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This paper considers a special case of the coupled-tasks scheduling problem on one processor. The general problems were analyzed in depth by Orman and Potts [1]. In this paper, we consider that all processing times are equal to 1, the gap has exact length L, we have precedence constraints, compatibility constraints are introduced and the criterion is to minimize the scheduling length. We use this problem to study the problem of data acquisition and data treatment of a torpedo under the water. We show that this problem is N P-complete and we propose an ρ-approximation algorithm where ρ ≤ (L+6) 6 .

Introduction 1.Presentation

In this paper, we present the problem of data acquisition according to compatibility constraints in a submarine torpedo, denoted T ORP EDO problem. The torpedo is used in order to make cartography, topology studies, temperature measures and many other tasks in the water. The aim of this torpedo is to collect and process a set of data as soon as possible on a mono processor. In this way, it possess few sensors, a mono processor and two types of tasks which must be schedule: Acquisition tasks and treatment tasks.

First, the acquisition tasks A = {A 1 , . . . , A n } can be assigned to coupled-tasks introduced by Shapiro [START_REF] Shapiro | Scheduling coupled tasks[END_REF], indeed the torpedo sensors emit a wave which propagates in the water in order to collect the data. Each acquisition tasks A i have two sub-tasks, the first a i sends an echo, the second b i receives it. For a better reading, we will denote the processing time of each sub-task a i and b i . Between the sub-tasks, there is an incompressible idle time L i which represents the spread of the echo in the water.

Second, treatment tasks T = {T 1 , . . . , T n } are obtained from acquisition tasks, indeed after the return of the echo, various calculations will be executed from gathered informations. These tasks are preemptive and have precedence constraints with the acquisition tasks. In this paper, we will study the problem where every acquisition task have a precedence relation with only one treatment task.

At last, there exist compatibility constraints between acquisition tasks, due to the fact that some acquisition tasks cannot be processed in same the time that another tasks. In order to represent this constraint, a compatibility graph G c = (A, E c ) is introduced, where A is the set of coupledtasks and E c represents the edges which link two coupledtasks which can be executed simultaneously. In other words, at least one sub-task of a task A i may be executed during the idle time of another task A j (see example in Figure 1).

A 1 A 2 A 3 a 1 b 1 a 2 b 2 a 3 b 3 L 1 L 2 L 3

Compatibility graph

Fig. 1: Example of compatibility constraints with L 1 = L 2 = 3 and

L 3 = 2
The aim of the TORPEDO problem is to produce a shortest schedule (i.e. to minimize the moment after the execution of the last task in the schedule denoted C max ) in which compatibility contraints between acquisition tasks and precedence constraints are respected. In scheduling theory, a problem is categorized by its machine environment, job characteristic and objective function. So using the notation scheme α|β|γ proposed by [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF], the TOR-PEDO problem will be defined by 1|prec, (

a i , L i , b i ) ∪ (T i , pmtn), G c |C max 1 .
Our work consists in measuring the impact of the compatibility graph on the complexity and approximation of scheduling problems with coupled-tasks on a mono processor. This paper is focusing on the limit between polynomial problems and N P-complete problems, when the compatibility constraint is introduced.

Related work

The complexity of the scheduling problem, with coupledtasks and a complete compatibility graph2 , has been investigated by Blazewicz and al. [START_REF] Blazewicz | A note on the complexity of scheduling coupled-tasks on a single processor[END_REF], Orman and Potts [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF], Ahr and al. [START_REF] Ahr | An exact algorithm for scheduling identical coupled-tasks[END_REF]. Nevertheless, in the article we study a different problem in which coupled-tasks (or acquisition tasks) must respect a compatibility graph. Morever, in our model, we consider a set of treatment tasks whose have a precedence constraint with the set of acquisition tasks, whereas in existing works the authors ([4], [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF], [START_REF] Ahr | An exact algorithm for scheduling identical coupled-tasks[END_REF]) focus their studies on precedence constraints between the acquisition tasks. By comparing the results of Orman and Potts [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF] and those obtained by relaxing the constraint of compatibility, we can measure the impact of compatibility constraint on this kind of problem.
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Global visualisation of the complexity of scheduling problems with coupled-tasks given by Orman and Potts [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF]. The graphs are described like this: a i , L i , b i , Gc represents the type of problem studied, where a i , b i and L i can take any value or be all equal to a constant. Finally, there is an arc from a specific problem to a more general problem, and an edge between two symmetrical problems.

