N
N

N

HAL

open science

Integrating Shadows in Model Driven Engineering for
Agile Software Development

Marc Conrad, Marianne Huchard, Thomas Preuss

» To cite this version:

Marc Conrad, Marianne Huchard, Thomas Preuss. Integrating Shadows in Model Driven Engineering
for Agile Software Development. CISIS: Complex, Intelligent and Software Intensive Systems, Mar

2008, Barcelona, Spain. pp.549-554. lirmm-00355780

HAL Id: lirmm-00355780
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00355780
Submitted on 23 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00355780
https://hal.archives-ouvertes.fr

Integrating Shadows in Model Driven Engineering for Agile Software
Development

Marc Conrad
University of Bedfordshire
Luton, United Kingdom
marc.conrad @beds.ac.uk

Abstract

Shadows are well known as a programming language
feature in the application area of MUDs (a certain type of
multi-player online game). We argue that agile methodolo-
gies can be enhanced by the use of shadows as this fea-
ture because of its inherent ability to dynamically change
the behavior of classes and objects, provides mechanisms
to ease common tasks such as prototyping, deprecating, dy-
namic classification and interclassing at run-time. There-
fore shadows should be considered a notion beyond any
specific programming languages in order to facilitate its use
in model-driven software engineering. For this we introduce
Shadows-UML, an UML extension, that would help to push
forward the convergence between model-driven and agile
methodologies.

1. Introduction

The efficient production of quality software artifacts
has been an evergreen aim and ongoing topic for debate
amongst both the software development and consumer com-
munities alike for many years. Despite the enormous invest-
ment made by both communities in seeking to design strate-
gies and tools to deliver quality software on time and within
budget, any cursory examination of the academic litera-
ture, or indeed popular press will confirm the self-evident
fact that quality software artifacts emerge only rather rarely,
given real resource constraints and the complexities of or-
ganizational needs, implementation tools, methodologies,
paradigms and of course their changing industrial contexts
of use. Behind this seemingly intractable problem (how to
embed quality attributes within software as the norm, rather
than the exception) it can be reasonably claimed that two
modern day strategies now play a major role in IT sys-
tem design and implementation. Firstly, the UML-based,
Model-Driven approach [23], [31], [30] that provides soft-

Marianne Huchard
Université Montpellier 11
Montpellier, France
huchard @lirmm.fr

Thomas Preuss
FH Brandenburg
Brandenburg, Germany
th.preuss @ googlemail.com

ware production with models, supported by notations, and
diagrammatic visualizations that ensure that the system is
explicitly designed before it is built, i.e. before the code is
generated either automatically using the designs as input(s)
or otherwise manually using the designs as templates and
points of reference. On the other hand, partly as a reaction
to what some have claimed to be “overly structured” pro-
cesses inherent to the UML driven approach, agile methods
exemplified by groups such as the Agile Alliance [1] seek
to move the focus from a semi-formal design and notation
driven approach to softer and dynamical organizational is-
sues such as the need to engender active customer collab-
oration, use of rapid development software tools, and the
need to develop systems in a totally flexible reactive and
timely manner.

At first glance, these two software engineering strate-
gies may seem to be either partially or fully incompatible.
However a closer examination reveals a more subtle picture
whereby integration of the two approaches has been advo-
cated for example by Rumpe [28], who proposes a prag-
matic approach to link agile methods with the UML model-
based software development. Essentially, Rumpe suggests
that the UML can play a supporting role within an agile ap-
proach by assisting with requirements capture, refinement,
in early design documentation, as well as playing a later
and vital role in code generation and test case definition
(see also [29]). Recent advances in the automatic genera-
tion of code, namely the concept of an executable UML [19]
suggest that what many traditional programmers might con-
sider to be classical program coding activities using Java,
C#, C++, et al., will be largely replaced by producing UML
models where the expected behavior of the objects is pre-
determined via the Object Constraint Language [17], rather
than determined by a human interpretation of a set of func-
tional requirements or other notations, and documentation.
Ideogramic to cite but one prominent Company active in
this field, has for instance developed a gesture based dia-
gramming tool, Ideogramic UML (TM), which allows users
to sketch UML diagrams, explicitly promoting the use of

their visualization tool within agile methods such as XP,
Crystal and DSDM [32, 12].

