
HAL Id: lirmm-00351768
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00351768v1

Submitted on 11 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Like Pedagogical Design, Educational System design can
Benefit from a Framework-Ooriented Approach

Ruddy Lelouche, Tho Toan Ly

To cite this version:
Ruddy Lelouche, Tho Toan Ly. Like Pedagogical Design, Educational System design can Benefit from
a Framework-Ooriented Approach. International Journal of Continuing Engineering Education and
Life-Long Learning, 2008, 18 (3), pp.323-337. �10.1504/IJCEELL.2008.018835�. �lirmm-00351768�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00351768v1
https://hal.archives-ouvertes.fr

 Int. J. Cont. Engineering Education and Life-Long Learning, Vol. 18, No. 3, 2008 323

 Copyright © 2008 Inderscience Enterprises Ltd.

Like pedagogical design, educational system design
can benefit from a framework-oriented approach

Ruddy Lelouche*
LIRMM, CNRS, Montpellier II University,
161 rue Ada,
34392 Montpellier Cedex 5, France
E-mail: ruddy.lelouche@gmail.com
*Corresponding author

Tho Toan Ly
Department of Computer Science and
Software Engineering,
Laval University,
Que. G1K 7P4, Canada
E-mail: thotoanly@gmail.com

Abstract: Instructional designers and teachers, at all levels of education and
training, try to put in common, to share and to reuse the practices affecting their
pedagogical design and expertise. However, the instructional environment, and
in particular the design and development of educational systems, can benefit
from similar knowledge sharing, especially because of the difficulty, length and
cost of this development process. In this paper, we aim to show how building
educational systems can be more effective and beneficial using a framework-
oriented approach. To do so, we describe different levels of abstraction in the
design and the development of an Intelligent Tutoring System (ITS). We first
recall what an ITS is, showing its advantages and drawbacks, and identifying
different knowledge types. To tackle the limitations of the ITS construction, we
then propose to build a framework, including guidelines and tools to ease its
development. We finally show that a collaborative framework-oriented
approach is indeed feasible, describing how to build such a framework. We
thus try to promote reusability and extensibility in many aspects of the design
and development of ITSs.

Keywords: architecture; collaborative design; framework; Intelligent Tutoring
System; ITS; knowledge component; knowledge type; problem-solving;
reusability.

Reference to this paper should be made as follows: Lelouche, R. and Ly, T.T.
(2008) ‘Like pedagogical design, educational system design can benefit from a
framework-oriented approach’, Int. J. Continuing Engineering Education and
Life-Long Learning, Vol. 18, No. 3, pp.323–337.

Biographical notes: Ruddy Lelouche is an Engineer from École Nationale
Supérieure des Télécommunications in Paris, and holds an MS and a PhD in
Engineering and Computer Science from the University of California at
Berkeley. He worked as a Systems Engineer, as a Research Engineer and was
responsible for the users’ educational training, at the Laboratoire
d’Informatique pour les Sciences de l’Homme of the C.N.R.S. (Centre National

 324 R. Lelouche and T.T. Ly

de la Recherche Scientifique) in Paris. There, he was one of the chief designers
and implementers of RESEDA, an expert system to process biographical data
(1979–1984). From 1984 to 2004, he has been a Professor at the Université
Laval in Quebec City, Canada, where he created three advanced courses, on
knowledge representation and expert systems, on natural language processing,
and on communication and research in sciences. Since 2005, he has been an
Associate Researcher at LIRMM, the Laboratoire d’Informatique, de Robotique
et de Microelectronique de Montpellier of the CNRS in Montpellier, France.
His research interests include knowledge representation, the design and
implementation of knowledge-based systems, intelligent tutoring systems and
interactive learning environments, intelligent computer-human interfaces, in
particular using natural language processing and/or multimedia and hypermedia
techniques. His research led to numerous publications in international journals
and conferences, and has been sponsored by the NSERC (Natural Science and
Engineering Research Council) of Canada and by the FCAR Fund (Fonds pour
la Formation des Chercheurs et l’Aide à la Recherche) of the province of
Quebec. He was also a Coordinator of the database activities at the former
AFCET in Paris (1982–1984), a founding member of GIRICO, the Inter-
university Research Group in Cognitive Informatics for Organisations in
Quebec (1985), and a member of the coordination committee of the special
interest group in software engineering of the F.I.Q. (Fédération de
l’Informatique du Québec, the Quebec data-processing federation). In 2003, he
founded the research team AMICA (Interactive Acquisition and Modelling of
Knowledge for Learning), and since 2003, he has represented Université Laval
at the GRITI (Groupe Interuniverstaire de Recherche sur les Tuteurs
Intelligents), which organises the biennial ITS International Conference, which
will celebrate its 20th year in 2008.