We derive two main results: First, starting from the complexity results of Orman and Potts resumed in Figure 2, we show the complexity of a special problem, denoted Π 1 which becomes N P-complete when the compatibility constraint is relaxed. The N P-completeness of Π 1 imply the N P-completeness of all the problems which are more general (see Figure 2). Second, we develop a polynomial-time approximation algorithm based on a maximum matching on the compatibility graph for Π 1 .

This article is organized as follows: In the next section, we will prove the N P-completeness of

Π 1 = 1|prec, (a i = b i = p, L i = L, G c ) ∪ (T i , pmtn)
|C max where the two subtasks a i and b i are equal to a constant p and the inactivity time L i is equal to a constant L (the reduction is based from the N P-complete Clique, Garey and Johnson [6] GT19), and so t bi = t ai + a i + L i = t ai + p + L where t ai (resp. t bi ) is the starting time of the sub-task a i (resp. t bi ). In the last section, we develop a polynomial-time approximation algorithm for Π 1 with performance guarantee less than L+6 6 .

Complexity result

In this section, notice that in the special case where L = 1, the problem is polynomial. It is sufficient to find a maximum matching in the compatibility graph. We focus the case L = 1 and L is a data of the problem. The case where L = 2, is studied in another paper [START_REF] Simonin | Extended matching problem for a coupled-tasks scheduling problem[END_REF]. In order to prove the N P-completeness of Π 1 , we will prove the N P-completeness of the specific case

Π 2 = 1|prec, (a i = b i = 1, L i = L) ∪ (T i , pmtn), G c |C max .
Theorem 2.1 Let n be the acquisition tasks number, the problem, to decide if an instance of the problem Π 2 has a scheduling length C max = 2n + Ti∈T T i , is N Pcomplete.

Proof

Our approach is similar to the proof of Lenstra and Rinnoy Kan [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling: a survey[END_REF] for the problem P |prec; p j = 1|C max . This demonstration is based on the Clique decision problem (see Garey and Johnson GT19 [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]):

INSTANCE: A graph G = (V, E)
where |V | = n, and an integer K. QUESTION: Can we find a clique of size K in G ?
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The compatibility Graph Gc Our proof is based on the polynomial-time transformation Clique ∝ Π 2 . It is easy to see that the problem Π 2 is in N P.

Let I * an instance of Clique, we will construct an instance I of Π 2 with C max = 2n + Ti∈T T i in the following way:

Let G = (V, E) a graph in the instance I, with |V | = n:

• ∀v ∈ V , an acquisition task A v is introduced, composed of two sub-tasks a v and b v with processing time a v = b v = 1 and with a latency time L v , between these two sub-tasks, of length L = (K -1), called slot.

• For each edge e = (v, w) ∈ E, there is a compatibility relation between the two acquisition tasks A v and A w .

• For each task A v , we introduce a treatment task T v which is its successor.

• Each T v has a processing time noted T v = L. Thus, the treatment tasks will replace all the inactivity slot of all the A v after the clique.

• We suppose that there is a clique of length K = (L+1) in the graph G. Let us show that there is a scheduling in C max = (2n + Ti∈T T i ) units of time. For that, consider the following scheduling:

-From time t = 0 to t = L, we schedule the K = (L+1) tasks which represent the vertices of the clique of size K.

-From time t = (2L+2), we schedule the (n-K) remaining tasks A v .

