
HAL Id: lirmm-00348084
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00348084v1

Submitted on 16 Jun 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast and Accurate Activity Evaluation in Multipliers
Arnaud Tisserand

To cite this version:
Arnaud Tisserand. Fast and Accurate Activity Evaluation in Multipliers. 42th Asilomar Confer-
ence on Signals, Systems and Computers, Oct 2008, Pacific Grove, CA, United States. pp.757-761,
�10.1109/ACSSC.2008.5074510�. �lirmm-00348084�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00348084v1
https://hal.archives-ouvertes.fr

Fast and Accurate Activity Evaluation in Multipliers

Arnaud Tisserand
LIRMM, CNRS–Univ. Montpellier 2

161 rue Ada. F-34392 Montpellier, FRANCE

arnaud.tisserand@lirmm.fr

Abstract—This article reports the first results on fast and
accurate power evaluation in arithmetic operators. The proposed
method uses two steps: 1) accurate useful activity evaluation,
2) fast glitching activity estimation. The first step is based on
circuit emulation using FPGA. Activity counters are inserted into
the low-level description of the evaluated operator. The modified
description is synthesized and downloaded into the FPGA. The
operator activity behavior is emulated on the FPGA using large
test vectors. The useful activity values accumulated in the FPGA
are transferred to the computer. The second step uses the formal
model we proposed in [1] for glitching activity estimation. The
complete method is demonstrated on basic multipliers.

I. INTRODUCTION

Modeling and reducing the power or energy consumption

of arithmetic operators is an active research topic. This is still

the case for basic operators such as adders and multipliers. In

practice, there is a complex trade-off between:

• The number system(s) used to represent the data (radix,

width, number coding, digit coding. . .);

• The algorithm(s) used to compute the mathematical op-

erations (evaluation methods, speed/area trade-offs, basic

blocks, fused operations. . .);

• The characteristics of data (domain, accuracy, activity,

space/time correlations. . .);

• And some circuit constraints (specific cells in the stan-

dard library, logic style. . .).

Designers have to choose one operator among several

solutions and many parameters [2]: various algorithms, rep-

resentations of numbers, architectures, pipelining. . . . See [3]

for a short survey on low-power arithmetic operators. While

accurate power models exist for adders [4], [5], it is difficult

to choose a multiplier, and its parameters, with respect to its

practical power consumption [6], [7], [8]. Recent works such

as [9] show that power may be significantly reduced using

different multiplication algorithms.
One of our long term projects is to study the arithmetic

impact on the power consumption of dedicated applications

such as digital signal processing (DSP), multimedia, cryp-

tography or specific embedded high-performance computing

(HPC). For that purpose, one needs to compare the power

consumption of different internal representations of numbers,

different algorithms for the internal computations and different

architectures and parameters. Then fast and accurate extraction

of features such as speed, circuit area and power or energy

consumption of arithmetic operators is required.
Standard solutions for these comparisons include circuit

measurement, theoretical analysis, circuit simulation or esti-

mation. Circuit measurements lead to very accurate power re-

sults but at very high cost and delay due to circuit fabrication.

Theoretical analysis only provides bounds and distribution

estimations for very basic operators and simple data charac-

teristics (e.g. [4] for adders). So those methods are not often

used in practice. Circuit simulation using electrical simulators

is widely used. It can lead to accurate results but it requires

very long simulation times. Some power estimation models

and/or tools are available (e.g. [10]). They are fast and very

accurate at the system or application levels but their accuracy

is very limited at the operator level.

Below we present a method based on circuit emulation

on FPGA for useful activity evaluation. Glitching activity is

estimated using a formal model we proposed in [1]. Some

background information and a high-level description of the

proposed method are presented in Section II. The accurate

useful activity evaluation using circuit emulation on FPGA is

presented in Section III. The formal model for the glitching

activity estimation we proposed in [1] is recalled in Section IV.

The complete method is demonstrated, validated and compared

to standard solutions in Section V.

II. BACKGROUND AND HIGH-LEVEL DESCRIPTION OF THE

PROPOSED METHOD

The power consumption of digital circuits has two kinds

of contribution: the static power consumption due to leakage

and the dynamic power consumption due to activity (i.e. signal

transitions). See [11] for a good reference.