Hence, there may indeed be good pragmatic reasons to
suggest that the UML will continue to play a significant role
within the agile software development community. How-
ever, while the UML is self-evidently founded on the con-
cept of Object Orientation it is also intimately linked re-
liant upon the object oriented programming paradigm it-
self. Hence, the UML is de facto ultimately constrained
by the object-oriented programming features provided in
widely used contemporary programming languages as Java,
C#, C++ et al. In this context, the question raised here is
whether the languages themselves may be too restrictive
in their instantiation of the object oriented paradigm. In
particular, it can be observed that the basic language con-
structs in these common languages may be far too restric-
tive to adequately address various heterogeneous demands
that arise from prototyping, method deprecation, and specif-
ically, support for the dynamic change of inheritance rela-
tionships at run-time program execution. These demands
can be best served in a unified way via the concept of shad-
ows [6].

We will show in Section 3 that a language with shad-
ows as a core feature is strongly supportive of Agile Soft-
ware Development strategies. Whilst shadows are tailored
specifically to support Agile Software Development, it is
perhaps also self-evident in view of the previous discus-
sion regarding the future integrative approach many are now
adopting to UML and agile methods that it is also necessary
to demonstrate how to introduce this feature into the UML
notation. In that situation shadows will provide a construct
that truly integrates Agile Development and the UML.

The remainder of the paper is organized as follows. In
the next section we give an introduction into the concept of
shadows. This is followed in Section 3 by a brief discussion
how shadows serve to enhance agile development. The in-
tegration of shadows into the UML is then demonstrated in
Section 4 which is followed by a conclusion.

2. Shadows as a Programming Language Fea-
ture

The term shadow has been coined by the interpreted
language LPC [26] that has been created in 1988 by Lars
Pensjo (and later further developed by other contributors)
for his invention LPMUD, an interactive multi-user envi-
ronment mainly used for text based multi-user adventure
games, so called “MUDs”.

The core concept behind the shadow functionality is to
mask one or more methods in a target object (the “shad-
owed” object) [8]. Every invocation of a shadowed method
is first received by the shadow. The shadow can then for-
ward this call to the shadowed object or do something else.

This is illustrated in Figure 1. A shadow object as shown
in Figure 1 is able to intercept the method display () so
that any such message call to jack is first dealt with in the
CaterpillarShadow object.

:VirtualFarm ‘ jack:Lepidoptera’ﬂ
‘ :CaterpillarShadow
display() H
eat() f

Figure 1. “Enhanced” Sequence Diagram il-
lustrating the shadow functionality. The
message display () is intercepted by the
shadow :CaterpillarShadow. The mes-
sage cat () is not shadowed and hence is re-
ceived by jack the lepidopteran.

The evolution of LPC has been highly pragmatic driven
by the demand of the active programmers in various MUDs
rather then by a systematic, academically based, concept
for designing a programming language. The shadow con-
cept in LPC must be seen in this context: It has been proven
to be useful “as is” but it has merely been evaluated aca-
demically. Indeed the programming “methodology” used
in MUDs has aspects that can easily identified with pro-
fessional agile development — in particular the progressive
elaboration of software is an inherent feature in these MUDs
as “playing the game” happens in parallel and cannot be
separated from “further development of the underlying soft-
ware”.

Typical examples in computer games are special clothes
such as an “invisibility cloak” that hides a player from oth-
ers when worn. This invisibility cloak would then setup a
shadow on the player object that, for instance, shadows the
method that returns the description of the player. Called
from another object (e.g. a different player) the shadow
would then return something like “There is nothing to see
there” instead of the real description. In general shadows
are a useful feature wherever dynamic change of behavior
is to be added to an otherwise pre-determined library.

Obviously such a concept needs clarification in a number
of issues, for instance if attributes are shadowed, or which
object is allowed to add shadows to other objects etc. On
the programming language level these issues have been dis-
cussed in [6] and we will explicitly address them in Sec-
tion 4.2 in the context of the UML.

A Java package that implements shadows can be found
on the web site [5] that also contains a number of examples.
It extends the idea of shadowing objects in LPC to the con-

cept of shadowing classes: A shadow of a class means that
a shadow is added to every object that is instantiated from
this class. In order to use the shadow functionality a special
compiler is necessary that is also available on [5].