Tho Toan Ly, originally from Viet-Nam, has done his Master’s thesis work
under the supervision of Ruddy Lelouche. Since 2007, he has been working as
a Computer Analyst and Developer in San Diego, California, USA.

1 Introduction

It is unquestionably profitable for instructional designers and teachers, at all levels of
education and training from elementary school to continuing education, to put in
common, to share and to reuse the practices affecting their pedagogical design and
expertise. However, we think that this knowledge sharing can also be extended to the
instructional environment, at least when it uses technology, i.e. to the design and
development of educational systems, especially because of the difficulty, length and cost
of this development process.

This paper aims to show how building educational systems, more specifically
Intelligent Tutoring Systems can be more effective and beneficial using a framework-
oriented approach.

To do so, we describe different levels of abstraction in the design and the
development of an Intelligent Tutoring System (ITS). Section 2 recalls what an ITS is,
shows its advantages for the student and the drawbacks of its construction, and identifies
different knowledge types. To tackle drawbacks of ITS construction, Section 3 proposes
to build a framework, including guidelines and tools to ease its development. Section 4
shows that a collaborative framework-oriented approach is indeed feasible, and describes

 Educational system design can benefit from a framework-oriented approach 325

in more detail how to build such a framework. Throughout our research and as we show
in this paper, we try to promote reusability and extensibility in many aspects of the
development.

2 Intelligent Tutoring Systems

Before dealing with the framework and its advantages, in this section we present: What is
an ITS? How is it useful to the students? What are the types of knowledge that it
incorporates? What does its architecture look like? and Why does its construction bring
problems?

2.1 Intelligent Tutoring Systems are useful

An ITS is basically a tutoring system that is designed and developed using artificial
intelligent techniques. As to the tutoring domain, it is a particular type of expert system.
Indeed, an ITS has some expertise in the domain that it is expected to teach. As such, it
can reason on the subject matter, it can solve problems and it can explain or show a trace
of its inferences (Sleeman and Brown, 1982; Lelouche, 1998). Thanks to these designed
capabilities, an ITS can coach students in problem-solving; examples are Guidon in
medicine (Clancey, 1987), Andes in physics (Gertner and VanLehn, 2000), TIGE in cost
engineering (Morin, 1998), or the various tutors developed at Carnegie Mellon University
(Anderson, 1986). Thus, ITSs were proven to be highly effective as learning aids and
many ITS research and development efforts are still taking place (El-Sheikh and Sticklen,
1998).

2.2 Three knowledge types

In their recent research on an ITS in cost engineering, Lelouche and Morin classify the
different learning domains into three groups, depending on the type of knowledge which
is to be acquired by a student: know, know-how and know-how-to-be (Morin, 1998).
Domains such as cost engineering, geometry and physics are categorised in the
know-how type or problem-solving type, since these domains require the student to learn
how to solve domain problems. The authors state that the knowledge in an ITS in such a
domain consists of three types: Domain Knowledge (DK), Problem-Solving Knowledge
(PSK) and Tutoring Knowledge (TK).

Domain Knowledge is of the know type. It consists of static, descriptive knowledge
to be acquired by the student, and it can be modelled in the system as concepts, relations,
facts, rules, etc.

Problem-Solving Knowledge is of the know-how type. It consists of dynamic,
procedural knowledge, including all the computational and inferential processes that may
be used to solve a problem in the domain to be acquired by the student.

Tutoring Knowledge contains all tutoring entities enclosed in the ITS. It is not
directly related to the teaching domain or to problem-solving, for it is not to be taught to
or acquired by the student, but it mainly helps him/her to understand, assimilate and
master more efficiently the domain knowledge included in DK and PSK. It happens to
include also some know-how-to-be knowledge, the quality of which will influence the
quality and appropriateness of the actual tutoring strategies and actions.

 326 R. Lelouche and T.T. Ly

2.3 Architecture of an ITS

The development of an ITS can be inspired by the architectural views of many existing
systems. An example is the one shown on Figure 1, called in 1987 educational
psychologist ITS. For a short presentation of ITSs, see Lelouche (1998).

Figure 1 General architectural view of an ITS

Source: Lelouche (1998).

2.4 The construction of ITSs brings problems

He spite of their effectiveness as learning aids, few tutoring systems have made the
transition to reach the commercial market so far, although there are notable exceptions,
like Anderson’s Math Tutor (Clay, 1998). One main reason for this failure to deliver is
that the traditional development of ITSs is difficult, time-consuming, and costly
(El-Sheikh and Sticklen, 1998): many tasks and procedures are repeatedly programmed
and performed from scratch. By identifying these recurring procedures and standardising
them, we can define a common ground of development for all ITSs, and benefit from it.
That is what this paper aims to show.

