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Abstract— This paper proposes a method for modeling the 

Center of Mass (CoM) of humanoid robots. The method is based 

on the Statically Equivalent Serial Chain (SESC) model, a serial 

chain representation of any multi-link branched chain. An 

algorithm is presented to automatically construct the SESC of a 

symmetric anthropomorphic architecture. We also show the use 

of SESC modeling in the projection of the CoM when the 

kinematic chain is not positioned on a horizontal plane. Finally, 

after validating these developments on the HOAP-3 experimental 

humanoid robot platform, we discuss the interest of this 

modeling in other areas of research. 

I. INTRODUCTION 

The study and management of the static balance of 

humanoid robots has generated significant interest in the 

scientific community. Of particular interest here, Espiau [1] 

illustrated a new way to write the Center of Mass (CoM) of a 

given architecture. 

Following Espiau’s work, we review the Statically 

Equivalent Serial Chain (SESC) modeling process on a basic 

example. This principle, applied to humanoid robots, allows 

us to obtain a serial-chain-like model to locate the CoM of a 

humanoid robot.  

However, finding the statically equivalent serial chain 

requires a specific calculation for each architecture, a lengthy 

process if there are many degrees of freedom and, hence, 

many links. Thus, we present an efficient method and an 

algorithm to construct and compute the SESC automatically 

for a humanoid architecture using only the mechanical 

parameters of the studied architecture as inputs. 

With the goal of managing the static balance of humanoid 

robots, this modeling is extended to the CoM projection. The 

utility of SESC modeling is displayed by including a 

consideration of the ground slope in the modeling.  

The experimental results to validate this approach are then 

implemented on a HOAP-3 humanoid robot. Finally, we 

discuss the use of this modeling in further research including 

CoM workspace optimization and identification of unknown 

mechanical parameters on a given architecture. 

II. STATICALLY EQUIVALENT SERIAL CHAIN MODELING 

Classically, the center of mass (CoM) of a multi-body 

system is defined as the weighted average of the locations of 

each individual body’s CoM. A new formulation for the CoM 

was introduced in [1] and used on a humanoid robot in a 

planar case in [2]. Our previous work [3], has shown a 

simplified approach to this modeling in the planar case and its 

use on a humanoid robot [4]. Of course, the knowledge of the 

CoM location in two dimensional space is not sufficient to 

preserve the static balance of an anthropomorphic structure. 

Thus, we present the extension to three dimensional space of 

this simplified modeling, called Statically Equivalent Serial 

Chain Modeling. 
 

A. Working Hypothesis 

The system studied below is composed of rigid bodies, 

called links, connected by revolute joints.  As such, each link 

is considered as fully described by its mass and geometric 

properties.  Thus, for each link, the mass and the location of 

the center of mass are known, as are the locations of all 

revolute joints. The following equations use homogeneous 

transform matrices and link’s CoM location, as described 

below.  
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B. SESC Modeling  

Consider the branched chain shown in Fig. 1. The chain is 

composed of four links joined by revolute joints. Each body is 

described by the three parameters li (body length), mi (body 

mass), and 𝑐𝑖    (location of the CoM). The total mass of the 

system is M = m1 + m2 + m3+ m4. 

 
Fig. 1 Spatial branched chain and its mechanical parameters 

The CoM of the entire chain is the sum of each body’s 

CoM divided by the total system mass.                            
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The expression is expanded and regrouped according to the 

individual rotation matrices in (2). Based on the assumptions, 

the vector associated with each rotation matrix is constant. 

Replacing these vectors by a single parameter leads us to the 

final CoM equation (3). 
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𝐶𝑜𝑀          =  𝑑1
      + 𝐴1𝑟2    + 𝐴1𝐴2𝑟3    + 𝐴1𝐴3𝑟4    + 𝐴1𝐴3𝐴4𝑟5           (3) 

 

The similarity is readily observed between equation (3) for 

the center of mass of the four link branched chain and the 

equation for the forward kinematics of a four link serial chain. 

