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Complexity and approximation for scheduling problem for a torpedo

G. Simonin!, R. Giroudeau!, and J.C. Konig'
LLIRMM, 161 rue Ada, 34392 Montpellier Cedex 5, France, UMR65

ABSTRACT

This paper considers a special case of the coupled-tasksgliing problem on one processor. The general problems were
analyzed in depth by Orman and Potts [1]. In this paper, wesiden that all processing times are equal to 1, the gap has
exact lengthl., we have precedence constraints, compatibility congraire introduced and the criterion is to minimize the

scheduling length. We use this problem to study the probledata acquisition and data treatment of a torpedo under the

water. We show that this problemA§P-complete and we propose arapproximation algorithm where < (L—gﬁ)
Keywords: scheduling, coupled-tasks, compatibility constraintsnplexity, approximation

1. Introduction . . . el Taas
1.1. Presentation Compatbity graph [aa]  [ar]pafas] [oa [0s ]

In this paper, we present the problem of data acquisition

according to compatibility constraints in a submarine tor- Fig. 1: Example of compatibility constraints with; = L, = 3 and
pedo, denote@ORPE DO problem. The torpedois used  L3;=2

in order to make cartography, topology studies, tempera-

ture measures and many other tasks in the water. The aim

of this torpedo is to collect and process a set of data as Tpe aim of the TORPEDO problem is to produce a short-
soon as possible on a mono processor. In this way, it pos- egt schedule (i.e. to minimize the moment after the exe-
sess few sensors, a mono processor and two types of tasks¢,tion of the last task in the schedule denotgd,.) in
which must be schedule: Acquisition tasks and treatment \yhich compatibility contraints between acquisition tasks
tasks. and precedence constraints are respected. In scheduling
theory, a problem is categorized by its machine environ-
ment, job characteristic and objective function. So us-
ing the notation scheme|3|y proposed by [3], the TOR-

First, the acquisition taskd = {A,,..., A,} can be as-
signed to coupled-tasks introduced by Shapiro [2], indeed
the torpedo sensors emit a wave which propagates in the : 4 R
water in order to collect the data. Each acquisition tatks ZSD?MF:{)O%(E% W|II1be defined by|prec, (ai, Li, b;) U
have two sub-tasks, the first sends an echo, the secdnd P yelmmaz

_rece_ives it. For a better reading, we will denote the process o, work consists in measuring the impact of the com-
ing time of each sub-task andb;. Between the sub-tasks, patibility graph on the complexity and approximation of
thereisan mcompressmle idle tinie which represents the scheduling problems with coupled-tasks on a mono proces-
spread of the echo in the water. sor. This paper is focusing on the limit between polynomial
problems andV’P-complete problems, when the compati-

Second, treatment tasks = {T1,...,T,} are obtained bility constraint is introduced.

from acquisition tasks, indeed after the return of the echo,
various calculations will be executed from gathered infor- 1 5 Related work

mations. These tasks are preemptive and have precedence

constraints with the acquisition tasks. In this paper, we The complexity of the scheduling problem, with coupled-
will study the problem where every acquisition task have tasks and a complete compatibility gr&phas been inves-
a precedence relation with only one treatment task. tigated by Blazewicz and al. [4], Orman and Potts [1], Ahr
i o i and al. [5]. Nevertheless, in the article we study a differen
At last, there exist compatibility constraints between ac-  roplem in which coupled-tasks (or acquisition tasks) must
quisition tasks, due to _the fact that some acquisition tasks respect a compatibility graph. Morever, in our model, we
cannot be processed in same the time that another tasks. consider a set of treatment tasks whose have a precedence
In order to represent this constraint, a compatibility frap  constraint with the set of acquisition tasks, whereas in ex-
G. = (A, E.) is introduced, wherel is the set of coupled-  igting works the authors ([4],[1],[5]) focus their studies

tasks and®, represents the edges which link two coupled-  ,recedence constraints between the acquisition tasks. By
tasks which can be executed simultaneously. In other comparing the results of Orman and Potts [1] and those ob-
words, at least one sub-task of a tatkmay be executed  5ineq by relaxing the constraint of compatibility, we can
during the idle time of another task; (see exampleinFig-  measure the impact of compatibility constraint on this kind
ure 1). of problem.