It should also be mentioned that the concept of “Posing”
in Objective-C is somehow similar to shadows in LPC with
the difference that “posed” methods change behavior only
in subclasses of the “posed” class. A good introduction of
the posing concept can be found in [16].

3. Shadows as a core feature to support agile
development

For a number of agile strategies we can identify similar
generic situations as described in the previous section where
existing classes are to be enhanced by means of, say, cus-
tomer feedback. For instance in Adaptive Software Devel-
opment [15] each development cycle contains a ”Specula-
tion” phase (a form of adaptive planning) where it is essen-
tial to explore alternative solutions in so called joint applica-
tion development sessions where developer and customers
decide on desired product features. Shadows are also use-
ful for prototyping during the Exploration phase of XP [2].
Equally, they allow for dynamic adaptation of features of
classes of existing software libraries which is desirable in
Feature Driven Development [25] .

In the following we want to focus on four areas where
shadows can facilitate implementation tasks. While the first
two ones (prototyping and deprecating) are common tasks
in most agile methodologies, the latter two, namely inter-
classing and reclassification will be shown to be useful in
agile context as well. Only the fact that these two latter fea-
tures are neither available in most major programming lan-
guages nor are they commonly used in the UML itself may
have prevented them to play any major role in current soft-
ware engineering practice. Here, the integration of shad-
ows in the modelling process could well initiate a change of
thinking.

In the following we give only a broad overview - for de-
tails we refer the reader to [6] and [7]. It should however
be noted that in contrast to the existing solitary solutions
that currently exist and are referenced below shadows com-
prise a unified approach that serves a diversity of applica-
tions such as deprecating methods, prototyping, reclassifi-
cation, interclassing and other concepts involving dynamic
change of the behavior of classes and objects.

Deprecated methods. Not only in agile contexts soft-
ware libraries are under constant evolution and it is a matter
of fact that methods over time are subject to replacement by
other methods for a variety of reasons. However, existing
legacy code often still uses these deprecated methods. A
shadow system could help the provider of the software to
separate an object in an “official” version that is not messed

up with any deprecated methods and a shadow for this ob-
ject that contains deprecated methods. Hence the overhead
of having the additional method is only locally where the
deprecated method is needed.

Prototyping. Similar as shadows could be used for “fad-
ing out” deprecated methods, shadows could also be used
for prototyping in software development. Especially in the
case that a development process starts from an existing li-
brary and it is vital that the library is not to be changed (or
that it is not possible to change the library for instance be-
cause of, say, that it is bought from an external supplier or
because of copyright issues). A shadow then temporarily
changes the behavior of a class or object in a well defined
situation during development. We could even imagine an
integration of automatically applied shadows into a concur-
rent version system (eg. CVS) that would help to implement
branching in software development.

Reclassification and Dynamic Inheritance. Reclassifi-
cation and a special case of it, dynamic inheritance, means
to change the class of an object at run-time. It is not a
coincidence that the reclassification example in [11] is lo-
cated in the context of a computer game: A Player that is
(an instance of) a Frog is reclassified to a Prince after be-
ing kissed. As already mentioned in Section 2 interactive,
multi-user computer games where the development of the
game is inherently weaved into “using” (i.e. playing) the
game excellently mirror agile development methods.

It should be noted however that dynamic inheritance is
not a new feature. A work-around is already discussed in
[9] and role assignment via dynamic classification is advo-
cated in [24]. Automatic reclassification based on the value
of predicates is implemented as predicate classes [3] in Ce-
cil [4]. In [18] a Java extension featuring Dynamic Inher-
itance is proposed while the most consequent approach for
reclassification can be found in Fickle (e.g. [13, 14] and

[11]).

Interclassing. For a motivation of interclassing we refer
to [27, 10] (in a general context), or [6] (in a mathematical
context). In general interclassing denotes the insertion of
a new class in an existing inheritance hierarchy. This usu-
ally happens in a situation where the inheritance hierarchy
to be modified is in the context of an existing library that
cannot be changed (for instance because of a copyright or
that it has to be left unchanged for existing applications etc).
Interclassing is a useful feature in methodologies that advo-
cate some kind of incremental or staged development as it
allows to systematically “build up” software from stage to
stage by adding new classes in any position of a given class
hierarchy while at the same time keeping an intact library at
any given stage. The implementation of interclassing with
shadows has been discussed in [6].