Here, we note the main interest in this approach: the CoM 

location of the original branched chain is modeled by the end-

effector location of an appropriately sized spatial serial-chain. 

This concept is illustrated by Fig. 2. As a consequence, we can 

directly apply all the past work dedicated to the control of the 

end-effector location of serial robots to the control of the CoM.  

This concept can be applied generally to a multi-link chain 

for which we can obtain a Statically Equivalent Serial Chain 

such that the end-effector locates the original chain’s Center 

of Mass. Moreover, the relationship between the CoM 

location and joint variables is a straightforward relationship. 

 

 
Fig. 2 Statically Equivalent Serial Chain of Fig. 1  

 

C. SESC Model Generalization , Matrix Form 

Equation (3) can be written in matrix form. 
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The 𝐴2

𝑇𝐴3 term in the previous expression is noteworthy 

because, although not identical in practice to a serial chain, the 

form still largely resembles that of a serial chain. We observe 

that a general branched chain, where for simplicity we 

introduce only one branch point, admits an equation for the 

center of mass location as in (4). The general branched chain 

under consideration is shown in Fig. 3. 

 

 
Fig. 3 n Degree of freedom chain with one branch  

Finally, the matrix form is useful because it may be 

formulated to directly produce the CoM equation resulting 

from the SESC modeling, primarily by observation of the 

chain structure. Only the 𝑟𝑖    parameters will require significant 

calculation. 

III. EFFICIENT COMPUTATION OF THE SESC 

The modeling can be generalized to automate and 

efficiently construct the SESC of a given chain. This 

automation is done by an iterative algorithm which computes 

for each posture of the chain, its SESC and its CoM location. 

The algorithm presented below is of interest because it can be 

used on an n degree of freedom chain and avoid the 

significant calculation of the 𝑟𝑖    parameters. Moreover this 

algorithm extends the modeling to include prismatic joints in 

addition to the revolute joints. However this algorithm can 

only be used on symmetrical architecture. Appendix presents, 

equality between classical CoM computation and CoM 

computation from equations described in this chapter. 

A. Formulate the SESC 

To use the structure of a serial chain, we progress along the 

original chain moving from one joint to the following. All the 

joints must be included but each joint is included only once. 

Returning to a previous joint is not a requirement, where 

instead you have to use an inverted matrix to move along the 

chain backward and then directly go to the next joint. So, the 

first thing to do is to define the transformation matrices 

between each joint of the chain. Then we can write the full 

equation of the CoM given by the SESC model. The example 

below shows all the steps to construct a SESC on a four 

jointed tree. 
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1)  Define Transformation Matrices: The transformation 

matrices in red (Fig. 4) are the matrices used to progress along 

the chain and therefore used in the following equations. 

 
Fig.4 How to define transformation matrices to automatically generate the 
SESC 

2)  Define the chain’s parameters: From the way the chain 

is constructed, we propose to calculate iteratively the  𝑟𝑖     
parameters according to (5). It is important to notice in this 

equation that the 𝑑𝑖
     coefficients come from the last column of 

the transformation matrices used to follow the chain. 
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B. Run the SESC Algorithm 

1)  The SESC Algorithm: This algorithm has to be run 

during the experimentation to re-compute for each posture the 

transformation matrices at the current joint values. The inputs 

are the mechanical parameters and the output is the CoM 

location. 

 
Fig.5 The SESC Algorithm to efficiently compute the Statically Equivalent 

Serial Chain from the mechanical parameters of a given structure 

2)  Final Expression of the Center of Mass: For a chain 

composed of n joints, the final expression of the center of 

mass can be written in its literal form as (6) or in its factored 

form as (7). As the  𝑟𝑖     parameters are computed continuously, 

it is important to notice this algorithm can also be used on 

structures with prismatic joints. Indeed, the  𝑟𝑖     groups the 

mechanical parameters in which we find the distance between 

two successive joints. 
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3)  CoM Jacobian: An efficient computation of the CoM 