Iprec (resp. pmtn) represents the precedence constrainisdre4 et
7T (resp. the preemtivity of the treatment tasks)

2Notice, the lack of compatibility graph is equivalent to dyfcon-
nected graph. In this way, all tasks may be compatible edwutr.ot



ALL N'P-COMPLETES PROBLEMS
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Fig. 2: Global visualisation of the complexity of scheduling pieshs with coupled-tasks given by Orman and Potts [1]. Thplggare described like this:
a;, L, bi, G. represents the type of problem studied, wheyreb; and L; can take any value or be all equal to a constant. Finallyetiean arc from a
specific problem to a more general problem, and an edge betweesymmetrical problems.

We derive two main results: First, starting from the com-
plexity results of Orman and Potts resumed in Figure 2,
we show the complexity of a special problem, dendiied
which becomed/P-complete when the compatibility con-
straint is relaxed. Tha&/P-completeness dil; imply the
NP-completeness of all the problems which are more gen-
eral (see Figure 2). Second, we develop a polynomial-time
approximation algorithm based on a maximum matching
on the compatibility graph foil; .

This article is organized as follows: In the next section,
we will prove theN’P-completeness df; = 1|prec, (a; =
bi=p,Li=L,G.) U (T;,pmitn)|Cyna. Where the two sub-
tasksa; andb; are equal to a constaptand the inactivity
time L; is equal to a constaiit (the reduction is based from
the N'P-complete Clique, Garey and Johnson [6] GT19),
and soty, = t,, + a; + L; = t., + p + L wheret,, (resp.

ty,) is the starting time of the sub-task (resp. t,). In

the last section, we develop a polynomial-time approxima-

tion algorithm forlI; with performance guarantee less than
L+6
e

2. Complexity result

In this section, notice that in the special case where 1,
the problem is polynomial. It is sufficient to find a max-
imum matching in the compatibility graph. We focus the
casel # 1 andL is a data of the problem. The case
where L = 2, is studied in another paper [7]. In order
to prove theN'P-completeness off;, we will prove the
NP-completeness of the specific cdse= 1|prec, (a; =
b;= 1, Lz:L) U (Eapmtn)a Gc|Cma;E-

Theorem 2.1 Let n be the acquisition tasks number, the
problem, to decide if an instance of the problem IT; has
a scheduling length Cioe = 2n+ 3 7 o7 T, iS NP-
complete.

Proof

Our approach is similar to the proof of Lenstra and Rin-
noy Kan [3] for the problenP|prec; p; = 1|Cpqz. This
demonstration is based on t@8Bque decision problem (see
Garey and Johnson GT19 [6]):

INSTANCE: A graphG = (V, E) where|V| = n, and an
integerk.

QUESTION: Can we find a clique of siz& in G ?

Li=L=2
=3

n=>5
Agraph G e ° e e gm:,lzL:Jrzi5+2><5:20
@)
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Fig. 3: lllustration of polynomial-time transformation Clique 112

Our proof is based on the polynomial-time transformation
Clique < II,. It is easy to see that the probldm is in
NP.

Let I* an instance of Clique, we will construct an
instancel of Tly with Cyee = 2n + > 5 7 Ti in the
following way: '

LetG = (V, E) a graph in the instanck with |V| = n:

e Vv € V, an acquisition tasld,, is introduced, com-
posed of two sub-tasks, andb,, with processing time
a, =b, =1 and with a latency timé.,,, between these
two sub-tasks, of length= (K — 1), calledslot.

e Foreachedge = (v,w) € E, there is a compatibility
relation between the two acquisition tasksandA,,.



e For each taskd4,, we introduce a treatment tagk
which is its successor.

e EachT, has a processing time not&¢ = L. Thus,
the treatment tasks will replace all the inactivity slot
of all the A,, after the clique.

e We suppose that there is a clique of lengtk= (L+1)
in the graph. Let us show that there is a scheduling
iN Craz = (2n 4 Y1 .7 Ti) units of time. For that,
consider the following scheduling:

— From timet =0 to ¢t = L, we schedule th& =
(L+1) tasks which represent the vertices of the
clique of sizeK.

