
HAL Id: lirmm-00355050
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00355050

Submitted on 21 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Isomorphic Coupled-Task Scheduling Problem with
Compatibility Constraints on a Single Processor

Gilles Simonin, Benoit Darties, Rodolphe Giroudeau, Jean-Claude König

To cite this version:
Gilles Simonin, Benoit Darties, Rodolphe Giroudeau, Jean-Claude König. Isomorphic Coupled-Task
Scheduling Problem with Compatibility Constraints on a Single Processor. MISTA’2009: 4th Multidis-
ciplinary International Scheduling Conference: Theory and Applications, Aug 2009, Dublin, Ireland.
pp.378-388. �lirmm-00355050�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00355050
https://hal.archives-ouvertes.fr

Isomorphic coupled-task scheduling problem with

compatibility constraints on a single processor

Gilles Simonin*, Benoît Darties**, Rodolphe Giroudeau*, and Jean-Claude
König*

*LIRMM UMR 5506, rue Ada, 34392 Montpellier Cedex 5 - France
**LIG, CNRS, Grenoble-INP, 681 rue de la passerelle,

BP72 38402 Saint Martin d’Heres Cedex, France

contact : gilles.simonin@lirmm.fr

Abstract. The problem presented in this paper is a generalization of
the usual coupled-tasks scheduling problem in presence of compatibility
constraints. The reason behind this study is the data acquisition prob-
lem for a submarine torpedo. We investigate a particular configuration
for coupled-tasks (any task is divided into two sub-tasks separated by an
idle time), in which the idle time of a coupled-task is equal to the sum
of its two sub-tasks. We prove NP-completeness of the minimization of
the schedule length, and we show that finding a solution to our prob-
lem amounts to solving a graph problem, which in itself is close to the

minimum-disjoint path cover (min-DCP) problem. We design a
“

3a+2b

2a+2b

”

-

approximation, where a and b (the processing time of the two sub-tasks)
are two input data such as a > b > 0, and that leads to a ratio between
3

2
and 5

4
. Using a polynomial-time algorithm developed for some class of

graph of min-DCP, we show that the ratio decreases to 1+
√

3

2
≈ 1.37.

1 Introduction

In this paper, we present a scheduling problem of coupled-tasks subject to com-
patibility constraints, which is a generalization of the scheduling problem of
coupled-tasks first introduced by Shapiro [18]. This problem is motivated by
the problem of data acquisition in a submarine torpedo. The aim amounts to
treating various environmental data coming from sensors located on the torpedo,
that collect information which must be processed on a single processor. A sin-
gle acquisition task can be described as follows: a sensor of the torpedo emits
a wave at a certain frequency (according to the data that must be collected)
which propagates in the water and reflects back to the sensor. This acquisition
task is divided into two sub-tasks: the first sends an echo, the second receives it.
Between them, there is an incompressible idle time which represents the spread
of the echo under the water. Thus acquisition tasks may be assigned to coupled-
tasks.

In order to use idle time, other sensors can send more echoes. However,
the proximity of the waves causes disruptions and interferences. In order to

handle information error-free, a compatibility graph between acquisition tasks
is created. In this graph, which describes the set of tasks, we have an edge
between two compatible tasks. A task is compatible with another if at least one
of its sub-tasks can be executed during the idle time of another task. Given a
set of coupled-tasks and such a compatibility graph, the aim is to schedule the
coupled-tasks in order to minimize the time required for the completion of all
the tasks.

1.1 Problem formulation

For a graph G, we note V (G) the set of its vertices and E(G) the set of its
edges. The cardinality of both sets are noted n = |V (G)| and m = |E(G)|.
In the following, we will call path a non-empty graph C = (V, E) of the form
V = {x0, x1, . . . , xk} and E = {x0x1, x1x2, . . . , xk−1xk}, where the xi are all
distinct. The number of edges of a path corresponds to its length. The input of
the general problem is described with a set A = {A1, A2, . . . , An} of coupled-
tasks and a compatibility graph Gc = (A, E(Gc)). Using the notation proposed
by Shapiro [18], each task Ai ∈ A is composed of two sub-tasks ai and bi (
the same notations are used for the processing time: ai ∈ N and bi ∈ N), and
separated by a fixed idle time Li ∈ N (see fig. 1(a)). For each i the second sub-
task bi must start its execution exactly Li time units after the completion time
of ai.