Jacobian based on the SESC modeling is given in (8). The 

elements of the CoM Jacobian in their iterative form (9) are 

readily computed and avoid the handmade calculation of the 

CoM Jacobian. Moreover this equation can be included in the 

previous algorithm. 
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IV. AN EXAMPLE USE OF SESC MODELING IN 

ANTHROPOMORPHIC STRUCTURE BALANCE 

A. Maintaining Balance of  an Anthropomorphic Structure 

A relevant condition to maintain the static balance of an 

anthropomorphic structure is to keep the point from the 

projected CoM (in the direction of the gravity force) inside the 

base of support. The base of support is the surface demarcated 

by the convex hull made by the pressure points of the 

structure on the ground.  

B. Extension of the SESC Modeling to the CoM Projection 

On planar ground, the CoM given by the SESC and its 

projection (according to the gravity force direction) have the 

same coordinates in the horizontal plane. It is not the case on 

non-horizontal ground. As the only variables in the SESC are 

the joint variables relative to a frame on the robot, when the 

robot is on sloped ground, the SESC model fails. This leads to 

potential difficulty during the CoM projection to the ground. 

Fig. 7 shows the SESC model for the CoM projection in 

comparison to reality. As the two results are not equal, the 

result given by the previous SESC modeling is not applicable 

to the CoM projection. A good solution is to directly include 

the transformation matrix between the root and the world 

frames in the SESC model. The rotation part of the 

transformation matrix includes the rotation by the angle 𝜃0 , 

data provided by robot’s sensors, typically a gyrometer. 

 

 



 
Fig. 7 Real CoM projections vs. SESC CoM projection of an 

anthropomorphic structure on leaning ground do not have the same 

coordinates 

Adding the ground slope in the SESC model leads to an 

alternate version of equation (4), directly obtaining the CoM 

projection. The generalized equation of the CoM projection 

becomes (10) where 𝐴0  is the rotation matrix of the ground 

slope. The ground slope can also be included in the automatic 

generation of the SESC previously presented, in which the 

equation of the CoM projection is (11). 

This modeling is particularly well-suited for control of the 

static balance because we can directly compensate for the 

ground slope using a gyrometer embedded in the robot. Here, 

we emphasize the value of the SESC model because it allows 

us to balance the anthropomorphic structure just by adding a 

new virtual joint in the anthropomorphic SESC, representing 

the ground slope, as shown in Fig. 7. 
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V. EXPERIMENTAL RESULTS 

Two experiments illustrate the previous developments. The 

first one shows the derivation of the statically equivalent serial 

chain of the HOAP-3 robot. The algorithm presented in 

section III is used to efficiently establish its SESC. Indeed, to 

obtain the exact CoM location in the three dimensional space, 

we have to account for all of the joints of the robot, which has 

21 degrees of freedom. The second experiment displays the 

capacity of the Hoap-3 robot to place its CoM on leaning 

ground by using the extension of the SESC model to the CoM 

projection, as described in the previous section. 

A. Hoap-3 SESC 

1)  Mechanical Parameters: We saw in section III.1 that we 

need the mechanical parameters of the robot as inputs of the 

SESC algorithm. Thus, we used masses and center of masses 

given by the Hoap-3 datasheet. The parameters that define the 

transformation matrices used to relate the robot’s joints are 

presented in Fig. 9. 

 

 
Fig. 9 Parameters used to define the transformation matrices of the Hoap-3 

(Original figure from Hoap-3 instruction manual) 

2)  Hoap-3 SESC Simulation: Fig. 10 shows the Statically 

Equivalent Serial Chain (purple line) obtained by the SESC 

algorithm with the mechanical parameters defined previously. 

Notice that the end of the SESC corresponds to the CoM 

location of the full robot. 

 

 
Fig. 10 Hoap-3 Statically Equivalent Serial Chain 
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Fig. 11 CoM control loop based on SESC modeling 

3)  Hoap-3 SESC implemented on the robot: The Hoap-3 

SESC model has been implemented on the robot controller 

through real time modules to determine the robot CoM 

location every millisecond (sample time of the robot). A CoM 

control loop (Fig. 11) based on this model has been 

successfully tested. The desired CoM location is the only 

parameter controlled. Fig. 12 shows several postures where 

the static balance is managed using this loop. 