The static power of arithmetic operators can be accurately

approximated by a function of the circuit area required for the

implementation (and several technological parameters). The

area of an operator is easily extracted from the layout. Then

the proposed method does not deal with static power.

The activity in digital circuits (and arithmetic operators) is

caused by two kinds of signal transitions. The useful activity
due to the input transitions that produce the internal transi-

tions required to perform the computation (i.e. complete and

stable transitions). The glitching activity (also called redundant
activity) is caused by different delays from several inputs to

the same output or circuit defects. Specific circuit styles or

careful placement and routing can significantly reduce the

glitching contribution. But important energy savings can also

be achieved on the glitching activity by using specific number

systems or optimized arithmetic algorithms [3].

The method proposed below evaluates the total activity in

arithmetic operators. It can be used to evaluate their dynamic

757978-1-4244-2941-7/08/$25.00 ©2008 IEEE Asilomar 2008

power. It is decomposed into two steps:

1) Useful activity evaluation (detailed in Section III);

2) Glitching activity estimation (detailed in Section IV).

The useful activity is accurately evaluated using emulation

on FPGA and large and relevant test vectors. The results of

the first step are used as parameters for the next step. In the

second step, the glitching activity is estimated using the formal

model we proposed in [1].

The evaluation flow is presented on Figure 1. The low-level

description of the evaluated operator is provided by the input

netlist. Usually it comes from in-house arithmetic operator

generators. This netlist is used for both the useful activity

evaluation (right part of Figure 1 detailed in Section III)

and the glitching activity estimation (left and bottom part of

Figure 1 detailed in Section IV).

activity monitoring information

netlist

ASIC

synthesis

P&R

layout

extraction

extraction

analysis

counters

insertion

FPGA

synthesis

P&R

bitstream

and vectors

download

FPGA

emulation

read valuesformal

model

generation

Maple

total activity

glitching
parameters

instrumented
netlist

useful activity

formal model
std. tools

in-house tools

hardware

Fig. 1. Evaluation flow of the proposed method

III. USEFUL ACTIVITY EVALUATION USING CIRCUIT

EMULATION ON FPGA

In order to accurately evaluate the useful activity in arith-

metic operators, we propose to count the number of useful

transitions using FPGA emulation. At each location (i.e. net at

a gate output) where activity monitoring is required, an activity

counter is inserted. The activity counter is a simple block

composed of a D flip-flop, a XOR gate and a k-bit counter

as depicted on Figure 2. The D flip-flop and the XOR gate

produce a 1 activity signal each time there is a useful transition

on the monitored net. The counter counts the total number of

such transitions. The counter size parameter k depends on the

test vector length. Some additional control logic is required

for the counter clock management, to reset the counters and

to read the counters values at the end of the emulation. We use

a simple serial scan chain method to read the value stored into

the counter. This control block can be shared among several

activity counters.

gate 1 gate 2

D xor counter
k

control

reset clk read

Fig. 2. Activity counter (dashed block) inserted at the output of gate 1

Activity monitoring locations are provided by the user1.

A C++ program modifies the original netlist into an “in-

strumented” netlist by inserting activity counters on each

monitored net (see Figure 1). The instrumented netlist is

synthesized, placed and routed using standard FPGA tools.

The clock frequency of the instrumented operator is lower

than original one (i.e. original and activity signals must be

stable). Then only useful or theoretical transitions are counted.

The generated bitstream and test vectors are downloaded into

the FPGA. During the emulation sub-step on the FPGA, test

vectors are applied to the evaluated operator and activity values

are accumulated. The final sub-step reads the activity values

in FPGA from the host.

In practice, it is often useful to monitor the activity of

several nets. If just the total number of transitions is required,

we use a shared version as depicted on Figure 3. The number

of ones in the activity signals for all individual nets is

converted into a binary value using a full adder (FA) tree (in

case of Figure 3, at most 3 ones are converted into a 2-bit value

using one FA cell). This global activity value is accumulated

into a counter. The size of the counter depends now on the

test vector length and the number of monitored nets.

The test vectors can be very large since the operating

frequency is the instrumented operator clock in the FPGA.

This frequency is significantly higher than the “frequency” of

a simulated operator (even with a good VHDL simulator). In

practice, there is difference of several orders of magnitude.