According to the torpedo problem, a task may be started during the idle
time of a running task if it uses another frequency, is not dependant from the
execution of the running task, or does not require to access to the resources
used by the running tasks. Formally, we say that two tasks Ai and Aj are com-
patible if and only if we can execute at least a sub-task of Ai during the idle
time of Aj (see fig. 1(b)). On the other side, some tasks cannot be compatible
due to previously cited reasons. The compatibility graph Gc summarizes these
compatibilities constraints, whose edges E(Gc) represent all pairs of compatible
task.

.

ai bi
Li

(a)

ai biaj bj

(b)

Fig. 1. Understanding a single coupled-task and two compatible coupled-tasks.

A valid schedule σ : A → N consists in determining the starting time of each
sub-task ai of each task Ai ∈ A. The tasks are processed on a single processor
while preserving the constraints given by the compatibility graph.

The notation σ(Ai) denotes the starting time of the task Ai. We use the
following abuse of notation: σ(ai) = σ(Ai) (resp. σ(bi) = σ(Ai) + ai + Li)
denotes the starting time of the first sub-task ai (resp. the second sub-task bi).

Let Cmax = maxAi∈A(σ(Ai)+ai+Li+bi) be the required time to complete all the
tasks. Then the objective is to find a feasible schedule which minimizes Cmax. At
last, using the notation scheme α|β|γ1 proposed by Graham and al. [10], the main
problem denoted as Π will be defined by 1|coupled− task, (ai, bi, Li), Gc|Cmax.

1.2 Related work

The problem of coupled-tasks has been studied in regard to different conditions
on the values of ai, bi, Li for 1 ≤ i ≤ n, and precedence constraints [1, 4, 16]. Note
that, in the previous works, all tasks are compatible by considering a complete
graph [1, 4, 16]. Moreover, in presence of any compatibility graph, we find several
complexity results [19, 20], which are summarized2 in Table 1:

Problem Complexity
1|coupled − task, (ai = bi = Li), Gc|Cmax NP-complete
1|coupled − task, (ai = a, bi = b, Li = L), Gc|Cmax NP-complete
1|coupled − task, (ai = bi = p, Li = L), Gc|Cmax NP-complete
1|coupled − task, (ai = Li = p, bi), Gc|Cmax Polynomial
1|coupled − task, (ai, bi = Li = p),Gc|Cmax Polynomial

Table 1. Complexity for scheduling problems with coupled-tasks and compatibility
constraints

Our work consists in measuring the impact of the compatibility graph on
the complexity and approximation of scheduling problems with coupled-tasks
on a mono processor. In this way, we focus our work on establishing the limits
between polynomiality and NP-completeness of these problems according to
some parameters, when the compatibility constraint is introduced. In [20, 21], we
have studied the impact of the parameter L, and have shown that the problem
1|coupled − task, (ai = bi = p, Li = L), Gc|Cmax was NP-complete as soon
as L ≥ 2, and polynomial otherwise. In the following, we complete complexity
results with the study of other special cases according to the value of ai and bi,
and we propose several approximation algorithms.

1.3 Organization of this paper

In the rest of the paper, we restrict our study to a special case, by adding new
hypotheses to the processing time and idle time of the tasks. We consider the
processing time ai (resp. bi) of all sub-tasks ai (resp. bi) equal to a constant a

1 Where α denotes the environment processors, β the characteristics of the jobs and
γ the criteria.

2 The notation ai = a implies that for all 1 ≤ i ≤ n, ai is equal to a constant a ∈ N.
This notation can be extended to bi and Li with the constants b, L and p ∈ N.

(resp. b), and ∀i ∈ {1, . . . , n} the length of the idle time is L. Considering homo-
geneous tasks is a realistic hypothesis according to the tasks that the torpedo
has to execute. Let Π1 = 1|coupled− task, (ai = a,bi = b,Li = L),Gc|Cmax

be this new problem.
In section 2, we establish the complexity of Π1 according to the values of

a, b and L. On the one hand, we show that the problem is polynomial for any
L < a+ b. On the other hand, the problem becomes NP-complete for L ≥ a+ b.
When L = a+b the problem may be considered as a new graph problem very close
to the Minimum DISJOINT PATH COVER problem (Min-DPC). In section 3,
we show that the problem is immediately 2-approximated by a simple approach,
and we design a polynomial-time approximation algorithm with performance
guarantee lower than 3

2 . In fact, we show that the approximation ratio obtained
by this algorithm is between 3

2 and 5
4 , according to the values of a and b. The

last section is devoted to the study of Π1 for some particular topology of the
graph Gc. Some of presented results can be applied to the case L > a + b, which
is not considered here and will be treated in future work.