 

 
Fig. 12 SESC Modeling used to control CoM in the 3D space 

B.  Hoap-3 on leaning ground 

In this experiment, we aim to manage the robot’s static 

balance on leaning ground. To do that, only the ankle, hip and 

shoulder joints are used in the frontal plane. Consequently we 

have a simplified model of the SESC and we control the CoM 

projection only in the frontal plane. 

1)  Hoap-3 CoM projection using SESC modeling: Six 

joints are used on the robot. The ground slope 𝜃0  is 

represented by a virtual joint at the beginning of the SESC. As 

a consequence, we can directly obtain the CoM projection 

𝐶𝑜𝑀𝑔
             on planar ground, where the root frame is located. The 

robot on leaning ground and its SESC are illustrated Fig. 7.  

2)  Implementation: The same control scheme presented in 

Fig. 11 is used to preserve balance on leaning ground. 

However instead of controlling the CoM location, we control 

the location the CoM projection. The experiment has been 

carried out on a surface where the leaning angle is 

continuously modified. The leaning angle of the ground is 

estimated by using a three axis gyrometer embedded in the 

robot. Pictures from the experiment are shown in Fig. 13. 

 

 
Fig. 13 SESC Modeling used to control CoM Projection on leaning ground 

VI. ONGOING RESEARCH 

A. CoM Workspace Optimization 

As the CoM is the end-effector of a serial chain we can 

readily express its workspace. This property brings us new 

opportunities to solve different problems.  

1)  Robot Design: The SESC model gives us the expression 

of the CoM as a function of the rotation matrix and the 

mechanical parameters assembled in a single 𝑟𝑖       parameter. 

Thus, changing the mechanical parameter values (mass, length 

and center of mass) will directly modify the CoM workspace. 

In robot design this property is noteworthy because it allows 

us, knowing the architecture of the future robot, to optimize its 

mechanical parameters to obtain the desired CoM workspace. 

Consequently the future CoM workspace is accounted for 

during the design phase.   

 
Fig. 14 CoM workspace of a human like structure ( L=180cm, M=70kg )  

2)  Influence in Anthropomorphic like Structure: Our 

working hypothesis is that the CoM workspace may have an 

influence in the development of an anthropomorphic-like 

architecture. To verify this claim, we have tried to find a set of 

mechanical parameters minimizing the CoM workspace of an 

anthropomorphic-like architecture and compare it to Winter 

anthropometric table [5]. We solved this optimization problem 

on a simple case: A two degrees of freedom human like 



architecture in the sagittal plane. Only the hip and ankle joints 

were used. Fig. 14 illustrates the structure and its statically 

equivalent serial chain. The problem has been solved under 

the constraints described in (12). The SESC modeling has 

been used to find the CoM equation, express the cost function 

and minimize the CoM workspace. 

 

𝑙1 + 𝑙2 = 𝐿                                                                             
𝑚1 + 𝑚2 = 𝑀                                                            
𝜃1𝑚𝑖𝑛 < 𝜃1 < 𝜃1𝑚𝑎𝑥                                        (12) 

𝜃2𝑚𝑖𝑛 < 𝜃2 < 𝜃2𝑚𝑎𝑥                                                                          
 𝐶𝑜𝑀𝑔𝑚𝑖𝑛 < 𝐶𝑜𝑀𝑔 < 𝐶𝑜𝑀𝑔𝑚𝑎𝑥                              

 

The optimization problem solved under these constraints 

gives the same results for length as Winter’s anthropometric 

data. Although this result is promising, we have not yet results 

for masses distribution. We can explain that by the fact that 

only the geometric model was taken into account in the 

optimization problem, and not the dynamic one. Consequently, 

we hope to find similar results as Winter for length and mass 

of the legs and body, by taking into account the dynamics of 

this structure in the optimization problem. Moreover, one of 

our future works will be to extend this problem by including 

more degrees of freedom in the studied architecture. 