The test vectors correspond to real-world values downloaded

from the host computer. The fact these vectors are composed

of relevant values leads to a very accurate activity evaluation

and not only bounds or rough estimations. The accuracy of the

useful activity evaluation only depends on the “quality” of the

test vectors. The proposed method has been validated using

1This may be hard and long in practice. We plan to work on a model and/or
a tool to simplify this sub-step.

758

gate 1

gate 2

gate 3

D xor

D xor

D xor

FA

+ R
k

(n)2(n)1

Fig. 3. Shared activity counter for multiple monitored nets (FA cell converts the radix-1 representation (n)1 of the activity value into a binary value (n)2
for accumulation)

comparisons to VHDL simulations with activity monitoring

(counting the transitions in the signal history).

Table I reports FPGA implementation results of original

(without counters) and instrumented operators (with counters).

Two instrumented versions have been implemented: one with

individual counters for all nets and one with a shared activity

counter for all nets. The evaluated operators are (n × n)-
bit multipliers based on Booth-2 recoding, Wallace reduction

tree and ripple carry adder for carries assimilation. The target

FPGA is the Xilinx Virtex II-Pro family. Implementation has

been done using ISE 8.1 tools with standard efforts and no

pipeline. All results are normalized with respect to the non-

instrumented version (without counters).

version n k area delay

no counter 32 – 1.0 1.0

indiv. cnt. 32 10 14.2 0.5

indiv. cnt. 32 20 25.6 0.3

shared cnt. 32 20 2.5 0.8

shared cnt. 32 40 2.5 0.8

no counter 64 – 1.0 1.0

shared cnt. 64 20 2.4 0.7

shared cnt. 64 40 2.4 0.7

TABLE I
FPGA IMPLEMENTATION RESULTS FOR THE USEFUL ACTIVITY

EVALUATION OF (n × n)-BIT STANDARD MULTIPLIERS

These implementation results show that in the case of

individual activity counters the circuit area is very huge.

Inserting an activity counter at each monitored net leads to

circuits mostly composed of activity counters. But as the

arithmetic operators are very small compared to the huge

number of programmable gates available in the current largest

FPGAs, it is still possible to monitor all nets of an arithmetic

operator. In the case of a shared counter for multiple monitored

nets, the area bloat is about a factor 2.5 while the circuit can

still operate at a frequency close to 70–80% of the initial clock

rate (e.g. 70% of about 30 MHz for the multipliers and FPGA

considered in these experiments).

The useful activity evaluation time has been reported for

a few experimentations. It has been compared to the corre-

sponding VHDL simulation time (using Modelsim 6.1 fast

simulator). Speedup factors up to 160 has been reported for

large operators (e.g. 32-bit operands) and long test vectors (e.g.

with 106 values). For small operators (e.g. 8-bit multipliers)

and small test vectors (e.g. with 102 values), the proposed

method may lead up to a 10 times slowdown factor.

The analysis of the evaluation and simulation duration is

illustrated on Figure 4. The proposed evaluation method uses a

sequence of different sub-steps (and tools): counters insertion,

synthesis and place and route, bitstream and vectors download,

emulation on the FPGA and finally the activity counters

reading. The standard simulation method is simpler: simulator

start and simulation. The small vertical lines in the emulation

and simulation areas show the duration of each individual test

(i.e. the computation of one value on the evaluated operator).

It is clear that the proposed method has a large overhead due

to FPGA implementation (synthesis and P&R) and download.

But it also has the fastest evaluation rate. As soon as the

operators and/or the vectors are large enough, the proposed

method leads to very small evaluation times compared to

standard simulation.

insert. synthesis, P&R download emul. read.

t

start simulation

Fig. 4. Time decomposition of the proposed evaluation and standard
simulation methods

The current bottleneck is the FPGA implementation (synthe-

sis and P&R) and download sub-steps. It is difficult to reduce

the implementation time. We plan to try partial reconfiguration

to speedup this sub-step. The download of the bitstream

and test vectors is long due to slow rate programming and

759

communication cables used between the host and the FPGA

board. In the future we plan to work using a card with fast

programming (for bitstream download) and communications

(for test vectors download and counters reading) such as PCI

or Hyper-Transport links.

