
HAL Id: lirmm-00355048
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00355048v1

Submitted on 21 Jan 2009 (v1), last revised 10 Apr 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

2-cover definition for a coupled-tasks scheduling problem
Gilles Simonin, Rodolphe Giroudeau, Jean-Claude König

To cite this version:
Gilles Simonin, Rodolphe Giroudeau, Jean-Claude König. 2-cover definition for a coupled-tasks
scheduling problem. RR-09003, 2009. �lirmm-00355048v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00355048v1
https://hal.archives-ouvertes.fr

Extended matching problem for a coupled-tasks

scheduling problem

G. Simonin, R. Giroudeau, and J.-C. König

LIRMM,CNRS,UM2 UMR 5506 - CC 477
161 rue Ada, 34392 Montpellier Cedex 5 - France

(e-mail: simonin@lirmm.fr)

Abstract. This paper presents a scheduling problem with coupled-tasks
in presence of a compatibility graph on a mono processor. We investigate
a specific configuration, in which the coupled-tasks possess an idle time
equal to 2. The complexity of these problems will be studied according to
the presence or absence of triangles in the compatibility graph. As an ex-
tended matching, we propose a polynomial-time algorithm which consists
in minimizing the number of non-covered vertices, by covering vertices
with edges or paths of length two in the compatibility graph. This type
of covering will be denoted 2-cover technique. According on the compat-
ibility graph type, the 2-cover technique provides an 13

12
-approximation

or 10

9
-approximation algorithm.

1 Introduction

1.1 Presentation

In this paper, we present the problem of data acquisition according to compat-
ibility constraints in a submarine torpedo, denoted TORPEDO problem. The
torpedo is used in order to make cartography, topology studies, temperature
measures and many other tasks in the water. The aim of this torpedo is to col-
lect and process a set of data as soon as possible on a mono processor. In this
way, it possess few sensors, a mono processor and two types of tasks which must
be schedule: Acquisition tasks and treatment tasks. First, the acquisition tasks
A = {A1, . . . , An} can be assigned to coupled-tasks introduced by [8], indeed the
torpedo sensors emit a wave which propagates in the water in order to collect the
data. Each acquisition tasks Ai have two sub-tasks, the first ai sends an echo, the
second bi receives it. The processing time of sub-tasks are denoted pai

and pbi
.

Between the sub-tasks, there is an incompressible idle time Li which represents
the spread of the echo in the water. Second, treatment tasks T = {T1, . . . , Tn}
are obtained from acquisition tasks, indeed after the return of the echo, vari-
ous calculations will be executed from gathered informations. These tasks are
preemptive and have precedence constraints with the acquisition tasks. In this
paper, we will study the problem where every acquisition task have a precedence
relation with one treatment task of one unit long.

At last, there exist compatibility constraints between acquisition tasks, due
to the fact that some acquisition tasks cannot be processed in same the time
that another tasks. In order to represent this constraint a compatibility graph
Gc = (A, Ec) is introduced, where A is the set of coupled-tasks and Ec represents
the edges connecting two coupled-tasks which can be executed simultaneously.
In other words, at least one sub-task of a task Ai may be executed during the
idle time of another task Aj (see example in Figure 1).

A1 A2A3

a1 b1a2 b2 a3 b3

L1
L2 L3

Compatibility graph

Fig. 1. Example of compatibility constraints with Li = 2

In the scheduling theory, a problem is categorized by its machine environ-
ment, job characteristic and objective function. So using the notation scheme
α|β|γ proposed by [5], the problem, denoted as TORPEDO, will be defined by
1|prec, (pai

=pbi
=1, Li=2) ∪ (pTi

= 1), Gc|Cmax
1.

1.2 Related work

The complexity of the scheduling problem, with coupled-tasks and a complete
compatibility graph2, has been investigated by [3] (i.e. Gc = Kn, [7], [1]. In
existing works about coupled-tasks on a mono processor, authors focus their
studies on precedence constraints between the Ai’s. We have study the complex-
ity of this type of problem according to the value of the different parameters,
and we find the line between the polynomial cases and NP-complete ones. We
have shown in [9] that the relaxation of the compatibility constraint imply the
NP-completeness of the problem TORPEDO0 : 1|prec, coupled − task, (pai

=
pbi

=1, Li =α) ∪ (pTi
= 1), Gc|Cmax, in the case where α ≥ 3. In this article we

present two results, first we will study a special case of TORPEDO0 problem
where Li = 2, and so tbi

= tai
+ pai

+ Li = tai
+ 3 where tai

is the starting
time of a task ai. Second, we design an interesting polynomial-time approxima-
tion algorithm with non-trivial ratio guarantee for this problem, which can be
generalized for the TORPEDO problem.

1.3 Presentation of the TORPEDO problem

This section is devoted to definition and notation used in the rest of the arti-
cle. All the graphs in this paper are non-oriented. We will call path a non-empty

1 prec represents the precedence constraints between A et T
2 Notice, the lack of compatibility graph is equivalent to a fully connected graph. In

this way, all tasks may be compatible each other.

graph C = (V, E) of the form V = {x0, x1, . . . , xk} and E = {x0x1, x1x2, . . . , xk−1xk},
where the xi are all distinct. The number of edges of a path corresponds to its
length. The path of length k is denoted Ck in the rest of the paper. Note that
k = 0 is allowed, thus C0 is a simple vertex. The study of the TORPEDO prob-
lem depends on two essential points, the structure of the coupled-tasks and the
compatibility graph Gc. This structure gives special constraints for the schedule
which provides specific covering problems in Gc. To begin the study, we will in-
vestigate the different ways of scheduling the coupled-tasks with this structure.
There are four possibilities (see illustration Figure 2).