3 An ITS framework proposal

To circumvent these problems, for easing the design and development of an ITS, we thus
propose to use a framework, to provide a common ground of all development aspects,
including knowledge definition and reusability in both the descriptive knowledge and the
programming components. The following subsections present the advantages and
limitations of using a framework, the three conceptual levels of an ITS using a
framework, the ITS framework as guidelines and the ITS framework as tools.

 Educational system design can benefit from a framework-oriented approach 327

The abstract level, which simply accounts for the three knowledge types identified in
Section 2.3 (they are colour-coded) in the colour version: yellow for DK, maroon for
PSK, and green for DK.

The structural level, which magnifies the abstract view and incorporates the
architectural modules identified in Section 2.4, showing their relationships to the
knowledge types.

The components level, which magnifies the structural view, showing the ITS
components and making explicit their relationships with the framework components
that are used.

3.1 Advantages and limitations of using a framework

The proclaimed advantages of using a framework are thus reusability, extensibility and
flexibility, and, as a consequence, an expected shorter development timeline. One early
development framework, although it was not named framework then, was the Knowledge
Acquisition and Documentation Structuring (KADS and later CommonKADS)
methodology for the development of knowledge-based systems (Schreiber et al., 1994),
of which Unified Problem-Solving Method Language (UPML) is a long-term
development (Fensel et al., 1999).

To give a more complete picture, we find it fair to note also that these advantages are
partly offset by well-known disadvantages, listed by Fayad and Schmidt, (1997):
development effort, learning curve, what they call integratability, maintainability,
validation and defect removal, and lack of standards. However, our opinion is that these
disadvantages are worth being tackled to ease the design and development of ITSs.

3.2 Three conceptual levels of an ITS using a framework

Figure 2 shows three conceptual levels of an ITS using a framework. For more details,
see (Lelouche and Ly, 2003).

Thus, our proposed framework, that we call an Intelligent Tutoring Systems
Framework (ITS-FW), is an attempt both to define a common model for ITS
development and to provide an application framework (Booch, 1991). That large project
involves many research areas, such as knowledge representation, knowledge sharing,
knowledge-based development, object-oriented frameworks, user interfaces, etc.
To foster reusability, we are trying to reuse concepts found in many existing technologies
from different domains: object-oriented development, distributed applications, etc.
Their efficiency and strength have been proven useful in real-world systems
(OMG, 2003–2006; Microsoft, 2004–2007).

In short, our ITS-FW comprises tools and guidelines to facilitate all facets of the
development in its various stages. The following subsections present these two aspects of
the framework in more detail.

 328 R. Lelouche and T.T. Ly

Figure 2 The three conceptual views of an ITS using a framework (see online version
for colours)

Note: At each level, the colours correspond to the three basic types of knowledge found
in an ITS: yellow to DK, maroon for PSK and green for TK. The acronyms in the
abstract view and in the structural view denote, respectively, the basic knowledge
types identified in Section 2.3 and the main modules identified in Figure 1.

3.3 The ITS framework as guidelines

First, an ITS-FW is a set of guidelines. These can be used to define a Common
Knowledge Representation (CKR) scheme, to define a structure to locate and access a
specific piece of domain knowledge, to design and implement an ITS using the ITS-FW
components, and to define a way to communicate between components.

3.3.1 Defining a Common Knowledge Representation

The CKR is a flexible and extensible scheme to define and represent any domain
knowledge. It is based on the Extensible Markup Language (XML) notation, and is a
subset of the existing pre-defined semantic web markup language (WWW Consortium,
1994–2007). In February 2004, the World Wide Web Consortium (W3C) released the
Resource Description Framework (RDF) to complement XML, and the Web Ontology

 Educational system design can benefit from a framework-oriented approach 329

Language (OWL), as W3C official recommendations. The RDF is used to represent
information and to exchange knowledge in the web. The OWL is used to publish and
share sets of terms called ontologies, supporting advanced web search, software agents
and knowledge management. Thus, the RDF/XML language is well-defined, flexible and
easy to use. As a result, it supports different knowledge structure types, at the meta-
knowledge level as well as at the various implementation knowledge levels. Knowledge
and meta-knowledge can thus be represented in different ways: procedures, concepts,
production rules, propositions, frames and scripts, semantic networks, etc.1 Another
benefit of the RDF/XML notation is that, ideally, being a simple human-readable
language, it allows different stakeholders such as domain experts or computer agents to
read and express their knowledge, if they are willing to do so, without needing a
knowledge engineer. Thus, our framework CKR provides a mean to define, reuse and
extend knowledge or meta-knowledge. Finally, the CKR also facilitates knowledge
sharing: the knowledge in any given domain can be exchanged from one ITS to another.

3.3.2 Defining a structure to locate and access a specific piece of domain
knowledge

Our proposed framework assumes that domain knowledge is spread throughout a
distributed environment such as the world wide web, and attempts to account for that
distribution. Thus, it needs a structure to locate and access a specific piece of domain
knowledge from various locations. Without such a structure, knowledge engineers would
not be able to access a piece of existing knowledge in one domain to reuse it within
another. Although not essential, this ability enhances the capability to exchange and
access existing knowledge.