2 Computational complexity

First, we prove that Π1 is polynomial when L < a + b: it is obvious that a
maximum matching in the graph Gc gives an optimal solution. Indeed, during
the idle time L of a coupled-task Ai, we can process at most one sub-task aj

or bk. Since the idle time L is identical, so it is obvious that finding an opti-
mal solution consists in computing a maximum matching. Thus, the problem
1|coupled − task, (ai = a, bi = b, Li = L < a + b), Gc|Cmax admits a polynomial-
time algorithm with complexity O(m

√

(n)) (see [17]).

The rest of the paper is devoted to the case L = a + b. Without loss of
generality, we consider the case3 of b < a. The particular case b = a will be
discussed in subsection 2.2.

2.1 From a scheduling problem to a graph problem

Let us consider a valid schedule σ of an instance (A, Gc) of Π1 with b < a,
composed of a set of coupled-tasks A and a compatibility graph Gc. For a given
task Ai, at most two sub-tasks may be scheduled between the completion time
of ai and the starting time of bi, and in this case the only available schedule
consists in executing a sub-task bj and a sub-task ak during the idle time Li

with i 6= j 6= k such that σ(bj) = σ(ai) + a and σ(ak) = σ(ai) + a + b. Figure 2
shows a such configuration.

We may conclude that any valid schedule σ can be viewed as a partition
{T1, T2, . . . Tk} of A, such that for any Ti the subgraph Pi = Gc[Ti] of Gc induced

3 The results we present here can be symmetrically extended to the instances with
b > a.

ai biaj bj ak

a

aaa bbb

b

bk

Fig. 2. At most two sub-tasks may be scheduled between ai and bi

by vertices Ti is a path (here, isolated vertices are considered as paths of length
0). Clearly, {P1, P2 . . . Pk} is a partition of Gc into vertex-disjoint paths. Figure
3 shows an instance of Π1 (fig. 3(a)), a valid schedule (fig. 3(c)) - not necessarily
an optimal one -, and the corresponding partition of Gc into vertex-disjoint paths
(fig. 3(b)).

A1

A2

A3

A4

A5

A6

A7

(a) An input graph Gc

with 7 tasks

A1

A2

A3

A4

A5

A6

A7

(b) A vertex-disjoint parti-
tion

a1 b1a2 b2a3 b3a4 b4 a5 b5a6 b6 a7 b7

(c) A schedule on a monoprocessor

Fig. 3. Relation between a schedule and a partition into vertex-disjoint paths

For a given feasible schedule σ, let us analyse the relation between the
length of the schedule Cmax and the corresponding partition {P1, P2, . . . Pk} into
disjoint-vertex paths. Clearly, we have Cmax = tseq + tidle where tseq = n(a + b)
and tidle is the inactivity time of the processor. Since tseq is fixed for a given
instance, tidle obviously depends on the partition: for any path of length greater
than 1, tidle is incremented by (a+ b) (fig. 4(a)). A path of length 0 corresponds
to a single task which increments tidle by L = a+b. For any path of length 1, tidle

is only increased by a, because the two corresponding tasks may be imbricated
as on figure 4(b).

Thus, finding an optimal schedule may be considered as a graph problem that
we call Minimum SCHEDULE-LINKED DISJOINT-PATH COVER
(Min-SLDPC) defined as follows:
Instance : a graph G = (V, E) of order n, two natural integers a and b with
b < a.
Result : a partition P of G into vertex-disjoint paths (which can be of size 0)

ai biaj bj ak bk

idle time idle time

ab

AiAj Ak

(a) Chains of length > 2 increase tidle by a + b

ai biaj bj

idle timeidle time

b a − b

Ai Aj

(b) Chains of length 1 increase
tidle by a

Fig. 4. Impact of the length of the paths on the idle time

Objective : Minimize n(a+b)+
∑

p∈P w(p) where w : P → N is a cost function
such that w(p) = a if and only if |E(p)| = 1, and w(p) = a + b otherwise.