Observation 11 The inactivity time between the two sub-tasks restraints the
possibilities of scheduling, indeed on the illustration Figure 2 we can see the four
types of scheduling, and so four types of covering on Gc. For each case, we have
at most two slots and more than two treatment tasks which can be executed after
the coupled-tasks. So, if we schedule triangles, chains, and edges the ones after
the others, there is no idle slot (except from the first slot if there is no triangle).
The only idle slots we can get, come from the simple vertices C0. Because of
their structure, they are the last to be scheduled.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

.

Idle times

A1

A1

A1

A1

A2

A2

A2

A3

C0 C1

Ci

TR

T1 T1

T1

T1

T2

T2

T2 T3

i

Ai Ai+1 Ti+1

a1 a1

a1

a1

a2

a2

a2 a3

ai+1

b1 b1

b1

b1

b2

b2 b3

bi bi+1

L1 =2

Fig. 2. Illustration of the four types of scheduling

These four types of scheduling immediately imply four types of covering in
Gc: non-covered vertices, edges, paths of length greater than one, and triangles
denoted TR. The presence of triangles in Gc will raise problems in our study. For
better results, the TORPEDO problem is divided into two cases: depending to
whether Gc contains triangles or not. We denote these problems TORPEDO+TR
and TORPEDO-TR.

Theorem 11 TORPEDO+TR and TORPEDO-TR are NP -complete.

It is not difficult to prove that TORPEDO+TR (resp. TORPEDO-TR) can
be reduced from the well-known triangle packing problem3 (resp. hamiltonian

3 In a graph G = (V, E), a triangle packing is a collection V1, . . . , Vk of disjoint subsets
of V , each containing exactly three vertices linked by three edges which belong to E

(see [4]).

path problem4). Due to lack of space, the proof of the Theorem 11 is not de-
scribed here.

The approximation of these problems requires that vertices in Gc be covered,
but from [10] or [6] we know that covering a graph by paths of different length
greater than two is NP-complete. In order to obtain a good polynomial-time
approximation in the two cases, we will use the same approach. It consists in
finding a maximum covering of vertices with only edges and paths of length two.
In the next section, we will define this covering and we will prove that it can be
found in polynomial-time.

2 2-cover definition

In the following, we will present several definitions concerning 2-cover.

Definition 21 (2-cover) Let G = (V, E) be a graph, a 2-cover M is a set of
edges such that the connected components of the partial graph induced by M are
either simple vertices, edges, or paths of length two.

Definition 22 (M-covered vertex) A M -covered vertex (resp. M -non-covered)
is a vertex which belongs (resp. does not belong) to at least one edge of M . The
set of M -covered vertices (resp. M -non-covered vertices) will be denoted S(M)
(resp. NS(M)).

Definition 23 (Maximum 2-cover) In a maximum 2-cover the number of
covered vertices is maximum, therefore the number of non-covered vertices is
minimum.

We will now give the definition of the alternating path in a 2-cover which is
similar to the classical alternated path in a maximum matching by [2].

Definition 24 (M-alternated path) Let M be a 2-cover in a graph G =
(V, E), an M -alternated path C = x0, x1, . . . , xk is a path in G such that for
i = 0, . . . ,

⌊

k
2

⌋

− 1, x0 ∈ NS(M), {x2i, x2i+1} /∈ M , and {x2i+1, x2i+2} ∈ M

Definition 25 (Vertebral column of an M-alternated path) Let M be a
2-cover in a graph G = (V, E), and C = x0, x1, . . . , xk an M -alternated path in
G. The vertebral column denoted T associated to the path C is composed of C
and M edges which are incident to C (and possibly their extremity).

Remark 21 The only case when T contains a cycle is when the last vertex of C
is connected to another vertex of C by an edge e ∈ M and e 6∈ C (see illustration
in figure 4(a))

4 In a graph G = (V, E), an hamiltonian path is a path compound by all the vertices
of V (see [4]).

x0 x1 x2 x3 x4 xk−1 xk

C

T

. . .
∈ M

6∈ M

Fig. 3. Example of a vertebral column T associated to an M -alternated path C

x0 x1 x2 x3 x4 x5

e

(a) Example of a
cycle in the verte-
bral column T

x0 x1 x2 x3 x4 x5

e

(b) Example of im-
provement with a
cycle in T

Fig. 4. Illustrations for the proof of the Lemma 51

Definition 26 (Vertex degree in relation to M) Let M be a 2-cover in a
graph G = (V, E). For each i = 1, . . . , k, let dM (xi) be the number of edges of
M which are incident to xi.

Definition 27 (Improvement of an M-alternated path) Let C =x0, . . . , xk

be an M -alternated path, and x0 ∈ NS(M). C becomes improving if we can re-
duce by at least one the number of non-covered vertices in C by changing the
belonging to M of the edges of C.

Remark 22 From Remark 21, a path of length three or four can be created
thanks to the improvement operation used in Definition 27. Let e be the edge of
M which creates the cycle in T and thus creates the path of length three or four.
Then, the edge e can be removed from M in order to improve the 2-cover (see
Figure 4(b)).