3.3.3 Designing and implementing an ITS using the ITS framework components

The ITS framework provides documentation to permit the integration of ITS-FW
programmed components within an ITS. It also documents how to use, extend and
personalise many aspects of the development, including the expression of different levels
of abstraction for the system design and implementation, for both components and
knowledge. This documentation should enable stakeholders such as developers and
knowledge engineers to integrate and use ITS-FW features in production.

3.3.4 Defining communication between components

Finally, the ITS-FW defines a way to communicate between components: the Common
Component Interaction (CCI). This interaction capability is borrowed from existing
similar ones, which are employed in many current technologies such as the Component
Object Model (COM) (Microsoft, 2004–2007), the Common Object Request Broker
Architecture (CORBA) (OMG, 2003–2006), etc. The CCI is a guideline that specifies
how each module should be connected and should communicate with the others. As long
and as soon as all involved components conform to this pre-defined specification, any
component can communicate with the other existing components within an application.
For instance, at a high level of design, the main purpose of using CCI is to integrate
relatively easily, into some ITS, components developed and sold by independent vendors.
This leads to the ability to construct modules disregarding physical development sites.

 330 R. Lelouche and T.T. Ly

Moreover, the CCI scheme provides the flexibility to integrate or substitute
components into two or several ITS built for related learning domains. If two domains
have some common characteristics, e.g. in user interface presentation, student monitoring
techniques or reasoning techniques (Sleeman and Brown, 1982), etc., some components
used in one domain can be reused or inserted into another. For instance, if we suppose
that geometry is a subset of mathematics, the domain expert module in geometry can be
replaced by the one in mathematics (assuming that one exists, which is a major
endeavour in itself!) without affecting the overall functionalities of the geometry ITS.

3.4 The ITS framework as tools

For the practical design and implementation aspects of the target ITS, the ITS-FW
provides:

1 a set of low-level operations or domain-independent knowledge activities, called
runtime knowledge;

2 an object-oriented application framework.

3.4.1 The runtime knowledge

Any problem-solving activity or procedure, whether it is performed by the system or by a
human (teacher or learner), includes, at the lowest level, the execution of simple ‘atomic’
operations such as adding, subtracting or comparing two simple values, displaying a
point, a line segment or a number, etc. Such operations are usually necessary in all
domains. We call them the runtime knowledge or runtime procedures. This knowledge is
part of, and is used at, the execution-level of a problem-solving activity carried out by an
ITS. These runtime routines are implemented directly as low-level executable
components. We consider the knowledge they implement as domain-independent, but we
are not trying here to prove whether all of this knowledge is truly domain-independent.

3.4.2 The object-oriented framework

Jacobson, Booch and Rumbaugh define as an object-oriented framework as a micro
architecture that provides an incomplete template for systems within a specific
application domain (Gamma et al., 1995; Jacobson, Booch and Rumbaugh, 1999). For
example, it can be a system built with the explicit purpose to be extended and/or reused.
The benefit of such a framework is the ability to reuse its components (Booch, 1991). In
our case, such an object-oriented framework is a part of the overall ITS-FW described in
this paper. It is composed of

1 A high level architectural view, which is based on a common component
architectural view for all existing ITSs.

2 A set of unfinished programmed components (UPC). The UPC set consists of
object-oriented abstracted classes and their relationships. These relationships
contribute to the ‘core’ of software execution and component integration. In addition,
the UPCs are developed based on software design patterns to maximise flexibility
and reusability. The UPC set is in charge of defining the mechanism used to plug
different components onto a main component; it also provides the mechanism for an

 Educational system design can benefit from a framework-oriented approach 331

ITS to be executed within a given operating system. Because all UPCs are developed
in conformity with the CCI, they should be replaced or should evolve without
affecting the structure and functionality of the overall ITS-FW.

4 An ITS framework implementation proposal

In this paper, following the separation of the ITS knowledge into three knowledge types,
we are proposing a framework that, we believe, should ease the development of ITSs in
any teaching domain, because it is based on the reusability, extensibility, flexibility and
sharing of knowledge structures, ontologies, tools and techniques. Recall that these
activities and goals (design and implementation of the ITS) are above, but connected to,
and complement, those dealing with pedagogical procedures and behaviours (use of the
ITS). In this section, we focus on the low-level implementation of the framework. How is
the separation of knowledge types effected in relationship to the framework? How should
the framework be implemented? and Which tools should be included in the framework?
In the following subsections, we focus on the implementation of the proposed guidelines
(Section 4.1), on the interaction between knowledge components (Section 4.2), on tools
to model knowledge and to acquire knowledge entities (Section 4.3) and, lastly, on the
ITS environment execution (Section 4.4).