4. Enhancing the UML with Shadows

As we have seen in Section 3 shadows are an invalu-
able means to enhance the unanticipated evolution of writ-
ten programs in particular in reference to interclassing,
dynamic instance reclassification, method deprecation and
prototyping. In the context of model-driven development
however they are as well valuable for solving Design-To-
Code problems in the sense that shadows help to trans-
late almost unconstrained models (unconstrained because
they use the richness of expression of UML) into pro-
grams written in a family of current, widespread program-
ming languages (Java, C#, C++ to name but a few) with
strong constraints. Typically those constraints include sin-
gle inheritance, static structure of the inheritance hierar-
chy, poor naming strategy for attributes and methods, no
multi-instantiation, no dynamic reclassification. By extend-
ing these languages with the single new feature of shadows
(as shown in [6] for Java) a much richer variety of models
can be implemented.

However with the increasing tendency to develop soft-
ware driven by modeling in even agile contexts it is clear
that shadows must be somehow integrated into the UML it-
self. An UML-based notation for shadows (from now on
called Shadows-UML) is useful both for unanticipated evo-
lution (as described in Section 3) and design-to-code trans-
lation. For the latter these Shadows-UML diagrams will
specify the use of shadows in translating an unconstrained
UML class diagram (independently of a specific program-
ming language). Only after this, code will be written. In
this context patterns of use of shadows can be defined for
easing translation.

4.1 Dynamic Classification in the Lepi-
dopteran Example

In the left of Figure 2 we present the lepidopteran as
a classical example of the so-called “dynamic classifica-
tion” [20]: An instance of Lepidopteran is to change
dynamically (at run time) its subclass. The lepidopteran
starts its life as a caterpillar, then becomes a chrysalis and
finally a butterfly. The proposed model here is a well de-
fined and correct UML representation since at any given
time the lepidopteran set is divided into chrysalis, caterpil-
lars and butterflies. A consequence of this representation
is that an instance of Caterpillar may evolve, when
the system runs, to become an instance of Chrysalis.
Current main-stream programming languages cannot man-
age such a situation except destroying the first instance and
creating the second one, but then the identity of objects in
the system is not ensured. In the classical case the UML
(analysis level) model has to be transformed into another
(design level) model to conform to the target programming

language. This is known in Model-Driven Engineering as
a PIM to PSM (Platform Independent Model to Platform
Specific Model) model transformation.

In Figure 2 (right and bottom) we see how specialization
has been replaced by the association hasTheForm, a usual
bypass used to manage dynamic specialization, except that
here the association has the stereotype shadowableBy,
meaning that an instance of the class Chrysalis acts as a
shadow for jack the lepidopteran: jack now has new at-
tributes (e.g. thickness of the cocoon) and methods (sleep-
ing) coming from class Chrysalis. The deep semantics
of instances is changed (as we will describe in detail later
in the definition of Shadows-UML): The set of properties
of a shadowed instance is enhanced by the set of properties
of the shadow and messages sent to jack are filtered and
(possibly) dealt with by the chrysalis shadow.

4.2 Shadows-UML

We have chosen to extend the UML in the standard way
by providing a profile, composed of stereotypes, tagged val-
ues and constraints that specify the new semantics follow-
ing the UML superstructure specification [21]. This has
obvious advantages against the two other alternative ways
namely defining a new meta-model using the MOF spec-
ification [22], which would require the redefinition of the
whole language or the extension of the UML meta-model
by means of specialization which is generally uncommon.

The new profile has already been introduced intuitively
in the previous section in the example on dynamic classifi-
cation. We go on to discuss some more details.

Two stereotypes are defined for classes:
<<Shadowable>> for classes whose instances
are able to admit shadows and <<Shadow>> for
classes that describe shadows. Similarly, two stereo-
types are also defined for instances because shadows
are operational at the instance level. The stereotype
<<ShadowedInstance>> is associated to an instance
that is masked by one or more shadow instances (which
themselves are of stereotype <<ShadowInstance>>).
We also define the stereotype <<ShadowableBy>> for
associations that relate shadowable objects and their shad-
ows. Finally the stereotype <<nomask>>> is reserved for
operations that are not allowed to be shadowed. Experience
shows that this feature is often useful to secure the integrity
of core functionality of objects.

The constraints that ensure the well-formedness of mod-
els including shadows are as follows.