— Fromtimet = (2L+2), we schedule thér—K)
remaining tasksi,.

— In each slot from thesén — K) tasksA,, we
schedule the tasks,. Since eacll, has as a
valueT, = L, by schedulindn — K) tasksT,,
we will fill each slot of lengthL of the (n — K)
tasksA,.

— Remeaning treatment tasks are scheduled at the
end of the schedule.

With this allocation, we fill all the slots and we give a
valid scheduling in2n + > .. . T;) units of time.

e Reciprocally, let us suppose that there is a scheduling
in (2n+ 3", o7 Ti) units of time without inactivity
time for Ils, then let us show that the gragh con-
tains a clique of sizél = (L + 1).

From these suppositions, we make essential com-
ments:

— With the precedence constraints between the
tasks A, andT,, it is easy to see that we can
schedule only taskd, att = 0, Vv € V. Thus,
the first treatment task could be scheduled only
starting fromt = (L + 2).

— Leta,, be the first sub-task of acquisition sched-
uled att = 0, with a slot of lengthL. We need
a cligue of size(L + 1) to obtain a scheduling
without inactivity slot.

Thus we havg L + 1) acquisition tasks which are com-
patibles. And in the compatibility grapf.., we will have
an edge between each couple of these tatks Conse-
quently, the tasksA,,, A4,,,...,A4,,, associated to the
vertices of the graph G, form a clique of sike= (L +1).

This concludes our proof of Theorem 2.1. O

From this result we can conclude of the NP-completeness
of IT; . With the global visualization of Figure 2, we see that
the A"P-completeness dfl; imply the N'P-completeness

of all the more general problems. And thus, the open
problem in the study of Orman and Potts [1] become
NP-complete with the relaxation of the compatibility con-
straint.

3. Approximation algorithm

In this section, we will present and study a polynomial-
time approximation algorithm fofl, based on maximum
matching.

Remark 3.1 Noticethat, inthe case where processing time
of treatment tasks is greater than one (7; > 1, Vi), then
the sum of idle time in a schedule cannot be higher asif the
processing time of treatment tasksis one (7; = 1).

In the following, treatment tasks will have processing time
equal toT; = 1. We will present an approximation algo-
rithm of the problenil,.

3.1. Lower bounds

We will give two lower bounds. For the first, optimal
scheduling is taken where we do not have any time of in-
activity. Moreover we know that the number of treatment
tasks is equal to the number of acquisition tasks and that in
worst case all the treatment tasks have an processing time
T; = 1, Vi. Thus, we have:

C;:me ZTseq =2n+ Z Tz >2n+n=3n
T: €T

For the second bound, the maximum matching is taken
of the compatibility graphG., its cardinality ism, and
thus we havegn — 2m) independent vertices. In worst
case, optimal scheduling is greater than independent ver-
tices scheduling with the last treatment task. And so we
have:

(1)

Cotiz > (n—2m)(L +2) +1 €
For our study, our lower bound will be
CoPt > maz{3n, (n —2m)(L +2) + 1} 3)

3.2. Upper bound

Algorithm 1: A polynomial-time approximation algorithm

Instance A, 7,G., L >1
Result C" .
begin

o Compute a maximum matching 6f.

e For each edgé, j) of the maximum matching, the
acquisition tasksl; and A; are scheduled such that
ta, =ta, +1

e For each vertex remaining, we schedule the
acquisition task4,

¢ Allocate treatment tasks to the first free slot by
respecting the precedence constraints

end

We will give some essential remarks on the structure of the
scheduling given by our approximation algorithm. Let us
suppose that we have a scheduling given by the approxima-
tion algorithm with a maximum matching of size.

¢ In the first coupled-task matched, there is an incom-
pressible latency length of siZé — 1).
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Fig. 4: lllustration of the approximation algorithm

We haven acquisition tasks, the scheduling length of
these tasks i8n.

For two tasks matched, the incompressible latency
lengthis(L — 1).

For each remaining vertex, incompressible latency
length isL.