IV. GLITCHING ACTIVITY ESTIMATION USING FORMAL

MODEL

We use the formal model we proposed in [1] for the glitch-

ing activity estimation. This method uses formal expressions

(in practice multivariate polynomials) to model all required

characteristics of the monitored gates (delay, activity). There

is one polynomial for each gate (or small set of gates) and

for each kind of contribution (delay, activity). The model

parameters are input activities, gate delays and some gate

characteristics. The parameters related to actual values are

determined by a characterization step based on small electrical

simulations. Those parameters are part of a small database

that just depends on the technology and gate library. So the

characterization is only done once there is a new gate library.

As an example, the delay behavior of a FA gate (logic

functions with (x, y, z) inputs and (c, s) outputs such that

2c + s = x + y + z) is modeled by the polynomials:

• sum output: s0 + s1δ(tx, ty, tz)
• carry output: r0 + r1δ(tx, ty, tz)

where δ = max(tx, ty, tz)−min(tx, ty, tz) and the coefficients

are determined during the characterization step. For more

details refer to [1]. Some of the variables of the model are

the activity values obtained from the useful activity evaluation

method presented in Section III. The accuracy of the useful

activity evaluation step is a key point of the accuracy of the

complete method.

The formal model allows us to use formal probability

distribution for the monitored characteristics and/or the vari-

ables. The corresponding polynomials are used as part of

the input variables of the next gate. The complexity of the

model increases with the operator depth. We use Maple to

evaluate the actual values of the complete model. Using such a

computer algebra system, the evaluation of thousands of high-

degree polynomials is very fast (a very few minutes for the

largest evaluated operators).

Figure 5 illustrates the model results (after the formal

evaluation) for a very simple example. Wallace and Dadda

trees are considered for 5-bit partial products reduction array.

The model uses degree-0 polynomial and all coefficients equal

to 1. The numerical values of Figure 5 correspond to the

glitching activity (number of transitions) in the reduction trees

with arbitrary units.

The model also includes a basic support for other constraints

such as unequal raise/fall times and routing capacitances. The

formal model method has been validated using comparisons

to Spice electrical simulations. In practice, about 10–20%

accuracy is obtained compared to the Spice simulations [1].

The estimation accuracy depends a lot on the accuracy of

the analysis performed during the characterization process.

Our main problem is the characterization step. Currently it

is mostly done by hand. We plan to automate this process in

the future.

V. VALIDATION AND COMPARISON

Activity and power evaluations of some multipliers have

been done. The implemented multipliers are (n × n)-bit

multipliers based on Booth-2 recoding, Wallace or Dadda

reduction trees and final 3 blocks addition for the carries

assimilation. Various operand sizes n have been implemented:

8, 16, 24 and 32 bits. ASIC implementation has been done

for a 0.35μm AMS CMOS technology target using Synopsys

and Cadence tools. The obtained results have been compared

to Spice extensive simulations. Some of them are reported

on Figure 6. The obtained results show about 20% accuracy

compared to Spice simulations while there is a speedup factor

about 10 up to 30 for the estimation time of large operators.

 1
 3
 5
 7
 9

 11
 13
 15
 17
 19
 21

8 16 24 32

no
rm

al
iz

ed
 p

ow
er

size

Wallace simu.
Wallace estim.

Dadda simu.
Dadda estim.

Fig. 6. Power estimation results compared to Spice simulations

The proposed method can be easily used to evaluate the

internal power distribution into the various stages or parts of

arithmetic operators. One can use a shared activity counter for

each monitored stage or part. For instance Table II reports the

power distribution of a 32-bit multiplier based Booth recoding,

Dadda reduction tree, final 3 blocks addition for the 0.35μm

AMS CMOS technology. That power distribution is close to

the one obtained using long electrical simulations.