1. The classifier of a <<ShadowedInstance>>

(resp. <<ShadowInstance>>) 1is a
<<Shadowable>> class (resp. a <<Shadow>>
class).

Lepidopteran
VAN

{complete, disjoint} :Forms

‘ Chrysalis ‘

‘ Caterpillar ‘ ‘Bullerﬂy ‘

jack:Chrysalis

Standard UML notation

<<Shadowable>>
Lepidopteran

<<shadowableBy>>
hasTheForm
-

<<Shadow>>
Form
[| \

<<Shadow>> <<Shadow>> <<Shadow>>
Chrysalis Caterpillar Butterfly

<<ShadowedInstance>>
Jack:Lepidopteran

<<shadowableBy>>
hasTheForm

[<<ShadowInstance>>

L]

Lepidopteran

Chrysalis

Proposal for Shadows—UML (notation with icons)

depth=1
substitutable=true

<<ShadowInstance>> -
:Chrysalis -

Proposal for Shadows—UML (notation with explicit stereotypes)

Figure 2. Lepidopterans in UML (left) and Shadows-UML (right)

2. If an instance admits several shadows, these shadows
are totally ordered (tag depth indicates this order).
Values of the tag depth for shadows associated with
a shadowed instance form a totally ordered set (no re-
peated values).

3. The shadowableBy association is binary: it
connects a <<Shadowable>> class with a
<<Shadow>> class.

Finally we define the constraints about the new added
semantics.

1. As specified in the UML meta-model, an instance has
one slot per structural feature of its class, including
inherited features. In addition, a shadowed instance
owns the slots of its shadows.

2. To a shadowed instance messages can be sent that cor-
respond to operations owned by its class or to opera-
tions owned by the classes of its shadows.

3. Features (both structural and behavioral) owned by a
shadowed instance are ordered using the depth of its
associated shadows: features of shadows come first

in the order given by the depth of the shadow (lower
numbers come first), then features coming from the in-
stance class.

5. Conclusion

Keeping in mind the current trends in software engineer-
ing there are indeed pragmatic reasons to expect the UML
to play a significant role in the agile software community.
In this paper we identified shadows, as they have been in-
troduced in LPC, to be an excellent means to support Agile
Software Development strategies. Hence the necessity has
been suggested to enhance the UML by integrating shad-
ows. In doing so, we were able to illustrate the use of shad-
ows in the UML on such ostensibly esoteric features such
as for instance interclassing or dynamic classification.

Reversely however we may as well deduce that — as such
features could be straightforwardly modeled with the help
of shadows — interclassing, dynamic classification (and as
well other features such as multiple inheritance and dy-
namic change of behavior) may well play a more central
role in Agile Development in the future and hence will be-

come less “esoteric” in mainstream software development.

We have shown that shadows are a feature that really
reflects the “spirit” of agile development methods. Hence
we feel it is necessary that they are considered a notion be-
yond any specific programming languages. Not only that
shadows enhance the design of software as they allow to
translate almost unconstraint models into programs written
in mainstream languages if these languages have been ex-
tended in a suitable way to support shadows (as in [6] for
Java), they are also particularly valuable in case of an unan-
ticipated evolution of existing software libraries. Hence we
feel that an extension of the UML in the way described
in this paper supports a desirable convergence process be-
tween model-driven and agile methodologies not least be-
cause it facilitates a PIM to PSM model transformation that
allows to derive part of the code automatically.

References

[1] Agile Alliance. Manifesto for agile software development,
2006. http://www.agilemanifesto.org.

[2] K. Beck. Extreme Programming Explained. Addison-
Wesley, 1999.

[3] C.Chambers. Predicate classes. Lecture Notes in Computer
Science, 707:268-296, 1993.

[4] C. Chambers. The Cecil language specification and ratio-
nale: Version 2.0. University of Washington, December
1995.

[5] M. Conrad. Implementing a java shadow using a jikes ex-
tension, 2004. http://www.perisic.com/shadow/jshadow.

[6] M. Conrad, T. French, M. Huchard, C. Maple, and S. Pott.
Enriching the object-oriented paradigm via shadows in the
context of mathematics. Journal of Object Technology,
5(6):107-126, July-August 2006.

[7] M. Conrad, T. French, and C. Maple. Object shadowing - a
key concept for a modern programming language. In Proc
of 2nd Workshop on Object-Oriented Language Engineering
for the Post-Java Era: Back to Dynamicity, 2004.