2.1 Results

This section is devoted to a lemma about the improvement of alternated paths
and the fundamental Theorem of the 2-cover with M -alternated path.

Lemma 21 Let M be a 2-cover, C = x0, x1, . . . , xk an M -alternated path with
x0 ∈ NS(M), and T its M -alternated column associated. C is improving if and
only if there exists a vertex x2i−1 such that dM (x2i−1) 6= 2 or if T contains a
cycle.

Proof

⇒ Suppose that C may be improved, we will show that there exists a vertex
x2i−1 such that dM (x2i−1) 6= 2. Suppose that an odd vertex x2i−1 such that

∈ M

6∈ M

x0 x1 x2 xkxk−3 xk−2 xk−1

yr yr+1y0

C

T

. . .

Fig. 5. Skeleton of the column T associated to C

dM (x2i−1) 6= 2 does not exist or that T does not contain any cycle. Thus, C and
its column T have the shape of Figure 5.

From Definition 27, if T does not contain any cycle, we can simply improve
the cardinality of the path by changing the belonging to M of the edges of C. If
we change the belonging to M of the edge {x0, x1} in order to cover x0, the edge
{x1, x2} must change, else x1 will be a star center. In this way, we change the
belonging to M of the edge {x1, x2}, which means that we must change {x2, x3}.
Recursively, we will change the belonging to M of all C edges. Thus, the last
vertex xk will not be covered, and our M -alternated path will not be improving.
This is inconsistent with the former assumptions. Therefore, either there exists
a vertex x2i−1 such that dM (x2i−1) 6= 2, or T contains a cycle .

⇐ On the contrary, we study two possibilities. First, let us assume that T
does not contain a cycle. Suppose that there exists a vertex x2i−1 such that
dM (x2i−1) 6= 2. We will show that C becomes improving. Let xj = x2i−1 be the
first vertex on the M -alternated path with a degree inferior to 2. We have three
cases:

1. dM (xj) = 0, the M -alternated path C ends with an non-covered vertex. So
C is improving (see illustration in Figure 6.a).

2. dM (xj) = 1 and dM (xj+1) = 1, the M -alternated path C contains an edge
(xj , xj+1 + 1) ∈ M whose extremities have a degree equal to 1. We remove
the part of the path which is after this edge, this part is already covered.
Thus, we have an M -alternated sub-path, in which all the vertices of odd
index have a degree equal to 2 and the sub-path end is an edge (xj , xj+1 +1).
It is easy to see that this sub-path is improving by changing the belonging to
M of the edges of C, except the last one. So C is improving (see illustration
in figure 6.b).

3. dM (xj) = 1 and dM (xj+1) = 2, the M -alternated path C owns an odd vertex
with degree equal to 1 and an even vertex with degree equal to 2. We remove
the path part which is after even vertex with degree equal to 2, this part is
already covered. Thus, we have an M -alternated sub-path, in which all the
vertices of odd index have a degree equal to 2, and the sub-path end is a path
of length two. It is easy to see that this sub-path is improving by changing
the belonging to M of all C edges. So C may be improved (see illustration
in Figure 6.c).

Now, let us assume that T contains a cycle:
Suppose that path C is without a odd vertex x2i−1 such as dM (x2i−1) 6= 2

except the last one which is connected to an odd vertex of C by an edge e ∈ T .

a)

b)

c)

yi−1yi−1

x0

x0

x0

x0

x0

x0

x1

x1

x1

x1

x1

x1

x2

x2

x2

x2

x2

x2

xj−2

xj−2

xj−2

xj−2

xj−2xj−2

xj−1

xj−1

xj−1

xj−1

xj−1xj−1

xj

xj

xjxj

xj

xj

xj+1

xj+1

xj+1

xj+1

y0

y0

y0

y0

y0

y0

yi−2

yi−2

yi−2
yi−2

yi−2

yi−2
C

CC

C

C C

∈ M

6∈ M

Improving

Fig. 6. Improvement of the three cases with j = 2i − 1

Thus, T contains a cycle, it is easy to see that path C becomes improving if we
change the belonging to M of all C edges and e (see illustration in Figure 7).

�

e

e

x0

x0

x1

x1

x2

x2

xj

xj

xj−1

xj−1

xj−2

xj−2

xj+1

xj+1

xj+2

xj+2

xj+3

xj+3

xj+4

xj+4

y0

y0 yi−1

yi−1

yi−2

yi−2
∈ M

6∈ MImprovement

Fig. 7. Case of an M -alternated path with cycle

Theorem 21 Let M be a 2-cover in a graph G, M admits maximum cardinality
if and only if G does not possess an improved M -alternated path.

Before giving the proof, we define two types of vertices in non-improving
paths:

Definition 28 (Leaf and root) Let M be a 2-cover in a graph G, and let C
be a non-improving M -alternated path. A leaf (resp. a root) is defined as a vertex
which admits only one neighbor (resp. two neighbors) in M . A vertex xj ∈ C
with j = 2i is a leaf, moreover, all the vertices of the vertebral column associated
are also leaves. On the contrary, a vertex xj ∈ C with j = 2i + 1 is a root.

Proof of the Theorem 21

This proof is drawn from the classical proof given in [2].

⇒ Let M be a maximum 2-cover in G and suppose that G contains an
improved M -alternated path. It leads to a contradiction by Lemma 21 because
M would not be maximum.