Considering the last acquisition tadk. After its exe-
cution, we may process one treatment task denoted by
T, (this case occurs when all the treatment tasks, ex-
ceptT;., are scheduled before the completion time of
A,), or some treatment tasks (this case occurs when
there is no idle time before the completion time of
A,). See figure (4), for an illustration of the case
where the task’. is the only treatment task executed
after the completion time oA.,..

So, the number of treatment task executed afteis:

max{n — (m—1)(L—-1) — (n—2m)L,1}
=max{n—nL+m(L+1)+L—-1,1}

4)
Finally, our upper bound will be:

C’y}‘ylla;p < Texecutiont Tincompressible latency length
<[2n+max{n —nL+m(L+1)+L—1,1}
+ (L —1)m+ L(n — 2m)]
<P2n+max{n—nL+m(L+1)+L—1,1}]
+ [L(n —m) — m)]

3.3. Relative performance

In the first step, the Tables 1 and 2 give a summarize of the
h
Cmax for L € {1,2,3}.

ratio of relative performance <

opt
mazx

a=1 L=2
if m> 2, thenCl, . <3n+1

Ch oo 3n if 2 <m< 2, thenCl . <4n—3m+1
R 1 h
it m < 2L thenCl .. < 4n —3m +1
it m> 2, thenCoPt, > 3n

cert. 3n if 2 <m < 2, thenC2rf, > 3n
it m < 2L thenCoPl, > dn — 8m + 1
if m>2 then p<1+4 gL

p 1 if 25 <m < 2 then p < 4 + L

i nt1 11
if m < 24=,then p < &

Tab. 1: Relative performance fdre {1,2,3}

Now we focuses on study fdr > 4. Since thatn < 7, it
easy to see thataz{n —nL+m(L+1)+L—-1,1} = 1.

L=3
if m=2, thenC  <3n+2

if 2281 <m < 2 thenCl .. < 5n—4dm+1
it m < 228 thenCl .. < 5n—4m +1

max

Ch,

max

thenCSPt > 3n

<m< g ,thenC°P! > 3n

10 max

it m < 2241 thenCoPl, > 4n — 8m + 1

axr =

it m=%,
cert if 2ntl

max

if m=2%,then p<1+4 2
if 2241 <m < 2 then p < & + ZL
it m < 224 then p < 2L

Tab. 2: Relative performance fdre {1, 2,3}

And soC"

max

<2n+L(n—m)—m-+ 1.

Moreover, since thaC°! > max{3n,nL + 2n —

2mL — 4m + 1}, the following cases must be considered:

o Form e [0, e-UH itis easy to see thatiyy!, >
3n.
n(L=1)4+1 pn : opt
o Form € [“57=5—, 5], we will have C7t), > nL +

2n —2mL —4m + 1.

According to the values of, we give the upper bound for
the length of the scheduling proposed by the heuristic
and the lower bound for an optimal scheduling (see illus-
tration figure 5).

n(L—1)+1 n
m ‘O 2(L+2) 2
p / 5 \\(LJrS)
1 6
§= (L+6)  3n
=% 6n(L+2)

Fig. 5: Behavior of the relative performangeas a fonction oin

Notice that form = 0, p = 1 (it is clear, because the

compatibility graph is an independent set), moreover for

n _ (L+3)
= =

ng,



4. Conclusion

In this paper, we presented a scheduling problem on mono
processor with graph constraints and coupled-tasks. On
the negative side, we showed that the problégris NP-
complete, our proof is based on the polynomial-time trans-
formation Clique tdll,, and imply the\NP-completeness

of all the more general problems (specially for the open
problem in Figure 2 which beconi€P-complete with the
relaxation of the compatibility constraint).

On the positive side, we gave an approximation algorithm
for II, with relative performance bounded py< % in

the worst case, whetkis the inactivity time of acquisition
tasks. The relative performance valp@ssociated to the
algorithm depends on the paramefemwhich is one of the
problem data. This remark brings a fundamental question:
"Is that our problem admits an approximation algorithm
with a performance guarantee equal to a constant value?".
The problem would be then in the clagePX, but if

we can show that it will never exist an approximation
algorithm with a performance guarantee equal to a constant
value, then our problem would be in the class — AP X.
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