In any solution, each path increments the cost of the idle time by at least
a (when the path has a length 1), and at most a + b < 2a. So, we can deduce
that an optimal solution to Min-SLDPC consists in finding a partition P with a
particular cardinality k∗, and a maximal number of paths of length 1 among all
possible k∗-partitions.

Clearly, Min-SLDPC is equivalent to Π1 with b < a and L = a + b, and can
be viewed as the graph problem formulation of a scheduling problem. This prob-
lem is very close to the well-known Minimum DISJOINT PATH COVER
problem (Min-DPC) which consists in covering the vertices of a graph with
a minimum number of vertex-disjoint paths4. This problem has been studied
in depth in several graph classes: it is known that this problem is polynomial
on cographs [15], blocks graphs and bipartite permutation graphs [22], distance-
hereditary graph [12], and on interval graphs [2]. In [5] and [9], the authors
have proposed (independently) a polynomial-time algorithm in the case where
the graph is a tree. Few years later, in [13] the authors showed that this algo-
rithm can be implemented in linear time. Among the other results, there is a
polynomial-time algorithm for the cacti [14], and another for the line graphs of a
cactus [7]. In circular-arc graphs the authors [11] have proposed an approxima-
tion algorithm of complexity O(n), which returns an optimal number of paths
to a nearly constant additive equal to 1.

The problem Min-DPC is directly linked to the HAMILTONIAN COM-
PLETION problem denoted by HC [8], which consists in finding the minimum
number of edges, noted HC(G), that must be added to a given graph G, in order
to make it hamiltonian (to guarantee the existence of a Hamiltonian cycle). It is
known that if G is not hamiltonian, then the cardinality of a minimum disjoint
path cover is clearly equal to HC(G).

The dual of Min-DPC is found in the literature under the name Maximum
DISJOINT-PATH COVER [8]. It consists in finding in G a collection of vertex-
disjoint paths of length at least 1, which maximises the edges covered in G. This
problem is known to be 7

6 -approximable [3].

4 Sometimes referenced as the PATH-PARTITION problem (PP).

The following immediate theorem establishes the complexity of Min-SLDPC:

Theorem 1. Min-SLDPC is an NP-hard problem.

Proof. Our proof is based on the polynomial-time transformation HAMILTO-
NIAN PATH ∝ Min-SLDPC. Let us consider a graph G. The optimal solution
of Min-SLDPC consists in finding a particular k-partition of G with k as small
as possible. If k can be equal to 1, then the graph G contains an hamiltonian
path. Reciprocally, if G contains an hamiltonian path, we can deduce a schedule
with Cmax = (n + 1)(a + b): as tseq = n(a + b), tidle must be equal to (a + b),
which is possible if and only if the schedule is represented with only one chain.

2.2 A particular case Π2 =1|coupled − task, (ai = bi =p, Li =L=
2p), Gc|Cmax

Let us suppose, only in this subsection, that both sub-tasks are equal to a con-
stant p and that the inactivity time is equal to a constant L = 2p.

The previous proof cannot be used for this case. Indeed the structure of
these tasks allows to schedule three compatible tasks together without idle time
(see figure 5). Another solution consists in covering vertices of Gc by triangles
and paths (length 0 allowed), where we minimize the number of paths and then
maximize the number of path of length 1.

This problem is a generalization of TRIANGLE PACKING [8] since an opti-
mal solution without idle time consists in partitioning into triangles the vertices
of Gc. This problem is well known to be NP-complete, and leads to the NP-
completeness of problem Π2.

a1 a2 a3 b1 b2 b3

A1

A2 A3

2p

Fig. 5. Illustration of a schedule without idle time

A correct approximation algorithm for this problem is an algorithm close to
the general case. Indeed, finding an optimal solution to this problem amounts to
finding a covering of the graph Gc by triangles and paths, which minimize the
idle time. In the following section, we will develop an efficient polynomial-time
approximation algorithm for the general problem min-SLDPC.

3 Approximation algorithm for Min-SLDPC

First we show that any polynomial-time approximation algorithm5 admits a per-
formance guarantee of 2. We also develop a polynomial-time 3

2 -approximation

5 Between two independent tasks, idle time is not allowed when there are available
tasks.

algorithm based on a maximum matching in the graph Gc. In fact, we show that
this algorithm has an approximation ratio of at most 3a+2b

2a+2b
, which leads to a

ratio between 3
2 and 5

4 according to the values of a and b (with b < a). This
result, which depends on the values a and b, will be discussed in section 4, in
order to propose a better ratio on some class of graphs.