4.1 Knowledge component design and implementation guidelines

In regard to the top view of an ITS, we need to implement the system in such a way that
the three knowledge types are clearly defined and independent from one another. Having
these principles in mind, we approach our simple architecture of the system by defining a
knowledge component for each knowledge type: a Domain Knowledge Component
(DKC) for DK, a Problem-Solving Knowledge Component (PSKC) for PSK and a
Tutoring Knowledge Component (TKC) for TK. In our context, a knowledge component
could and should be more than just one ‘programmed’ component, since its size would
depend on the complexity of the knowledge encoded in a domain. Indeed, a knowledge
component has its own ontology, its own defined structures and its own
sub-components. It is independent from other knowledge components in the same
system.

By organising each type of knowledge as its own knowledge component, it is possible
to reuse and integrate such a knowledge component into different systems without
knowing the structures and components of the system in which it executes. We can define
knowledge representation and an ontology for each knowledge component. For example,
we could use a frame representation for domain knowledge, an object-oriented
representation for tutoring knowledge, e.g. to build a student model, and a task-oriented
representation for problem-solving knowledge. The following subsections describe our
approach to the implementation of each of these knowledge components.

4.1.1 Domain Knowledge Component

As mentioned in Section 2.3, the domain knowledge consists of static, descriptive
knowledge that, at the low-level of the implementation, is subsequently represented as
concepts, relations, facts, rules, etc. When discussing further about our framework,

 332 R. Lelouche and T.T. Ly

we proposed CKR (Section 3.1) to provide a mean to reuse and extend knowledge or
meta-knowledge. To do so, we need to conceptualise a common set of vocabulary and
structures, known as ontology (Mizoguchi and Bourdeau, 2000; Devedzic, 2001), in the
teaching domains. We believe that by defining the DK ontology, we can enhance the
reusability in many different teaching domains. Within the German Research Center for
Artificial Intelligence (DFKI), Ullrich’s research group has being focusing on an
‘instructional ontology’. Their goal is to provide an ontology to describe a learning
resource from an instructional perspective (Ullrich, 2004).

In our research model, we use ‘instructional ontology’ as a CKR for DK to define any
teaching domain knowledge structures. We believe that the modelling of the teaching
domain knowledge for an Intelligent Educational System (IES) and for an ITS is very
similar: both systems are educational software and contain artificial intelligent
components (AAAI, 2000–2007). Extending this small and common ontology, we can
easily define, in a teaching domain, a specialised ontology; then we may use it as a basis
to acquire knowledge entities: e.g. in physics, Newton’s law is a theorem and
‘gravitational acceleration is 9.8 ms 1’ is a fact.

4.1.2 Problem-Solving Knowledge Component

The PSKC is a programmed component that encodes the problem-solving knowledge. It
is responsible for solving a domain problem through a sequence of computational and
inferential procedures. Throughout the years, many techniques and programming
languages have been used to model this type of knowledge: command-based presentation
in imperative programming languages (Fortran, Algol, C, etc.), rule-based presentation in
Prolog and LISP, object-based presentation in C++, Java, etc. (Morin, 1998). How it
should be implemented is based on the preference of the developers who build the
component. In our framework, we simply provide a mean for a component of this type to
interact with other components in the same system. In our endeavour, we focused on the
UPML (Fensel et al., 2003), a complete framework providing means to reuse and
integrate problem-solving methods in the development of a knowledge-based system.
First, UPML is a software architecture for knowledge-based systems providing
components and adapters, and a configuration of how to connect the components using
the adapters. In addition, it is a set of design guidelines specifying how to develop a
system constructed from components and connectors (Fensel et al., 2003). Thus, UPML
thoroughly defines how components interact and adapt to one another in a knowledge-
based system. We believe that it is a solid base that we can use and customise to our ITS
framework.

The UPML framework defines not only how to reuse parts or all of the knowledge
components, but also how to interact with such components. Moreover, it provides a
well-defined ontology for problem-solving methods (Fensel et al., 1999) a descendent of
the Common KADS methodology (Schreiber et al. 1994). In the previous sections, we
defined our framework characteristics as similar to those of the UPML framework. For
instance, our framework purpose is a foster knowledge reuse, to favour a component-
oriented development, and to propose guidelines and tools to ease ITS development. That
is what the UPML framework does, but for more general knowledge-based systems. In
consequence, we believe that, by reusing the UPML framework and specialising it, we
may devote less effort to develop our framework, since we start from an existing one,
while eventually providing an efficient (because less general) and well-tested framework.

 Educational system design can benefit from a framework-oriented approach 333

For our PSKC, similarly we reuse the UPML problem-solving method ontology to
define problem-solving in our framework. By adhering to this ontology, we believe that
the PS knowledge can be reused and extended for any ITS without worrying about how it
is encoded or implemented.

