-based network intrusion detection, International Journal of Reliability, Quality and Safety Engineering, vol.14, pp.169-187, 2007.

, Les systèmes de détection d'intrusion (IDS) les plus utilisés reposent sur la détection de signatures et ont besoin de mises à jour fréquentes pour défendre un système contre les nouvelles attaques. D'un autre côté, la détection d'anomalie peut compenser ce besoin, mais provoque de nombreuses fausses alarmes. En effet, un comportement qui dévie de manière significative des comportements habituels sera considéré comme dangereux par un IDS utilisant les anomalies. Isoler les véritables intrusions dans un ensemble d'alarmes est donc un défi important pour tout IDS. Dans cet article, nous considérons une nouvelle caractéristique pour isoler les comportements malicieux. Cette caractéristique est basée sur leur possible répétition d'un système d'information à un autre, Summary La détection d'intrusion est un domaine important pour la sécurité des systèmes d'information