step delay power

partial products 15% 16%

reduction 54% 67%

assimilation 31% 17%

TABLE II
POWER DECOMPOSITION FOR BASIC MULTIPLIERS

VI. CONCLUSION

In this paper the first results for fast and accurate power

evaluation of arithmetic operators are reported. The proposed

760

0 0 0 0 0 0 0 0 0

000

00

0

0

0

0

00

0

0

0

00

0 0 0 0 0 0 0 0 0

000

00

0

0

0

00

1

1

1

1

0 0 0

0

0 0 0 0 0 0

00

0

0 1

1

1

1

2

2

2

1

2

11

2

22

2 3

3

3

3

33total 54

0 0 0 0 0 0 0 0 0

000

00

0

0

0

0

00

0

0

0

00

0 0 0 0 0 0 0 0 0

000

00

0

0

00

0 0 0

0

0 0 0 0 0 0

00

0

0

total

Wallace Dadda

0

0

0

1

1 1 1

0

111

1 2

11

112

1

0

1

1

23

3

3 2

22

2 3

2

50

2

22

2

2

22

2

2

222

2 2

33

3 3

33

3 3

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

3

3333

33 3

3

3

Fig. 5. Glitching activity estimation for 5-bit partial products trees using degree-0 polynomials and all coefficients equal to 1

method uses useful activity evaluation based on circuit emula-

tion on FPGA and glitching activity estimation using a formal

model from [1]. The proposed method has been implemented

using in-house tools and calls to standard CAD tools. It has

been validated on simple arithmetic operators (adders and

basic multipliers).

The proposed activity evaluation method leads to accurate

power estimations (less than 20% difference compared to

Spice simulations) and very fast estimation times (about 100

speedup factor).

In the future, we plan to:

• Improve the useful activity evaluation using faster com-

munications between the host and the FPGA;

• Improve the formal model for glitching activity using

more accurate models and characterization;

• Validate using other operators such as divisors, elemen-

tary functions evaluators (e.g. [12]) and small blocks for

cryptography applications.

We also plan to use the fast power evaluation in order to help

the design of low-power arithmetic operators in our synthesis

tools and for arithmetic operators dedicated to cryptographic

applications with low power signature.

ACKNOWLEDGMENT

This work has been partially supported by the grant ANR-

AF-2006-ROMA “Reconfigurable Operators for Multimedia
Applications”.

REFERENCES

[1] A. Tisserand, “Estimation rapide de l’activité parasite pour
l’optimisation des arbres de réduction de multiplieurs,” in 6ième
journées d’études Faible Tension Faible Consommation (FTFC), Paris,
France, May 2007, pp. 127–130.

[2] M. D. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kaufmann,
2003.

[3] A. Tisserand, “Low-power arithmetic operators,” in Low Power Elec-
tronics Design, C. Piguet, Ed. CRC Press, Nov. 2004, ch. 9.

[4] A. Guyot and S. Abou-Samra, “Modeling power consumption in arith-
metic operators,” Microelectronic Engineering, vol. 39, pp. 245–253,
1997.

[5] C. Nagendra, M. J. Irwin, and R. M. Owens, “Area–time–power tradeoffs
in parallel adders,” IEEE Transactions on Circuits and Systems–II:
Analog and Digital Signal Processing, vol. 43, no. 10, pp. 689–702,
Oct. 1996.

[6] M. J. Flynn and S. F. Oberman, Advanced Computer Arithmetic Design.
Wiley-Interscience, 2001.

[7] I. S. Abu-Khater, A. Bellaouar, and M. I. Elmasry, “Circuit techniques
for CMOS low-power high-performance multipliers,” IEEE Journal of
Solid-State Circuits, vol. 31, no. 10, pp. 1535–1546, Oct. 1996.

[8] P. F. Stelling, C. U. Martel, V. G. Oklobdzija, and R. Ravi, “Optimal
circuits for parallel multipliers,” IEEE Transactions on Computers,
vol. 47, no. 3, pp. 273–285, Mar. 1998.

[9] Z. Huang and M. D. Ercegovac, “High-performance low-power left-to-
right array multiplier design,” IEEE Transactions on Computers, vol. 54,
no. 3, pp. 272–283, Mar. 2005.

[10] E. Senn, J. Laurent, N. Julien, and E. Martin, “SoftExplorer: Estimating
and optimizing the power and energy consumption of a C program for
DSP applications,” EURASIP Journal on Applied Signal Processing, pp.
2641–2654, Jan. 2005.

[11] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems
Perspective, 3rd ed. Addison Wesley, 2005.

[12] A. Tisserand, “Automatic generation of low-power circuits for the
evaluation of polynomials,” in Proc. 40th Asilomar Conference on
Signals, Systems and Computers. Pacific Grove, California, U.S.A.:
IEEE, Oct. 2006, pp. 2053–2057.

761