-In each slot from these (n -K) tasks A v , we schedule the tasks T v . Since each T v has as a value T v = L, by scheduling (n -K) tasks T v , we will fill each slot of length L of the (n -K) tasks A v .

-Remeaning treatment tasks are scheduled at the end of the schedule.

With this allocation, we fill all the slots and we give a valid scheduling in (2n + Ti∈T T i ) units of time.

• Reciprocally, let us suppose that there is a scheduling in (2n + Ti∈T T i ) units of time without inactivity time for Π 2 , then let us show that the graph G contains a clique of size K = (L + 1).

From these suppositions, we make essential comments:

-With the precedence constraints between the tasks A v and T v , it is easy to see that we can schedule only tasks A v at t = 0, ∀v ∈ V . Thus, the first treatment task could be scheduled only starting from t = (L + 2).

-Let a p1 be the first sub-task of acquisition scheduled at t = 0, with a slot of length L. We need a clique of size (L + 1) to obtain a scheduling without inactivity slot.

Thus we have (L + 1) acquisition tasks which are compatibles. And in the compatibility graph G c , we will have an edge between each couple of these tasks A v . Consequently, the tasks A p1 , A p2 , . . . , A pL , associated to the vertices of the graph G, form a clique of size K = (L + 1).

This concludes our proof of Theorem 2.1.

From this result we can conclude of the NP-completeness of Π 1 . With the global visualization of Figure 2, we see that the N P-completeness of Π 1 imply the N P-completeness of all the more general problems. And thus, the open problem in the study of Orman and Potts [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF] become N P-complete with the relaxation of the compatibility constraint.

Approximation algorithm

In this section, we will present and study a polynomialtime approximation algorithm for Π 2 based on maximum matching. Remark 3.1 Notice that, in the case where processing time of treatment tasks is greater than one (T i > 1, ∀i), then the sum of idle time in a schedule cannot be higher as if the processing time of treatment tasks is one (T i = 1).

In the following, treatment tasks will have processing time equal to T i = 1. We will present an approximation algorithm of the problem Π 2 .

Lower bounds

We will give two lower bounds. For the first, optimal scheduling is taken where we do not have any time of inactivity. Moreover we know that the number of treatment tasks is equal to the number of acquisition tasks and that in worst case all the treatment tasks have an processing time T i = 1, ∀i. Thus, we have:

C opt max ≥ T seq = 2n + Ti∈T T i ≥ 2n + n = 3n (1) 
For the second bound, the maximum matching is taken of the compatibility graph G c , its cardinality is m, and thus we have (n -2m) independent vertices. In worst case, optimal scheduling is greater than independent vertices scheduling with the last treatment task. And so we have:

C opt max ≥ (n -2m)(L + 2) + 1 (2) 
For our study, our lower bound will be

C opt max ≥ max{3n, (n -2m)(L + 2) + 1} (3) 

Upper bound Algorithm 1: A polynomial-time approximation algorithm

Instance: A, T , G c , L ≥ 1 Result: C h max begin • Compute a maximum matching of G c
• For each edge (i, j) of the maximum matching, the acquisition tasks A i and A j are scheduled such that t aj = t ai + 1 • For each vertex i remaining, we schedule the acquisition task A i • Allocate treatment tasks to the first free slot by respecting the precedence constraints end

We will give some essential remarks on the structure of the scheduling given by our approximation algorithm. Let us suppose that we have a scheduling given by the approximation algorithm with a maximum matching of size m.