[8] M. Conrad and M. Huchard. Enhancing the uml with shad-
ows for agile development. In Proceedings of SE2007, Ham-
burg (to appear), 2007.

[9] 1. Coplien. Advanced C++ programming styles and idioms.
Addison-Wesley, 1992.

[10] P. Crescenzo and P. Lahire. Using both specialisation and
generalisation in a programming language: Why an how,
2002.

[11] E Damiani, M. Dezani-Ciancaglini, and P. Giannini. On
re-classification and multithreading. JOT-04, 3(11):5-30,
2004.

[12] C. H. Damm, K. M. Hansen, and M. Thomsen. Tool support
for cooperative object-oriented design: gesture based mod-
elling on an electronic whiteboard. In CHI ’00: Proceedings
of the SIGCHI conference on Human factors in computing
systems, pages 518-525, New York, NY, USA, 2000. ACM
Press.

[13]

(14]

[15]

[16]

(17]

(18]

[19]
[20]
(21]

(22]

(23]

[24]

[25]
[26]

(27]

(28]

[29]

(30]

(31]

(32]

S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini,

and P Giannini. Fickle: Dynamic object re-
classification. In Electronic proceedings of FOOLS8
(http://www.cs.williams.edu/ kim/FOOL/), 2001.

S. Drossopoulou, F. Damiani, M. Dezani-Ciancaglini, and

P. Giannini. Fickle: Dynamic object re-classification. In
ECOOP’01, LNCS 2072, pages 130-149. Springer, 2001.

J. A. Highsmith. Adaptive Software Development: A Col-
laborative Approach to Managing Complex Systems. Dorset

House Publishing, 2000.

A. Isbell. Objective-c posing and categories in rhapsody de-
velopment — a real-world example. Technical report, Step-

wise, 1998.

A. Kleppe, J. Warmer, and S. Cook. Informal formal-

ity? the object constraint language and its application in

the uml metamodel. In Selected papers from the First
International Workshop on The Unified Modeling Lan-

guage <<UML>>"98, pages 148—161, London, UK, 1999.
Springer-Verlag.

G. Kniesel. Darwin & and lava — object-based dynamic in-
heritance ... in java, 2002. Poster presentation at ECOOP

2002.

S.J. Mellor and M. Balcer. Executable UML: A Foundation

for ModelDriven Architectures. Addison-Wesley, 2002.

P.-A. Muller and N. Gaertner. Modlisation objet avec UML.
Eyrolles, 2000.

Object Management Group. UML 2.0 Superstructure Spec-
ification. ptc/04-10-02, October 2004.

Object Management Group. Meta object fa-

cility (mof) 2.0 core specification, 2006.
http://www.omg.org/technology/documents/formal/MOF_Core.htm.
Object Management Group. Uml®) resource page, 2006.
http://www.uml.org.

J. Odell, H. V. D. Parunak, S. Brueckner, and J. A. Sauter.
Changing roles: Dynamic role assignment. Journal of Ob-

Jject Technology, 2(5):77-86, 2003.

S. R. Palmer and J. M. Felsing. A Practical Guide to
Feature-Driven Development. Prentice-Hall, 2002.
L. Pensjo et al. Lpc,
http://www.lysator.liu.se/mud/lpc.html.

P. Rapicault and A. Napoli. Evolution d’une hirarchie de
classes par interclassement. Confrence Langages et Modles
Objets - LMO 2001, Le Croisic France - publi dans la revue
I’Objet (Hermes Eds), 7(1-2):215-232, 24-26 janvier 2001.
B. Rumpe. Agile modeling with the uml. In RISSEF, pages
297-309, 2002.

B. Rumpe. Agile test-based modeling. In Proceedings of
the 2006 International Conference on Software Engineering
Research & Practice. SERP’2006.s, USA, 2006. CSREA
Press.

J. Siegel and OMG Staff Strategy Group. Model-Driven Ar-
chitecture. OMG document omg/2000-11-05. Object Man-
agement Group, 2000.

J. Siegel and OMG Staff Strategy Group. Develop-
ping in OMG’s Model-Driven Architecture. OMG document
omg/2000-11-05. Object Management Group, 2001.
I. Tyrsted and P. Gerken. Ideogramic,
http://www.ideogramic.com.

1998.

2002.

