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HIERARCHICAL FUZZY SETS 
TO QUERY POSSIBILISTIC DATABASES. 

 

ABSTRACT 
 

Within the framework of flexible querying of possibilistic databases, based on the fuzzy set 

theory, this chapter focuses on the case where the vocabulary used both in the querying 

language and in the data is hierarchically organized, which occurs in systems that use 

ontologies. We give an overview of previous works concerning two issues: firstly, flexible 

querying of imprecise data in the relational model; secondly, the introduction of fuzziness in 

hierarchies. Concerning the latter point, we develop an aspect where there is a lack of study in 

current literature: fuzzy sets whose definition domains are hierarchies. Hence we propose the 

concept of hierarchical fuzzy set and present its properties. We present its application in the 

MIEL flexible querying system, for the querying of two imprecise relational databases, 

including user interfaces and experimental results. 

INTRODUCTION 
 

In flexible querying systems, fuzzy sets are used to represent preferences in selection criteria. 

For instance, in the framework of a database about microbiological risk assessment in foods, 

the users may ask for milk as a first choice or yogurt as a second choice. In possibilistic 

databases, an imprecise datum is represented by a possibility distribution. For instance, in 

some kinds of human diseases, the bacterium Escherichia coli is suspected to be responsible, 

but other bacteria like Listeria are not excluded. Behind those two different purposes, the 

same homogeneous formalism is used: the fuzzy set theory. In both cases, a relation order is 

defined on a domain of values. In this chapter, we study the case when the domain of values is 

not “flat” but hierarchically organized, using the “kind of” relation. For instance, food 

products, like milk or yogurt, are part of a hierarchy of substrates, in which whole milk is a 

kind of milk. In the same way, the bacteria Escherichia coli and Shigella are part of a 

hierarchy of microorganisms. We call a fuzzy set defined on a hierarchy, a hierarchical fuzzy 

set (HFS). Contrary to the classical case when the domain of values is “flat”, in this case, the 

assumption that the values are independent does not hold. Two order relations (the 

preference/possibility order relation and the “kind of” relation) must be put in adequacy. 

Several issues thus have to be addressed: 

 Does the preference/possibility degree associated with a given value in a fuzzy set 

have implications on the degrees associated with other values of the domain, 

particularly more specific or more general values? 

 What would be the meaning of two comparable values (with the meaning of the “kind 

of” relation) associated with different preference/possibility degrees? 

 Can the “kind of” relation be used to enlarge the user’s query in order to obtain more 

answers while respecting the preference order defined by the user in the selection 

criteria? 

 

We have designed and realized two instances (for two different relational databases) of a 

flexible querying system, called MIEL
1
, involving hierarchical fuzzy sets. Both databases 

contain imprecise data and deal with risk assessment in food, respectively microbial risk and 

chemical risk. 

                                                 
1
 MIEL is a french acronym for Extended Database Search Tool 
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The need for flexible querying, imprecise data representation and studying fuzzy sets when 

the domain of values is hierarchically organized is justified, in both databases, by three 

characteristics of the data: 

 Although composed of several thousand entries (ten for the microbial database and 

fifty for the chemical database), data are not abundant enough to answer every query 

and therefore there is a need for flexible querying in order to complement exact 

answers with pertinent answers (i.e. semantically close). 

 Data include imprecise values. For instance, the level of contamination of a given food 

by a given contaminant is not precisely known but is included in a given interval or is 

inferior to a given threshold. 

 Symbolic data are often organized in taxonomies: for example, taxonomies of food 

products (Ireland & Moller, 2000), of bacteria (Balows et al., 1992), … 

 

The MIEL fuzzy querying system has been especially designed for end-users who are not 

specialists of computer science. They express their query through a set of pre-written queries 

we call views. These views can be complemented by the users through the simple graphical 

user interface of the MIEL system. That interface allows the users to specify their projection 

attributes and their selection criteria. The taxonomies of the symbolic data can also be 

browsed by the end-users in order to express their selection criteria as hierarchical fuzzy sets. 