4.1.3 Tutoring Knowledge Component

As to the tutoring knowledge, due to the limited time devoted to our work (a master’s
thesis), we decided not to concentrate on this component, but rather to focus on the
teaching domain knowledge component and on the problem-solving knowledge
component. Depending on the underlying teaching and learning theories, the TKC could
be very complex and very ad hoc. However, how this component can or will be built is
not our concern here. Besides, we think that building any TKC would not cause any
problem in a system that is constructed with our framework, because knowledge
components are independent from one another.

4.2 Common Component Interaction

So far, we have three independent knowledge components. Each one does not ‘know’
anything about the existence and capabilities of other components in the system. It has its
own ontology and some protocol communication: namely, a specification of how external
components interact with it in a system. Because we do not impose any common
communication protocol that all components should adhere to in order to interact with
one another, we must define a way to ‘map’ the ontology of a given component with the
ontologies of the external components interacting with it. Thus, a set of mapping relations
express the connections between the ontologies of two components (Crubézy, Pincus and
Musen, 2003). For that purpose, the UPML framework defines knowledge adapters
(Crubézy and Musen, 2004), expressing how to map a domain knowledge component to
interact with problem-solving methods in a knowledge-based system. That approach is a
great source of inspiration for us to define how to map a DKC to a PSKC in our
framework. In fact, we believe that we can reuse the UPML framework to design the
mapping for DKC and PSKC, and that we could also propose a similar mapping for TKC
to interact with DKC and PSKC.

To help the reader understand this concept better, we show how it works on a simple
example. Suppose that our projected ITS consists of a DKC specialised in physics and a
PSKC specialised in arithmetic calculation. A simple problem statement is given:
‘2 km + 2 km = ? km’. The PSKC only knows that addition is the sum of one or many
values, which must be numeric. As a consequence, we must map each ‘2’ from the
problem statement into a numeric value 2 for PSKC, so that PSKC can do its calculation.
When the PSK component terminates its calculation, it will return the numeric value 4,
and the mapping will then ‘tell’ the DSK component that the (physics) result is ‘4 km’.

The mapping process becomes important if we want two components to communicate
with each other. Certainly, defining a mapping is an extra step in the development
process. However, its cost should remain reasonable if we have access to many ready-to-
use components: the cost of developing a mapping is lower than that of adapting an
existing component to make it work with other components. Moreover, our ITS
framework does not impose any kind of structure on any of its components.

 334 R. Lelouche and T.T. Ly

4.3 Tools to ease the knowledge implementation

To make a new proposal framework for ITSs, we effectively promote reusability and
extensibility by applying the existing UPML framework and concepts, and by adding
more functionality to it. Thus, our framework becomes an extension of the UPML
framework. We take the concept knowledge component and adapter from UPML. One
advantage of reusing the UPML framework is that UPML is perfectly integrated with
Protégé (Gennari et al., 2003). Protégé is an ontology editor and a knowledge acquisition
system developed by a group of researchers at Stanford University. Protégé is a tool,
which allows users to construct domain ontologies, to customise data entry forms, and to
enter data. It is also a platform, which can easily be extended to include graphical
components such as graphs and tables, various media such as sound, images and video,
and various storage formats such as OWL, RDF, XML and HTML (Noy et al., 2001).

Thanks to the extensibility built in Protégé, UPML communities have created
a plug-in that provides an editor to edit a problem-solving method and an editor to edit its
mapping. Thus, we can use those very editors to add and edit our ITS-specific
problem-solving methods, and to define their mappings. In addition, Protégé is a perfect
tool for modelling our teaching domain ontology: it has already been used successfully to
model instructional ontology and UMPL ontology. Thus, with Protégé, we expect to be
able to define in a seamless fashion our teaching domain knowledge, be it mathematics,
physics or geometry.

4.4 The ITS execution environment

As we mentioned in Section 3.2, our ITS framework provides a runtime knowledge
which is a set of low-level operations. At the implementation level, the runtime
knowledge is a process that translates a high-level programming language into a machine
language. Thus, it takes place in an execution environment where an ‘atomic’ operation,
as mentioned above, can be translated into machine code. Moreover, it is in charge of
connecting different knowledge components in an ITS (see Section 4.2), thanks to their
mapping relationship(s). However, defining a mapping is not enough: we need to add to
the execution environment an interpreter for translating a given knowledge instance from
one knowledge component to the others.

The execution environment provides the executed steps of a problem-solving method.
The result of each step can be mapped back to some domain knowledge instance. This
‘back-mapping’ provides a mean, especially for a tutoring component, to examine the
reasoning process used, and to suggest a student certain execution steps during a tutorial
session if necessary.