 

 
Fig. 15 Lengths for legs and body found by minimizing CoM workspace is 

the same as winter anthropometric data 

B. Identification of Mechanical Parameters on a Given 

Structure 

If we know the geometry of a given structure but not its 

mechanical parameters, we write the equation of its CoM 

projection by using the SESC modeling in this matrix form. 

(Refer to section III.C). For an n degree of freedom 

architecture, this leads to equation (13). If we put the structure 

in a neutrally stable (tip over) posture, we know the CoM 

projection location and the corresponding joint values. So, in 

equation (14), the 𝑟𝑖       parameters remain unknown. Choosing 

m (at least m = n) different tip over postures we can write the 

matrix equality (14) and solve it using inversion (or pseudo-

inversion if m > n) (15). In equation (14) and (15), 𝑝1 …𝑝𝑚 

superscripts stands for tip over posture one to tip over posture 

m.             
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In theory, with this procedure, we are able to completely 

calculate the 𝑟𝑖       parameters of the SESC. Therefore, for all the 

other postures, we will be able to predict the CoM projection 

without any knowledge of the mechanical parameters of the 

studied structure. Note that the transformation from the 

original chain to its statically equivalent serial chain is an 

injective transformation. The mechanical parameters of the 

original structure cannot be obtained. Fig. 16 shows several 

tips over postures on the Hoap-3 robot used to calculate its 

SESC. 

 

 
Fig. 16 Some neutrally stable postures used to reconstruct the Hoap-3 SESC 

VII. CONCLUSIONS 

Statically Equivalent Serial Chain modeling has been 

presented and has been generalized for use in three 

dimensional space. The main interest of this modeling resides 

in the ability to express the CoM of a given structure as the 

end-effector of a serial chain. Therefore, knowledge of the 

serial manipulator can be applied directly to the CoM. An 

algorithm to compute the Statically Equivalent Serial Chain 

efficiently has been developed and successfully checked on 

the Hoap-3 robot. Equations to compute the chain parameters 

and CoM location are noteworthy. Moreover, their iterative 

form enables the automatic computation of the SESC model 

for an n degree of freedom symmetric architecture, which is 

advantage in humanoid robotics where the number of joints is 

continuously increasing. This algorithm also allows the 

application of the SESC modeling on architectures including 

prismatic joints. 

To manage the static balance of humanoid robots, SESC 

modeling has been extended to the CoM projection. The 

interest in this modeling is highlighted by the facility to 

include a new revolute joint in the equivalent chain to balance 



the robot when it is on tilted ground. In the aim to improve 

static balance, future work will include minimum energy 

criteria to address model redundancy. 

Finally, we show, the SESC model is not restricted to 

balance management but it brings new perspectives to solving 

different kinds of problems. CoM Workspace optimization in 

robot design or in anthropometric studies and CoM location 

prediction are good examples of the abilities of SESC 

modeling. 
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APPENDIX: CALCULATION DETAILS FOR SESC EFFICIENT COMPUTATION EXAMPLE 

 

This appendix provides the details of the calculations 

shown in Fig. 4. SES Efficient Computing (section III) gives 

the same result for the CoM equation as the classical SESC 

modeling (section II). 

A. CoM equation given by SESC Modeling (section II) 

𝑀. 𝐶𝑜𝑀          = 𝑚1𝑇1  𝑐1    
1
 + 𝑚2𝑇1𝑇2  𝑐2    

1
  

                + 𝑚3𝑇1𝑇2𝑇3  𝑐3    
1
 + 𝑚4𝑇1𝑇2𝑇24  𝑐4    

1
  

 

Expanding and factoring: 

 

𝑀. 𝐶𝑜𝑀          = 𝑀. 𝑑1
                                                                             (16)   