 

In this chapter, firstly we provide some background on the topic and recall some broad 

definitions useful for understanding the main focus of the chapter. Secondly, we define and 

explain the concept of hierarchical fuzzy set and compare it to the bibliography. Thirdly, we 

present the MIEL flexible querying system which uses the concept of hierarchical fuzzy set. 

Fourthly, the instantiations of the MIEL system for the querying of two imprecise databases in 

the field of risk assessment in food are presented and we give some experimental results. 

Fifthly, current projects and future trends are presented. We conclude this chapter in the last 

section. 

BACKGROUND 
 

The bibliography is two-fold: we are concerned in this chapter with the combination of two 

topics, firstly, flexible querying of imprecise data, which includes flexible querying 

techniques, the representation of imprecise data, and the combination of both previous topics 

in the framework of the relational model; secondly, the introduction of fuzziness in 

hierarchies. We will finish this section by recalling the basics of fuzzy sets required to 

understand this chapter. 

 

Flexible querying of imprecise data 

Flexible querying techniques 

 

The classical implicit assumption in database management systems is the Closed World 

Assumption: a fact which is not present in the database is assumed to be false. For example, 

let us consider the following facts stored in a given database: “Whole milk is contaminated by 

Listeria and Salmonella” and “Skim milk is contaminated by Escherichia Coli”. The query 

“Which are the contaminants not present in whole milk ?” will retrieve “Escherichia Coli”. 
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This assumption is embarrassing because, in real applications, it is often impossible to gather 

all the available information on a given subject. For example, in the field of risk assessment in 

food, it is difficult to gather information, in particular because of confidentiality problems. 

Consequently, it is important to be able to “relax” the Closed World Assumption in order to 

consider that the lack of answer does not mean that the answer is negative but is somewhat 

unknown: it corresponds to the Open World Assumption (OWA). It comes to consider that a 

database can be incomplete and that some queries may have an empty answer as a result. To 

avoid this drawback, one may propose to the user: 

 Querying tools which retrieve information which is semantically close from the 

database, 

 Models, parameterized with semantically close information found in the database, to 

estimate lacking information. 

 

The first proposal, which is the one we consider in this chapter, has been studied in two 

different ways: by the expression of preferences in the selection criteria of a query and by the 

generalization of the selection criteria. Those mechanisms permit one to complement an exact 

answer, potentially empty, with semantically close answers which have been judged pertinent. 

 

In the first family of approaches, the querying system does not check if information stored in 

the database verifies a selection criterion, but to which extent it somehow satisfies the 

selection criterion. It implies an order of the answers. Three kinds of works have been 

proposed to solve this problem: the use of secondary criteria in Lacroy & Lavency (1987), the 

definition of similarity distances (Ichikawa & Hirakawa, 1986; Motro, 1988), and the 

expression of linguistic preferences in Rabitti & Savino (1990). It has been shown (Bosc & 

Pivert, 1992; Bosc et al., 1994) that all those propositions can be restated in a unique 

formalism: the expression of preferences by fuzzy sets. This formalism permits the user to 

distinguish ideal values from acceptable values for a given criterion. A pertinence degree is 

associated with each answer corresponding to the query: it measures the adequation degree of 

the answer to the fuzzy selection criteria of the query. 

 

In the second family of approaches, the query is modified to become more general (Motro, 

1984). Consequently, the querying system retrieves the exact answers completed by other 

pertinent answers. In a first category of works, a hierarchy of concept is used to generalize the 

query when the answer is empty (Fargues, 1989; Bidault et al. 2000). In a second category of 

works, when the selection criterion is expressed by a fuzzy set, several techniques have been 

proposed to generalize it. Dubois & Prade (1995) propose to use a similarity relation defined 

on the domain of values. If the fuzzy set is defined on a numerical domain, Bosc et al. (2004) 

propose a fuzzy generalization operator using a proximity relation between two values based 

on the calculus of their quotient. 