⇐ Let M1 be a 2-cover in G. Suppose that G does not contain an improved
M1-alternated path. We will show that M1 is maximum.

Suppose that M1 is not maximum, and let M2 be another 2-cover in G which
is maximum. Clearly, M2 covers more vertices than M1. From these hypotheses,
the following structure is defined (see illustration in Figure 8):

• Suppose that M2 covers K vertices non-covered by M1, this set is denoted
by S1 = {xi|xi ∈ S(M2) ∩ NS(M1)}.

• From any vertex xi of S1, there is necessarily an edge in G between xi and a
non-improving M1-alternated path. Let S2 be the set of vertices covered by
M1, which belongs to these non-improving paths. |S2| = 3N is the number
of covered vertices in these paths with N roots and 2N leafs.

• By hypothesis, we know that there exist vertices covered by M1, which do
not belong to S2. These vertices are covered either by edges or by paths of
length two. Let S3 = {xi|xi ∈ S(M1) ∧ xi 6∈ S2} be the set of these vertices.

• At last, there exist vertices not covered by M1 nor by M2, this set is denoted
by S4 = {xi|xi ∈ NS(M1) ∩ NS(M2)}.

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

∈ M2∈ M2∈ M2∈ M2

∈ M1

Set X

Set Y

∈ G

S1

S2

S3 S4

. . .

Fig. 8. Diagram of the proof of Theorem 21

According to previous definitions, we can derive the following properties:

– S1 is necessarily a stable, otherwise there would be two vertices non-covered
by M1 connected by an edge. Then, we would have an improving M1-
alternated path.

– In set S2, a root may be connected by an edge of G to any vertices of S1

and S2. Two leaves in S2 cannot be connected by an edge. Moreover, a leaf
in S2 does not possess a neighbor in S1. As a matter of fact, in both cases
we would have either a cycle or an improving path (see illustration in figure
8).

– Every root of S2 may be connected by an edge of G to any vertices of S3.
But, a leaf of S2 cannot be connected by an edge of G to a vertex of S3. As
a matter of fact, if a leaf of S2 were connected to an extremity of an edge or
path of length two, then there would be an improving M1-alternated path.
Moreover, if a leaf in S2 were connected to the center of a path of length
two, this path would belong to S2. Finally, leaves of S2 are only connected
to roots of S2.

– We define two sets X and Y composed of all vertices which belong to S1∪S2.
The first set X is composed of all leaves of S2 and of all vertices of S1, and
its cardinality is |X | = (2N + K). Furthermore, the set X is a stable in
regard to previous properties.

Now, we show that M2 cannot cover more vertices than M1, and thus |M2| =
|M1|:

– Assume that M2 covers all vertices of S2, then M2 covers all vertices of X
and Y. In the case when a maximum number of vertices of X are covered,
an edge of M2 covers one vertex of X and one of Y, and a path of length two
of M2 covers at most two vertices of X and at least one of Y. So, M2 cannot
cover all vertices of S2.

– Due to the fact that M2 covers K vertices non-covered by M1 in S1, M2 does
not cover at least (K−1) leaves in S2. So, M2 will cover |X ′|= |X |−(K−1)=2N+1
vertices. But in the case when a maximum number the vertices of X are
covered, a path of length two of M2 covers at most two vertices of X and at
least one of Y. Thus, M2 cannot cover more vertices than M1. As a result,
there does not exist a 2-cover M2 such that |M2|≥|M1|. So, |M2|= |M1| and
M1 is a maximum 2-cover.

�

2.2 Polynomial-time algorithm for maximum 2-cover

From Theorem 21, we can now introduce the algorithm which gives a maximum
2-cover. Let M be a 2-cover, and let C be an improved M -alternated path. The
algorithm substitutes covered edges for non-covered edges in path C, except one
of the edges at the end according to different cases. We denote this operation
Improving(M, C), which results in a new 2-cover which covers one or two ver-
tices more than M . The algorithm which creates a maximum 2-cover is presented
in appendix 5.

The algorithm which searches an improving path from a non-covered vertex
x0, is based on "breadth first search tree" where the root is x0. For each vertex,

we check if the distance to x0 is odd, and then we select the first vertex whose
degree is less than two according to M . This algorithm is described in appendix
5.

The breadth first search has a complexity O(n+m) with n (resp. m) the
number of vertices (resp. edges), in the worst case we search n times an improving
path. The Algorithm is performed in O(n2).

3 Study of approximation for TORPEDO+TR and

TORPEDO-TR

In this part, we present a polynomial-time approximation algorithm with a per-
formance ratio bounded by 13

12 for TORPEDO-TR and 10
9 for TORPEDO+TR.

3.1 First case: TORPEDO-TR

In this case, there will always be an idle time when we will schedule the first
acquisition task covered in Gc by an edge or a path. From Observation 11, we
will compute the number of idle slots after executing all the n coupled-tasks and
treatment tasks. In this way, let Nb(Ci) be the number of a path Ci (Nb(C0) for
non-covered vertices) in an optimal covering. In the following, n = Nb(C0) + n2

where n2 is the number of covered vertices in an optimal solution (see Figure 9).
Now, we can define a function f which depends on all the Nb(Ci) and counts the
number of idle slots (except for the first) in the schedule, after the processing of
treatment tasks within the slots created by coupled-tasks:

f = Idle slots from non-covered vertices − Treatment tasks remaining after
the execution of paths=Nb(C0)+Nb(C1)+(2Σn2−1

i=2 Nb(Ci)−1)−(Nb(C0)−1)−
2Nb(C1)−Σn2−1

i=2 (i+1)Nb(Ci)=Nb(C0)−Nb(C1)−Σn2−1
i=2 (i−1)Nb(Ci)

4

2(i + 1)

2(n2 + 2)

C0 C1 C2

Ci

Cn2−1

5 8

(i + 1) vertices

n2 vertices

T TT T

i
z }| {

T TT . . . T

n2−1
z }| {

T TT . . . T. . .