For any instance of Min-SLDPC, an optimal schedule has a length Copt
max =

tseq + t
opt
idle where tseq = n(a + b).

Remark 1. For any solution given by a heuristic h of cost Ch
max, we necessarily

have6 thidle ≥ (a + b) and also7 thidle ≤ n(a + b). Then, for any solution h of
Min-SLDPC we have a performance ratio ρ(h) such that:

ρ(h) ≤ Ch
max

C
opt
max

≤ 2n(a + b)

(n + 1)(a + b)
< 2. (1)

In the following, we develop a polynomial-time approximation algorithm
based on a maximum matching in the graph Gc, with performance guaranty
in [54 , 3

2] according to the values of a and b.

Let I be an instance of our problem. An optimal solution is a disjoint-paths
cover. The n vertices are partitioned in three disjoint sets: n1 uncovered vertices,
n2 vertices covered by α2 = n2

2 paths of length 1, and n3 vertices covered by
exactly α3 paths of length strictly greater than 1 (see illustration figure 6). An
optimal solution is equal to the sum of sequential time and idle time: Copt

max =
n(a+b)+n1(a+b)+ n2

2 a +α3(a+b).

n1 vertices

n3

vertices

n2 verticesα3 paths

. . .

. . .
. . .

Fig. 6. Illustration of the optimal solution on an instance I

Now, we propose a polynomial-time approximation algorithm with non triv-
ial ratio on an instance I. This algorithm is based on a maximum matching in

6 The equality is obtained when the graph Gc possesses an hamiltonian path, otherwise
we need at least two paths to cover Gc (where Gc is not only an edge), which leads
to increase th

idle by at least 2a ≥ a + b units of time.
7 The worst case consists in executing tasks sequentially without scheduling any sub-

task aj or bj of task Aj during the idle time of a task Ai.

Gc in order to process two coupled-tasks at a time. For two coupled-tasks Ai

and Aj connected by an edge of the matching, we obtain an idle time of length
a (see figure 4(b)).

With this algorithm, the n1 uncovered vertices (resp. the n2 vertices covered
by edges) in an optimal solution are still uncovered (resp. covered by edges) with
a maximum matching. At last, we consider the worst case in which the α3 paths
have odd lengths. So, from the n3 vertices, there are α3 vertices uncovered and
(n3 − α3) vertices covered with a maximum matching. The upper bound is:

Ch
max = n(a + b) + n1(a + b) +

n2

2
a + α3(a + b) + (n3 − α3)

a

2

≤ 3na

2
+ nb +

α3a

2
+ α3b +

n1a

2
+ n1b

Obviously, the worst case is when n1 = n2 = 0, α3 = 1 and n3 = n. Thus,
we obtain for the relative performance:

ρ(h) ≤ Ch
max

C
opt
max

≤ n(a + b) + (a + b) + (n − 1)a
2

n(a + b) + (a + b)
≤ 3a + 2b

2a + 2b
(2)

4 Instances with particular topologies

We conclude this work by a study of min-SLDPC when Gc admits a particular
topology. We show that finding a ρdpc-approximation for Min-DPC on Gc allows
to find a strategy with performance ratio ρsldpc ≤ min{ρdpc×(a+b

a
), 3a+2b

2a+2b
}. This

leads to propose, independently from the values a and b, a 1+
√

3
2 -approximation

for min-SLDPC when Min-DPC can be polynomially solved on Gc.
From the literature, we know that Min-DPC is polynomial on trees [9, 13,

5], distance-hereditary graphs [12], bipartite permutation graphs [22], cactis [14]
and many others classes. There are currently no result about the complexity of
min-SLDPC on such graphs: since the values of of a and b have a high impact,
techniques used to proove the polynomiality of Min-DPC cannot be adapted to
proove the polynomiality of Min-SLDPC. Despite all our effort, the complexity
of Min-SLDPC remains an open problem. However using known results on Min-
DPC, we show how approximation ratio can be decreased for these class of
graphs. We propose the following lemma:

Lemma 1. If min-DPC can be polynomially solved, then there exists a polynomial-

time
(a+b)

a
-approximation for min-SLDPC.