• In the first coupled-task matched, there is an incompressible latency length of size (L -1). • We have n acquisition tasks, the scheduling length of these tasks is 2n. • For two tasks matched, the incompressible latency length is (L -1). • For each remaining vertex, incompressible latency length is L. • Considering the last acquisition task A r . After its execution, we may process one treatment task denoted by T r (this case occurs when all the treatment tasks, except T r , are scheduled before the completion time of A r ), or some treatment tasks (this case occurs when there is no idle time before the completion time of A r ). See figure [START_REF] Blazewicz | A note on the complexity of scheduling coupled-tasks on a single processor[END_REF], for an illustration of the case where the task T r is the only treatment task executed after the completion time of A r . So, the number of treatment task executed after A r is:

max{n -(m -1)(L -1) -(n -2m)L, 1} = max{n -nL + m(L + 1) + L -1, 1} (4) 
Finally, our upper bound will be:

C h max ≤ T execution + T incompressible latency length ≤ [2n + max{n -nL + m(L + 1) + L -1, 1}] + [(L -1)m + L(n -2m)] ≤ [2n + max{n -nL + m(L + 1) + L -1, 1}] + [L(n -m) -m]

Relative performance

In the first step, the Tables 1 and2 give a summarize of the ratio of relative performance ρ ≤

C h max C opt max for L ∈ {1, 2, 3}. α = 1 L = 2 if m ≥ n 3 , then C h max ≤ 3n + 1 C h max 3n if n+1 8 ≤ m < n 3 , then C h max ≤ 4n-3m+1 if m < n+1 8 , then C h max ≤ 4n -3m + 1 if m ≥ n 3 , then C opt max ≥ 3n C opt max 3n if n+1 8 ≤ m < n 3 , then C opt max ≥ 3n if m < n+1 8 , then C opt max ≥ 4n -8m + 1 if m ≥ n 3 , then ρ ≤ 1 + 1 3n ρ 1 if n+1 8 ≤ m < n 3 , then ρ ≤ 4 3 + 1 3n if m < n+1 8 , then ρ ≤ 11 6 
Tab. 1: Relative performance for L ∈ {1, 2, 3}

Now we focuses on study for L ≥ 4. Since that m ≤ n 2 , it easy to see that max{n -nL + m(L + 1) + L -1, 1} = 1. And so C h max ≤ 2n + L(nm)m + 1.

L = 3 if m = n 2 ,
Moreover, since that C opt max ≥ max{3n, nL + 2n -2mL -4m + 1}, the following cases must be considered:

• For m ∈ [0, n(L-1)+1 2(L+2) [, it is easy to see that C opt max ≥ 3n.

• For m ∈ [ n(L-1)+1 2(L+2) , n 2 ], we will have C opt max ≥ nL + 2n -2mL -4m + 1.

According to the values of m, we give the upper bound for the length of the scheduling proposed by the heuristic h, and the lower bound for an optimal scheduling (see illustration figure 5). Notice that for m = 0, ρ = 1 (it is clear, because the compatibility graph is an independent set), moreover for m = n 2 , ρ = (L+3) 6 .
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 3 Fig. 3: Illustration of polynomial-time transformation Clique ∝ Π 2
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 65 Fig. 5: Behavior of the relative performance ρ as a fonction of m

prec (resp. pmtn) represents the precedence constraints between A et T (resp. the preemtivity of the treatment tasks)

Notice, the lack of compatibility graph is equivalent to a fully connected graph. In this way, all tasks may be compatible each other.

Conclusion

In this paper, we presented a scheduling problem on mono processor with graph constraints and coupled-tasks. On the negative side, we showed that the problem Π 2 is N Pcomplete, our proof is based on the polynomial-time transformation Clique to Π 2 , and imply the N P-completeness of all the more general problems (specially for the open problem in Figure 2 which become N P-complete with the relaxation of the compatibility constraint).

On the positive side, we gave an approximation algorithm for Π 2 with relative performance bounded by ρ ≤ L+6 6 in the worst case, where L is the inactivity time of acquisition tasks. The relative performance value ρ associated to the algorithm depends on the parameter L, which is one of the problem data. This remark brings a fundamental question: "Is that our problem admits an approximation algorithm with a performance guarantee equal to a constant value?". The problem would be then in the class AP X, but if we can show that it will never exist an approximation algorithm with a performance guarantee equal to a constant value, then our problem would be in the classnon -AP X.