. . .

Fig. 9. Illustration of different paths of the covering of Gc

According to f , the lower bound5 will be equal to:

Copt
max ≥ Tsequential + Tidle = 3n + 1 + max{0, f}

5 Copt
max denotes the length of an optimal scheduling, Tsequential (resp. Tidle) denotes

the processing time of all tasks (resp. idle times in the scheduling).

Lemma 31 It exist an optimal solution to TORPEDO-TR that minimizes Nb(C0).

Proof

It is obvious that minimizing f provides an optimal solution to TORPEDO-
TR. Let us show that if Nb(C0) is minimized in f , the value Nb(C1)+

∑n

i=2(i−
1)Nb(Ci) will be increased. Let’s suppose that we have Nb(C0) non-covered
vertices in a non-maximum covering M6. Now, we consider that M covers one
more vertex x0, there are two possibilities. If x0 is connected in Gc to an edge
of M , a path is created in M and f increases (indeed, we have two slots for
the non-covered vertex plus one slot for the edge, whereas a path only has two
slots). If x0 is connected in Gc to a vertex of a path of M , two paths are created
in M and f increases (indeed, cutting the chain in order to create two paths,
edges included, gives four slots in the worst case). By minimizing the number of
non-covered vertices, f either increases or remains the same, thus we obtain an
optimal solution for TORPEDO-TR. �

Lemma 32 A maximum 2-cover minimizes the same number of non-covered
vertices in Gc as any maximum covering with paths of different lengths (edges
accepted).

Proof

The proof is trivial, indeed any path can be cut into edges and paths of length
two.

�

Let’s search the upper bound, our heuristic is based on the 2-cover algorithm.
From the Lemma 32 we know that the number of remaining non-covered vertices
is also Nb(C0). Thus, the aim is to cut paths of different lengths into edges
and paths of length two. Let Nbh(C1) (resp. Nbh(C2)) be the number of edges
(resp. paths of length two) in our heuristic. An edge creates one slot and leaves
two treatment tasks, whereas a path of length two creates two slots and leaves
two treatments tasks (because the third is used to fill one slot). For a better
upper bound, we maximize the edges in the 2-cover after having minimized
the non-covered tasks (Due to lack of place, the proof is not described here).
In the optimal solution, for each path Ci of odd (resp. even) length, we have
(i+1

2) edges (resp. (i−2
2) edges and one path of length two). Thus we obtain

Nbh(C1)=Nb(C1)+
∑n2−1

i(odd)=3[(
i+1
2)Nb(Ci)]+

∑n2−1
i(even)=2[(

i−2
2)Nb(Ci)]=Nb(C1)+

∑n2−1
i=2 [(i+1

2)Nb(Ci)]−
∑n2−1

i(even)=2
3
2Nb(Ci), and Nbh(C2)=

∑n2−1
i(even)=2 Nb(Ci).

Therefore, the length of the makespan is the sequential time plus the idle
slots from the non-covered vertices which are not filled by treatment tasks. The
upper bound is Ch

max ≤ 3n+1+max{0, Nb(C0)−Nbh(C1)−Nbh(C2)}.
Now, we will study the relative performance ρ according to Nb(C0). First,

we have n=Nb(C0)+2Nb(C1)+
∑n2−1

i=2 (i+1)Nb(Ci), secondly the worst case is

6 In this paper, we call maximum covering a covering which covers a maximum of
vertices with a minimum of paths.

obtained when Nb(C0) = Nb(C1)+
∑n2−1

i=2 [(i−1)Nb(Ci)] (see Figure 10). With
the substitutions of Nb(C0) and n in Copt

max and Ch
max, we obtain:

ρ ≤ Ch
max

C
opt
max

=

1+3Nb(C0)+6Nb(C1)+3
Pn2−1

i=2 (i+1)Nb(Ci)+n1−Nbh(C1)−Nbh(C2)

1+3Nb(C0)+6Nb(C1)+3
Pn2−1

i=2 (i+1)Nb(Ci)
=

1+9Nb(C1)+3
Pn2−1

i=2 [[Nb(Ci)(2i)]+[Nb(Ci)(
i−3
2)]]+1

2

Pn2−1

i(even)=2
Nb(Ci)

1+9Nb(C1)+3
Pn2−1

i=2 [(2i)Nb(Ci)]

=1+
1
2

Pn2−1
i=2 [Nb(Ci)(i−3)]+1

2

Pn2−1

i(even)=2
Nb(Ci)

1+9Nb(C1)+6
Pn2−1

i=2 [iNb(Ci)]
≤

13

12

γ1

γ1 = Nbh(C1) + Nbh(C2) γ2 =
Pn2−1

i=2
[Nb(Ci)(i − 1)] + Nb(C1)

γ20

1
11

nNb(C0)

ρ ≤
Ch

max

C
opt
max

13
12

Fig. 10. Variation of ρ depending on Nb(C0)

The following algorithm first consists in minimizing Nb(C0), and secondly in
maximizing Nb(C2) from a 2-cover. It gives a 13

12 -approximation for TORPEDO-
TR.