Proof. Let I1 = (G) be an instance of min-DPC, and I2 = (G, a, b) an instance
of min-SLDPC. Let P∗

1 be an optimal solution of min-DPC of cost |P∗
1 | , and P∗

2

an optimal solution of min-SLDPC of cost OPTsldcp. According to the definition

of min-SLDPC, we have |P∗
2 | ≥ |P∗

1 |8. Since each path of a min-SLDPC solution
increments the cost of the solution by at least a, then we have:

OPTsldcp =
∑

p∈P∗

2

w(p) + n(a + b) ≥ a|P∗
2 | + n(a + b) ≥ a|P∗

2 | (3)

⇒ OPTsldcp

a
≥ |P∗

2 | (4)

Let us analyse the cost given by the partition P∗
1 if we consider it as a solution

(not necessarily an optimal) to the instance I2 of min-SLDPC. Since each path
of a min-SLDPC solution increments the cost of the solution by at most a + b,
then we have:

∑

p∈P∗

1

w(p) + n(a + b) ≤ (a + b)|P∗
1 | + n(a + b) ≤ (a + b)|P∗

2 | + n(a + b)

≤ b|P∗
2 | + OPTsldcp according to (3)

≤ b

a
OPTsldcp + OPTsldcp according to (4)

≤ a + b

a
OPTsldcp (5)

The same proof may be applied if there exists a ρdpc-approximation for min-
DPC, and then there exists a ρdpc×(a+b

a
)-approximation for min-SLDPC. Let us

suppose that we know a constant ρdpc such that there exists a ρdpc-approximation
for min-DPC on Gc. Let S1 be the strategy, which consists in determining a
ρdpc×(a+b

a
)-approximation for min-SLDPC from ρdpc, and S2 the strategy, which

consists in using the algorithm introduced in section 3. Clearly, S1 is particulary
revelant when b is very small in comparison with a. Whereas S2 gives better
ratio when b is close to a. Both strategies are complementary along the value of
b, which varies from 0 to a. Choosing the best result between the execution of
S1 and S2, gives a performance ratio ρsldpc such that:

ρsldpc ≤ min
{

ρdpc ×
(

a + b

a

)

,
3a + 2b

2a + 2b

}

. (6)

Compared to executing S1 only, this new strategy increases the obtained re-
sults if and only if ρdpc is lower than 3

2 (see fig. 5).

We propose the following remark, which is not good news:

Remark 2. There is no ρdpc-approximation for min-DPC in general graphs for
some ρdpc < 2

8 The best solution for min-SLDPC is not necessarily a solution with a minimum
cardinality of k.

aa

2

a

4

3a

4
0

1

ρdpc

5

4

3

2
S1
S2

bound

value of b

approximation ratio

Fig. 7. Finding a good ρdcp-approximation helps to increase the results of section 3

This result is a consequence of the impossibility theorem [6]. It can be
checked by considering an instance of min-DPC which has an hamiltonian path:
the optimal solution of Min-DPC has cost 1, thus any polynomial-time ρdpc-
approximation algorithm with ρdpc < 2 will return a solution of cost 1, which is
not allowed under the assumption that P 6= NP . This result also implies that
constant-factor approximation algorithms for max-DPC do not necessarily give
the same performance guarantees on min-DCP, since the best approximation
ratio for max-DCP is 7

6 , which is lower than the inapproximability bound for
min-DCP.

It is good news that Min-DPC is polynomial for some compatibility graphs
such as trees [9, 13, 5], distance-hereditary graphs [12], bipartite permutation
graphs [22], cactis [14] and many others classes; thus ρdpc = 1. For all these

graphs we obtain an approximation ratio of min{ (a+b)
a

, 3a+2b
2a+2b

} which is maximal

when (a+b)
a

= 3a+2b
2a+2b

, i.e.:

(a + b)

a
=

3a + 2b

2a + 2b
⇔ −a2 + 2ab + 2b2 = 0. (7)

The only solution of this equation with a and b ≥ 0 is a = b(1 +
√

3). By

replacing a by this new value on (a+b)
a

or on 3a+2b
2a+2b

, we show that in the worst

case the approximation ratio is reduced from 3
2 down to 1+

√
3

2 ≈ 1.37.