In order to maximise reusability, flexibility and extensibility, we carefully design the
execution environment using the object-oriented framework concepts. This execution
environment should be flexible to replace any programmed component in the
environment without corrupting it. It should be reusable to customise any component for
the needs of a specific domain. To make it extensible, as mentioned in Section 3.2.3, we
are developing a UPC and the associated plug-in mechanism so that any programmed
component can be interacted with the environment at runtime.

 Educational system design can benefit from a framework-oriented approach 335

4.5 In summary

Using our ITS framework to build an ITS, one will need to define the domain-dependent
knowledge, the problem-solving knowledge and the mapping knowledge. Because these
knowledge are independent from one another, we can always reuse them in
the development of an ITS specialising in various domains. As we look back at the
example in Section 4.2, we can reuse the PSKC specialised in arithmetic calculation in
the development of an ITS in geometry by simply defining the mappings necessary for
the DKCs and PSKCs to communicate with one another. Throughout the paper, we have
tried to show that our proposal framework relates to many fields such as knowledge
representation, knowledge engineering, object-oriented development, etc. During the
master’s project of the second author, we hope to establish mainly:

a common ontology for DK and PSK;

a guideline on how to design DKC and PSKC based on our common ontology and on
how to define the associated mappings;

an ITS environment execution, as mentioned in Section 4.4, that is highly extensible
and customisable to meet most, if not all, of the needs to build any type of ITS.

We hope that our proposal framework could be a subject of interest to other researchers,
so that it can be carried on and be completed in some near future.

5 Conclusion

As we described our approach to build an ITS, we progressively mapped our design
activities into different levels of abstraction. At the highest level of abstraction, which is
the ITS knowledge modelling level, we separated ITS knowledge into three distinctive
knowledge types. Next, at the design level, we proposed an ITS framework, the purpose
of which is to ease the process of ITS development. That ITS framework comprises:

1 a set of guidelines, including common knowledge representation, knowledge sharing
and common component interaction, to help us reuse existing knowledge structures
and entities;

2 a set of tools, taking care of common operations in all domains, to help us focus on
developing and extending knowledge components for a specific domain need.

Lastly, at the implementation level, we proposed instead to use more concrete existing
well-proven tools and guidelines to develop the framework. Thanks to the reuse of these
existing tools and guidelines, the development of our ITS framework should be effective
and cost-saving. Because of their inclusion in our ITS framework, the latter should be
well tested, reliable and ready to be used in the development of a real-world ITS.

 336 R. Lelouche and T.T. Ly

References
AAAI (2000–2007) Intelligent Tutoring Systems, in the AI Topics Site. Menlo Park, California,

USA: Association for the Advancement of Artificial Intelligence (formerly the American
Association for Artificial Intelligence). Retrieved March 2007. Available at:
http://www.aaai.org/AITopics/html/tutor.html.

Anderson, J.R. (1986) Cognitive Modelling and Intelligent Tutoring. Washington, DC, USA:
National Science Foundation.

Booch, G. (1991) Object-oriented Design with Applications. Redwood City, California, USA and
Don Mills, Ontario, Canada: Benjamin/Cummings Publ. Co.

Clancey, W.J. (1987) Knowledge-based Tutoring: the Guidon Program. Cambridge,
Massachusetts, USA: The MIT Press.

Clay, R.A. (1998) ‘Math software allows students to subtract fear, multiply confidence –
psychologist builds an artificially intelligent math tutor’, The APA Monitor, Vol. 29, March,
p.40. Retrieved March 2007. Available at: http://www.apa.org/monitor/mar98/math.html.

Crubézy, M. and Musen, M.A. (2004) ‘Ontologies in support of problem solving’, in S. Staab and
R. Studer (Eds), Handbook on Ontologies (pp.321–342). Heidelberg, Germany: Springer.

Crubézy, M., Pincus, Z. and Musen, M.A. (2003) ‘Mediating knowledge between application
components’, Demo presented at the Semantic Integration Workshop of the Second
International Semantic Web Conference (ISWC-03), Sanibel Island, Florida, USA, p.6.
Retrieved March 2007. Available at: http://sunsite.informatik.rwth-aachen.de/Publications/
CEUR-WS/Vol-82/SI_demo_02.pdf.

Devedzic, V. (2001) ‘The semantic web – implications for teaching and learning’, in C.H. Lee,
S. Lajoie, R. Mizoguchi, Y.D. Yoo and B. du Boulay (Eds), Enhancement of Quality Learning
Through Information and Communication Technology (ICT), Proceedings of ICCE/SchoolNet
2001 Conference (pp.29–30). Incheon, South Korea: National University of Education.

El-Sheikh, E. and Sticklen, J. (1998) ‘Framework for developing intelligent tutoring systems
incorporating reusability’, in J. Mira and A.P. Del Pobil (Eds), Methodology and Tools in
Knowledge-Based Systems, Paper presented in the Proceedings of the 11th International
Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert
Systems, IEA/AIE-98. Castellón, Spain, 1–4 June, Vol. I. Lecture Notes in Computer Science,
Vol. 1415. Heidelberg, Germany: Springer, pp.558–567.