Algorithm 1 Use of 2-cover for TORPEDO-TR

1: Data: Gc = (V, E), with |V | = n

2: Result: Ch
max, schedule length with this heuristic

3: Begin

4: M1 := maximum matching in Gc

5: M2 := maximum 2-cover from M1

6: M3 := Transformation(M2)
7: Schedule vertices covered by edges in M3, then by paths in M3

8: Schedule isolated vertices, then schedule treatment tasks at first idle time

Remark 31 Transformation(M2) is the operation in M2 which turns the paths
of length two into edges in polynomial time. Indeed, in a first time each path
of length two in M is contracted in one vertex, which keeps the edges in Gc

connected to the extremities of the path. Then in a second time, we search a
maximum matching in this new graph with the contracted vertices. Finally, the
contracted vertices are transformed into edges (illustration Figure 11).

3.2 Second case: TORPEDO+TR problem

This study is almost the same as the previous one. In this case we must simply
add triangles to the set of all the paths in the optimal solution, in order to

Fig. 11. Illustration of the transformation from paths of length two into edges

obtain an optimal covering of Gc. We denote Nb(TR) the number of triangles
in the optimal covering and with the triangles added to the solution, we have
n = Nb(C0)+2Nb(C1)+

∑n2−1
i=2 (i+1)Nb(Ci)+3Nb(TR). For the lower bound, we

obtain Copt
max ≥ 3n+1{Nb(TR)>0}+max{0, Nb(C0)−Nb(C1)−

∑n2−1
i=2 [Nb(Ci)(i−

1)] − 3Nb(TR)}.
In this case, minimizing Nb(C0) does not imply the minimizing of f =

Nb(C0)−Nb(C1)−
∑n2−1

i=2 [Nb(Ci)(i− 1)]− 3Nb(TR). Indeed, in specific cases,
it is wiser to leave a non-covered vertex in order to get a triangle and no idle slot
in the scheduling. But we need the same Nb(C0) for the calculus, in this way we
can say without loss of generality that the worst case is when the two Nb(C0)
are the same.

Now, for the upper bound, the heuristic used is still a 2-cover, but in the
case with triangles in Gc we cannot predict which vertices of the triangles will
be covered by edges or paths of length two in the optimal solution. The worst case
is when the triangles are covered by paths of length two, and thus Nbh(C2) =
∑n2−1

i(even)=2 Nb(Ci) + Nb(TR). For the upper bound we still have Ch
max ≤ 3n +

1 + max{0, Nb(C0) − Nbh(C1) − Nbh(C2)}.
As with the previous case, we will study the relative performance according

to Nb(C0). The worst case is obtained when Nb(C0) = Nb(C1) +
∑n2−1

i=2 [(i −
1)Nb(Ci)] + 3Nb(TR). And we have:

ρ ≤
1+3Nb(C0)+6Nb(C1)+3

Pn2−1
i=2 (i+1)Nb(Ci)+n1−Nbh(C1)−Nbh(C2)

1{Nb(TR)>0}+3Nb(C0)+6Nb(C1)+3
Pn2−1

i=2 (i+1)Nb(Ci)+9Nb(TR)

≤ 1+
2Nb(TR)+1

2

Pn2−1
i=2 i[Nb(Ci)]−

1
2

Pn2−1

i(even)=2
Nb(Ci)

1+9Nb(C1)+18Nb(TR)+6
Pn2−1

i=2 [iNb(Ci)]
≤

10

9

4 Conclusion

In this paper, we studied two NP-complete scheduling problems with coupled-
tasks where the idle time is equal to two. In order to approximate these problems,
we introduced the notion of 2-cover which is an extension of the classical match-
ing definition, and we developed the principle of alternating path according to
this 2-cover. Then, we have shown two results for the 2-cover. Firstly, the car-
dinality of a 2-cover is maximum when there are no improving paths according
to definition of 2-cover. Secondly, we defined a polynomial-time algorithm that
yields a maximum 2-cover of a graph. From these results, we have shown that our
heuristic, based on a 2-cover, provides an 13

12 -approximation for this problem if
the compatibility graph has no triangle, and in the case of triangles, our heuristic

gives an 10
9 -approximation. This heuristic based on a 2-cover let us suppose that

it can be generalized for more general problems.

References

1. D. Ahr, J. Békési, G. Galambos, M. Oswald, and G. Reinelt. An exact algorithm for
scheduling identical coupled-tasks. Mathematical Methods of Operations Research,
59:193–203(11), June 2004.

2. C. Berge. Two Theorems in Graph Theory. Proceedings of the National Academy
of Science, 43:842–844, September 1957.

3. J. Blazewicz, K.H. Ecker, T. Kis, and M. Tanas. A note on the complexity of
scheduling coupled-tasks on a single processor. Journal of the Brazilian Computer
Society, 7(3):23–26, 2001.

4. M.R. Garey and D.S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

5. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics, 5:287–326, 1979.

6. S. Masuyama and T. Ibaraki. Chain packing in graphs. Algorithmica, 6:826–839,
juin 1991.

7. A.J. Orman and C.N. Potts. On the complexity of coupled-task scheduling. Dis-
crete Applied Mathematics, 72:141–154, 1997.