5 Conclusion

We investigate a particular coupled-tasks scheduling problem Π1 in presence of a
compatibility graph. We have shown how this scheduling problem can be reduced
to a graph problem. We have proved that adding the compatibility graph leads
to the NP-completeness of Π1, whereas the problem is obviously polynomial
when there is a complete compatibility graph (each task is compatible with each
other). We have proposed a ρ-approximation of Π1 where ρ is between 3

2 and

5
4 according to value of a and b. We have also decreased the upper bound of 3

2
down to ≈ 1.37 on instances where the Minimum DISJOINT PATH COVER
problem can be polynomially solved on the compatibility graph.

The perspectives this work opens are measuring the pertinence of our polynomial-
time approximation algorithm and classify Π1 = 1|coupled − task, (ai = a, bi =
b, Li = L)|Cmax with complete compatibility graph.

References

1. D. Ahr, J. Békési, G. Galambos, M. Oswald, and G. Reinelt. An exact algorithm for
scheduling identical coupled-tasks. Mathematical Methods of Operations Research,
59:193–203(11), June 2004.

2. S. Rao Arikati and C. Pandu Rangan. Linear algorithm for optimal path cover
problem on interval graphs. Information Processing Letters, 35(3):149–153, 1990.

3. P. Berman and M. Karpinski. 8/7-approximation algorithm for (1,2)-tsp. In SODA
’06: Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete
algorithm, pages 641–648, New York, NY, USA, 2006. ACM.

4. J. Blazewicz, K.H. Ecker, T. Kis, and M. Tanas. A note on the complexity of
scheduling coupled-tasks on a single processor. Journal of the Brazilian Computer
Society, 7(3):23–26, 2001.

5. F. T. Boesch S. Chen and B. McHugh. On covering the points of a graph with
point-disjoint paths. Graphs and Combinatorics, 406:201–212, 1974.

6. Ph. Chrétienne and C. Picouleau. Scheduling with communication delays: a survey.
In Scheduling theory and its applications, pages 641–648. John Wiley & sons, 1995.

7. P. Detti and C. Meloni. A linear algorithm for the hamiltonian completion number
of the line graph of a cactus. Discrete Applied Mathematics, 136(2-3):197–215, 2004.

8. M. R. Garey and D. S. Johnson. Computers and Intractability: A guide to the
theory of NP-completeness. Freeman, 1979.

9. S. E. Goodman, S. T. Hedetniemi, and P. J. Slater. Advances on the hamiltonian
completion problem. Journal of the ACM, 22(3):352–360, 1975.

10. R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G. Rinnooy Kan. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Annals
of Discrete Mathematics, 5:287–326, 1979.

11. R.-W. Hung and M.-S. Chang. Solving the path cover problem on circular-arc
graphs by using an approximation algorithm. Discrete Applied Mathematics,
154(1):76–105, 2006.

12. R.-W. Hung and M.-S. Chang. Finding a minimum path cover of a distance-
hereditary graph in polynomial time. Discrete Applied Mathematics, 155(17):2242–
2256, 2007.

13. S. Kundu. A linear algorithm for the hamiltonian completion number of a tree.
Information Processing Letters, 5:55–57, 1976.

14. S. Moran and Y. Wolfstahl. Optimal covering of cacti by vertex-disjoint paths.
Theoretical Computer Science, 84:179–197, 1988.

15. K. Nakano, S. Olariu, and A. Y. Zomaya. A time-optimal solution for the path
cover problem on cographs. Theoretical Computer Science, 290(3):1541–1556, 2003.

16. A.J. Orman and C.N. Potts. On the complexity of coupled-task scheduling. Dis-
crete Applied Mathematics, 72:141–154, 1997.

17. A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency (Algorithms
and Combinatorics). Springer, July 2004.

18. R.D. Shapiro. Scheduling coupled tasks. Naval Research Logistics Quarterly,
27:477–481, 1980.

19. G. Simonin. Étude de la complexité de problèmes d’ordonnancement avec tâches-
couplées sur monoprocesseur. Majecstic ’08, 2008.

20. G. Simonin, R.Giroudeau, and J.-C. König. Complexity and approximation for
scheduling problem for a torpedo. Technical rapport, January 2009.

21. G. Simonin, R.Giroudeau, and J.-C. König. Extended matching problem for a
coupled-tasks scheduling problem. Technical rapport, January 2009.

22. R. Srikant, R. Sundaram, K. Sher Singh, and C. Pandu Rangan. Optimal path
cover problem on block graphs and bipartite permutation graphs. Theoretical
Computer Science, 115(2):351–357, 1993.