Fayad, M.E. and Schmidt, D.C. (1997) ‘Object-oriented application frameworks’, Communications
of the ACM, Vol. 40, pp.32–38.

Fensel, D., Benjamins, V.R., Decker, S., Gaspari, M., Groenboom, R., Grosso, W., Musen, M.,
Motta, E., Plaza, E., Schreiber, G., Studer, R. and Wielinga, B. (1999) ‘The component model
of UPML in a nutshell’, Paper presented in the Proceedings of the 1st Working IFIP
Conference on Software Architectures (WICSA1), San Antonio, Texas, USA, February.
Retrieved March 2007. Available at: http://users.ece.utexas.edu/~perry/prof/wicsa1/
final/fensel.pdf.

Fensel, D., Motta, E., van Harmelen, F., Benjamins, V.R., Crubézy, M., Decker, S., Gaspari, M.,
Groenboom, R., Grosso, W.E., Musen, M.A., Plaza, E., Schreiber, G., Studer, R. and
Wielinga, B.J. (2003) ‘The unified problem-solving method development language UPML’,
Knowledge and Information Systems, Vol. 5, pp.83–131.

Gamma, E., Helm, R., Johnson, R. and Vlissides, J.2 (1995) Design Patterns: Elements of Reusable
Software Architecture. Reading, Massachusetts, USA: Addison-Wesley.

Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubézy, M., Eriksson, H., Noy, N.F.
and Tu, S.W. (2003) ‘The evolution of protégé: an environment for knowledge-based systems
development’, Int. J. Human-Computer Studies, Vol. 58, pp.89–123.

Gertner, A. and VanLehn, K. (2000) ‘Andes, a coached problem-solving environment for physics’,
in G. Gauthier, C. Frasson and K. VanLehn (Eds), Paper presented in the Proceedings of the
Intelligent Tutoring Systems: 5th International Conference, ITS 2000, Springer, Berlin,
pp.131–142.

 Educational system design can benefit from a framework-oriented approach 337

Jacobson, I., Booch, G. and Rumbaugh, J. (1999) The Unified Software Development Process.
Reading, Massachusetts, USA: Addison-Wesley.

Lelouche, R. (1998) ‘The successive contributions of computers to education: a survey’, European
Journal of Engineering Education, Vol. 23, pp.297–308.

Microsoft (2004–2007) COM: Component Object Model Technologies. Redmond, Washington,
USA: Microsoft Corp. Retrieved March 2007. Available at: http://www.microsoft.com/com/.

Mizoguchi, R. and Bourdeau, J. (2000) ‘Using ontological engineering to overcome common
AI-ED problems’, Int. J. Artificial Intelligence in Education, Vol. 11, pp.107–121.

Morin, J-F. (1998) Conception of an Intelligent Tutoring System in Cost Engineering: Knowledge
Representation, Pedagogical Interactions, and System Operation. Master’s Thesis. Université
Laval, Québec, Canada.

Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W. and Musen, M.A. (2001)
‘Creating semantic web contents with protégé-2000’, IEEE Intelligent Systems, Vol. 16,
pp.60–71.

OMG (2003–2006) Catalog of OMG CORBA/IIOP Specifications. Needham, Massachusetts, USA:
Object Management Group Inc. Retrieved March 2007. Available at: http://www.omg.org/
technology/documents/corba_spec_catalog.htm.

Schreiber, G., Wielinga, B., Akkermans, J.M., Van de Velde, W. and de Hoog, R. (1994) ‘Common
KADS: a comprehensive methodology for KBS development’, IEEE Expert, Vol. 9, pp.28–37.

Sleeman, D. and Brown, J.S. (1982) ‘Introduction: intelligent tutoring systems’, in D. Sleeman and
J.S. Brown (Eds), Intelligent Tutoring Systems (pp.1–13). London, UK/Orlando, Florida,
USA: Academic Press.

Ullrich, C. (2004) ‘Description of an instructional ontology and its application in web services for
education’, Paper presented in the Proceedings of the 3rd International Semantic Web
Conference ISWC 2004, Hiroshima, Japan, November 7–11.

WWW Consortium (1994–2007) W3C Semantic Web Activity. World Wide Web Consortium.
Retrieved March 2007. Available at: http://www.w3.org/2001/sw/.

Notes
1Note that, although much knowledge is heuristic, this characteristic is not mentioned here: it refers
to the deep structure of the considered knowledge and not to some representation technique.

2Because of the popularity of their book (it was in its 32nd printing in 2005), these authors are often
nicknamed, even in citations, the ‘Gang of Four’, or ‘GoF’, or ‘Go4’.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