                +  𝐴1  𝑚1𝑐1    + 𝑑2
      𝑚2 + 𝑚3 + 𝑚4   

      +  𝐴1𝐴2 𝑚2𝑐2    + 𝑚3𝑑3
     + 𝑚4𝑑24

         

      +  𝐴1𝐴2𝐴3 𝑚3𝑐3      

      +  𝐴1𝐴2𝐴24 𝑚4𝑐4      

 

B. CoM equation given by SESC Efficient Computing 

(Chapter III) 

According to equation (5) and (7) 

 

𝐶𝑜𝑀               = 𝑑1
     + 𝐴1𝑟2    + 𝐴1𝐴2𝑟3    + 𝐴1𝐴2𝐴3𝑟4     + 𝐴1𝐴2𝐴3𝐴4𝑟5        

 

Expanding and factoring: 

 

 𝑀. 𝐶𝑜𝑀          = 𝑀. 𝑑1
                                                                              (17) 

                 +  𝐴1  𝑚1𝑐1    +  𝑑2
      𝑚2 + 𝑚3 + 𝑚4   

       +  𝐴1𝐴2 𝑚2𝑐2 + 𝑑3
      𝑚3 + 𝑚4    

       +  𝐴1𝐴2𝐴3 𝑚3𝑐3    + 𝑚4𝑑4
       

       +  𝐴1𝐴2𝐴3𝐴4 𝑚4𝑐4      
 

Note that the inverse of homogeneous transformation 

matrix can be express as  

 

 

𝑇𝑖
−1 =  𝐴𝑖

𝑇  −𝐴𝑖
𝑇 . 𝑑𝑖

    

0 1
                   (18) 

 

Thus 𝑇4 is: 
 

𝑇4 = 𝑇3
−1 . 𝑇24 =  𝐴3

𝑇 . 𝐴24  𝐴3
𝑇 . 𝑑24

       −𝐴3
𝑇 . 𝑑3

     

0 1
  

 

𝐴4 = 𝐴3
𝑇 . 𝐴24 

 

𝑑4
     = 𝐴3

𝑇 . 𝑑24
       −𝐴3

𝑇 . 𝑑3
      

 

Replacing 𝐴4 and 𝑑4
      in equation (17) 

 

𝑀. 𝐶𝑜𝑀           = 𝑀. 𝑑1
      

                 +  𝐴1  𝑚1𝑐1    +  𝑑2
      𝑚2 + 𝑚3 + 𝑚4   

       +  𝐴1𝐴2 𝑚2𝑐2 + 𝑑3
      𝑚3 + 𝑚4    

       +  𝐴1𝐴2𝐴3  𝑚3𝑐3    + 𝑚4 𝐴3
𝑇 . 𝑑24

       −𝐴3
𝑇 . 𝑑3

        

       +  𝐴1𝐴2𝐴3𝐴3
𝑇𝐴24 𝑚4𝑐4      

 

𝑀. 𝐶𝑜𝑀          = 𝑀. 𝑑1
      

                 +  𝐴1  𝑚1𝑐1    +  𝑑2
      𝑚2 + 𝑚3 + 𝑚4   

       +  𝐴1𝐴2 𝑚2𝑐2 + 𝑑3
      𝑚3 + 𝑚4    

       +  𝐴1𝐴2 𝑚4 𝑑24
       − 𝑚4𝑑3

       

       +  𝐴1𝐴2𝐴3 𝑚3𝑐3      
       +  𝐴1𝐴2𝐴24 𝑚4𝑐4      
 

𝑀. 𝐶𝑜𝑀          = 𝑀. 𝑑1
                                                                               (19) 

                +  𝐴1  𝑚1𝑐1    + 𝑑2
      𝑚2 + 𝑚3 + 𝑚4   

      +  𝐴1𝐴2 𝑚2𝑐2    + 𝑚3𝑑3
     + 𝑚4𝑑24

         

      +  𝐴1𝐴2𝐴3 𝑚3𝑐3      

      +  𝐴1𝐴2𝐴24 𝑚4𝑐4      
 

Equations (16) and (19) are very same.  