8. R.D. Shapiro. Scheduling coupled-tasks. Naval Research Logistics Quarterly,
27:477–481, 1980.

9. G. Simonin. Proof of NP-completeness for a scheduling problem with coupled-
tasks and compatibility graph. Technical rapport - Lirmm (Laboratoire Informa-
tique, Robotique et Micro-électronique de Montpellier), 2008.

10. G. Steiner. On the k-path partition of graphs. Theoretical Computer Science,
290:2147–2155, 2003.

5 Appendixes

5.1 Proof of NP-completeness

We will show that the TORPEDO+TR problem is NP-complete when Gc con-
tains triangles. In this way, we will use the triangle packing (TP) problem7.

Proof

The construction of the polynomial transformation is given for the reduction
TP ∝ TORPEDO+TR. From an instance Π of TP , we built an instance Π ′

of TORPEDO+TR. Let G = (V, E) in Π with |V | = n, the construction of
Gc in Π ′ consists in making the union of G and (n − 1) isolated vertices (see
illustration Figure ??).

(n − 1) vertices

G

Gc

n vertices

Fig. 12. Illustration of the polynomial time transformation

Let’s suppose that there exists a triangle packing in G, we will show that
the scheduling of all the tasks of Gc admits a makespan of length 3(2n− 1), the
sequential time without idle slot. If there exists a triangle packing, so all vertices
of G are covered, and there remain (n − 1) isolated vertices which cannot be
covered. The scheduling of this covering is the following, first we process the
coupled-tasks covered by the triangle packing, then the non-covered (isolated)
coupled-tasks. Thanks to the processing of the treatment tasks, all the idle slots
are filled. Thus, the scheduling length is equal to 3(2n − 1).

⇐ Let’s suppose that the scheduling of all the tasks of Gc in Π ′ admits a
makespan of length 3(2n − 1), we will show that the covering in G is a triangle
packing. Notice that the length of the makespan is without idle slot in the
scheduling. The scheduling of the isolated coupled-tasks is simple and gives n
idle slots (see illustration Figure 13a). Because of the compatibility constraint
between the isolated coupled-tasks and the other tasks in G, we can only fill the
idle time of these isolated tasks with n treatment tasks. The scheduling of the
tasks of G must give n treatment tasks, but it is possible only if all the coupled-
tasks are processed without idle slot (see Figure 13b). Thus, the covering of the
vertices of G is necessarily a triangle packing.

7 In a graph G = (V, E), a triangle packing is a collection V1, . . . , Vk of disjoint subsets
of V , each containing exactly three vertices linked by three edges which belong to
E.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���
���

���
���
���
���
���

. . .

. . .

. . .

n

a1

a1

a2

a2

a3 b1

b1

b2

b2

b3 T1

T1

T2 Tn

Tn−2 Tn−1

an−2 bn−2

an−1

an−1

bn−1

bn−1an bn

Idle timea)

b)

Fig. 13. Illustration of the covering of G

�

We will show that the TORPEDO-TR problem is NP-complete when Gc

has no triangle. In this way, we will use the Hamiltonian path (HC) problem.

Proof

The construction of the polynomial transformation is given for the reduction
HC ∝ TORPEDO-TR. From an instance Π of HC, we built an instance Π ′ of
TORPEDO-TR. Let G = (V, E) in Π with |V | = n, the construction of Gc in Π ′

consists in making the union of G and (n − 2) isolated vertices (see illustration
Figure 14).

G

Gc

(n − 2) vertices n vertices

Fig. 14. Illustration of the polynomial transformation

⇒ Let’s suppose that there exists a Hamiltonian path in G, we will show that
the scheduling of all the tasks of Gc admits a makespan of length 3(2n− 2) + 1,
the sequential time plus one idle slot. If there exists a Hamiltonian path, so all
vertices of G are covered, and there remain (n−2) isolated vertices. The schedul-
ing of this covering is the following, first we process the coupled-tasks covered
by the Hamiltonian path, then the non-covered (isolated) coupled-tasks. Thanks
to the processing of the treatment tasks, all the idle slots are filled except for
the first idle slot created by the Hamiltonian path. Thus, the scheduling length
is equal to 3(2n − 2) + 1.

⇐ Let’s suppose that the scheduling of all the tasks of Gc in Π ′ admits
a makespan of length 3(2n − 2) + 1, we will show that the covering in G is a
Hamiltonian path. Notice that the length of the makespan leaves only one idle
slot in the scheduling. The scheduling of the isolated coupled-tasks is simple and

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��

��
��
��
��
��

.

. . .

a1

a1

a2

a2

a3 a4b1

b1 b2

b2 T1

T1

T2 T3 Tn

Tn−2

n − 1

Tn−1an−1 bn−1

bn−1an bn

Idle timea)

b)

Fig. 15. Illustration of the covering of G

gives (n−1) idle slots (see illustration Figure 15a). Because of the compatibility
constraint between the isolated coupled-tasks and the other tasks in G, we can
only fill the idle time of these isolated tasks with (n − 1) treatment tasks. The
scheduling of the tasks of G must give (n− 1) treatment tasks, but it is possible
if all the coupled-tasks are processed with only two idle slots (see Figure 15b).
Thus, the covering of the vertices of G is necessarily a Hamiltonian path.

�

5.2 Fundamental Lemma in order to find a maximum 2-cover

Lemma 51 A maximum 2-cover consists in firstly minimizing Nb(C0), then
secondly maximizing Nb(C1).

