R. Shapiro, Scheduling coupled tasks, Naval Research Logistics Quarterly, vol.12, issue.3, pp.477-481, 1980.
DOI : 10.1002/nav.3800270312

R. Graham, E. Lawler, J. Lenstra, and A. R. Kan, Optimization and Approximation in Deterministic Sequencing and Scheduling: a Survey, Annals of Discrete Mathematics, vol.5, pp.287-326, 1979.
DOI : 10.1016/S0167-5060(08)70356-X

J. Blazewicz, K. Ecker, T. Kis, and M. Tanas, A note on the complexity of scheduling coupled tasks on a single processor, Journal of the Brazilian Computer Society, vol.7, issue.3, pp.23-26, 2001.
DOI : 10.1590/S0104-65002001000200004

A. Orman and C. Potts, On the complexity of coupled-task scheduling, Discrete Applied Mathematics, vol.72, issue.1-2, pp.141-154, 1997.
DOI : 10.1016/S0166-218X(96)00041-8

D. Ahr, J. Bksi, G. Galambos, M. Oswald, and G. Reinelt, An exact algorithm for scheduling identical coupled tasks, Mathematical Methods of Operations Research (ZOR), vol.59, issue.2, pp.193-203, 2004.
DOI : 10.1007/s001860300328

G. Simonin, R. Giroudeau, and J. König, Complexity and approximation for scheduling problem for a torpedo, CIE'39, International Conference on Computers and Industrial Engineering, 2009.
DOI : 10.1016/j.cie.2011.01.015

URL : https://hal.archives-ouvertes.fr/lirmm-00355052

M. Garey and D. Johnson, Computers and Intractability; A Guide to the Theory of N P-Completeness, 1990.

G. Steiner, On the k-path partition of graphs, Theoretical Computer Science, vol.290, issue.3, pp.2147-2155, 2003.
DOI : 10.1016/S0304-3975(02)00577-7

S. Masuyama and T. Ibaraki, Chain packing in graphs, Algorithmica, vol.49, issue.1-6, pp.826-839, 1991.
DOI : 10.1007/BF01759074

C. Berge, TWO THEOREMS IN GRAPH THEORY, Proceedings of the National Academy of Sciences, vol.43, issue.9, pp.842-844, 1957.
DOI : 10.1073/pnas.43.9.842