Proof

Let’s τ1 be a maximum 2-cover of the graph Gc which first minimizes the
non-covered vertices, then maximizes the edges in the cover. τ1 is composed of
n3 (resp. n2) vertices covered by paths of length two (resp. by edges), and n1

non-covered vertices. Three sets are defined from τ1 (see figure 16(a)): X which
contains the 2n3

3 extremities of paths of length two and the n1 non-covered
vertices, Y contains the n3

3 vertices of the middle of paths of length two, and Z
contains the n2 vertices covered by edges. X is an independent set and the fact
that τ1 is not improving implies that there cannot exist edges between X and
Z.

The proof is by contradiction, let’s suppose that there is another maximum
2-cover τ2 in graph Gc which has its function f and its number of non-covered
vertices lower than those of τ1. From τ1 and the three sets defined previously,
we will give all covers possible for τ2 (see figure 16(b)). Let β1,T be the set of
non-covered vertices in T ∈ E where E = {X, Y, Z}. Let β2,T,U be the set of
edges which has an extremity in T ∈ E and the other in U ∈ E. And finally,
let β3,T,U,V be the set of paths of length two which has an extremity in T ∈ E,
another in V ∈ E and the third vertex in U ∈ E.

Remark 51 With the definition of the three sets X, Y, Z, we have β2,X,X =
β2,X,Z = ∅ and all the β3,T,U,V are empty except for β3,X,Y,X, β3,X,Y,Z , β3,Y,Z,Z ,
β3,Y,Y,Y and β3,Z,Z,Z . At least, ∀U, V, T β2,T,U = β2,U,T and β3,T,U,V = β3,V,U,T .

X

Y

Z

n1

n2
n3

(a) Illustration of the covering of τ1

X Y Z

α1

α2

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

(b) Illustration of the three sets and
the different types of covering in τ2

Fig. 16. Illustrations for the proof of the Lemma 51

In order to make the proof more easy visibility, we have the following nota-
tions: α1 = |β2,X,Y |, α2 = |β3,X,Y,X |, α3 = |β3,X,Y,Z |, α4 = |β2,Y,Z |, α5 = |β3,Y,Z,Z |, α6 =
|β2,Z,Z |, α7 = |β3,Z,Z,Z |, α8 = |β1,Z |, α9 = |β1,X |, α10 = |β1,Y |, α11 = |β3,Y,Y,Y |, α12 =
|β2,Y,Y |. And thus, we have the following equations:

α9 = n1 +
2n3

3
− α1 − 2α2 − α3 (1)

α10 =
n3

3
− α1 − α2 − α3 − α4 − α5 − 3α11 − 2α12 (2)

α8 = n2 − α3 − α4 − 2α5 − 2α6 − 3α7 (3)

Now we can compute fτ2 for τ2, fτ2 is the number of slots which stay after the
processing of treatment tasks in the inactivity time of the non-covered acquisition
tasks. fτ2 is depending of the αi and the ni:

fτ2 = Number of slots given by non-covered vertices−Number of treatment tasks available =
(α10 + α9 + α8)− (α1 + α2 + α3 + α4 + α5 + α6 + α7 + α11 + α12) = (n1 + 2n3

3 +
α10 − α1 − 2α2 − α3) − α1 − α2 − α3 − α4 − α5 − α6 − α7 + α8 − α11 − α12 =
n1 + α4 + α5 + α8 + 2α10 + 5α11 + 3α12 − α2 − α6 − α7

From hypothesis on τ1 and τ2, fτ2 < fτ1 , and so:

n1 +α4+α5+α8−α2−α6−α7<n1−
n2

2
−

n3

3

α1 +
3α3

2
+

5α4

2
+3α5+

α7

2
+

3α8

2
+4α10+8α11+5α12<0

This equation is impossible because ∀i αi ≥ 0. So τ2 does not exist, and τ1

is an optimal 2-cover.

�

5.3 Maximum 2-cover algorithms

The algorithm which creates a maximum 2-cover is as follows:

Algorithm 2 Research of a maximum 2-cover

1: DATA: G = (V, E)
2: RESULT: A 2-cover M

3: Begin:

4: M :=Ø
5: while there exists an improved M -alternated path do

6: M := Improving(M,C)
7: end while

8: Return M

And the following algorithm describes the researching of an improved M -
alternated path from a non-covered vertex x0:

Algorithm 3 Research of an improved M -alternated path

1: DATA: G = (V, E), with |V | = n, a non-covered vertex x0, and M a 2-cover
2: RESULT: An improved M -alternated path C from the vertex x0

3: Begin:

4: Let Q (resp. Z) be a queue whose unique element is the vertex x0

5: Let F be a function which gives the precedent vertex of another given vertex
6: while Q 6= ∅ do

7: Let u be the first element of Q

8: if u ∈ Z then

9: Push in Q the two neighbors of u according to M

10: else

11: for every vertex v which is neighbor of u and v ∈ Z do

12: F [v] = u

13: if v is a vertex of odd distance from x0 and with degree dM (x0)<2 accord-
ing to M then

14: Return the path C ={x0, . . . , F(F (v)), F (v), v}
15: else

16: if v is a vertex of odd distance from x0 then

17: Push v in Z

18: end if

19: Push v in Q

20: end if

21: end for

22: Pull u of Q

23: end if

24: end while