 

Directed by applications in the field of risk in food where information is structured according 

to hierarchical symbolic data, we propose to gather both families of approaches which are 

complementary. We will develop this idea in the concept of hierarchical fuzzy set presented in 

the main focus of the chapter. 

Representation of imprecise data 

 

In the context of database management systems, Codd (1979) has been one of the first to take 

into account the notion of imprecise datum in the framework of the relational model. He 

introduced the concept of null value representing the value of an attribute which is unknown 



13/11/201525/05/2007    page 5/33 

or has no sense in the record where it is stored. Lipski (Lipski 1979, Lipski 1981) has 

extended Codd’s approach which was binary (complete knowledge or complete ignorance) in 

order to be able to express partial knowledge. He introduced the notion of plausible values 

represented by an exclusive disjunction of possible values. The theory of possibility (Zadeh 

1978) has been used in the framework of the relational model by Prade (1984) and Prade & 

Testemale (1984) to extend Codd’s and Lipski’s approaches by introducing an order on the 

possible values. In our system, we propose a representation of imprecise data in the relational 

databases based on the theory of possibility, close to the representation used in FSQL 

(Galindo et al. 1998). 

Fuzzy querying in the framework of the relational model 

 

The expression of queries using fuzzy values has already been studied in the framework of the 

relational database model. Theoretical studies have been proposed to extend the SQL 

language by introducing fuzzy predicates processed on crisp information (Bosc & Pivert, 

1995) and implementations have been proposed such as the FQUERY97 system (Zadrozny & 

Kacprzyk, 1998) under the QBE-like Microsoft Access graphical environment and the FSQL 

system (Galindo et al., 1998) under Oracle Relational Database Management System 

(RDBMS). Moreover, as the FSQL system permits the representation of imprecise data, its 

querying system is able to compare a fuzzy predicate with an imprecise datum. In those 

previous works, the user has to build himself the query flexibility: for instance, in FSQL, the 

user has to specify in his query whether he is using a fuzzy join or a standard one. Those 

systems are more or less dedicated to computer science specialists even if FSQL system, for 

example, interprets some fuzzy concepts as “approximate”, “interval”, “crisp” in a very 

understandable way. As we mentioned in the introduction, the aim of our system is to help 

any user to make a fuzzy query against a database schema. This is the reason why we have 

decided to develop our own fuzzy querying system, MIEL, which will be presented in the 

main focus of this chapter. 

 

Introducing fuzziness in hierarchies 

 

Introducing fuzziness in a hierarchy can be seen in different ways. In our concern, the issue is 

to be able to define an order relation – represented by degrees that express preferences or 

possibility – on a hierarchically organized set of elements, on which a relation order is thus 

already defined by the “kind of” relation. The aim is thus to properly define, and reason with, 

a fuzzy set whose definition domain is a hierarchy. This issue is not trivial since the degree 

associated with an element must be coherent with those associated with sub-elements or 

super-elements, and there is currently a lack on this subject in the literature. 

 

In the bibliography concerning fuzzy methods, we have identified three main categories of 

papers which present some similarities; two are quite distant from our concern and the third 

one is closer to our concern and confirms some of the ideas we propose in this chapter. We 

can distinguish, especially in recent research: 

 the use of linguistic labels in ontologies. In studies about possibilistic ontologies 

(Loiseau et al., 2005), each term of an ontology is considered as a linguistic label and 

has an associated fuzzy description. Fuzzy pattern matching between different 

ontologies is then computed using these fuzzy descriptions. This approach is related to 

those concerning the introduction of fuzzy attribute values in the object model 

(Rossazza et al., 98); 
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 the use of fuzzy relations between the terms of a thesaurus. Studies about fuzzy 

thesauri have discussed different natures of relations between concepts, where 

relations are gradual and moderated by degrees. Fuzzy thesauri have been considered 

for instance in Miyamoto (1986) and De Cock (2004). In this approach, a query 

composed of a set of terms is enlarged to similar terms thanks to fuzzy pseudo-

thesauri. Similarity is based on the co-occurrence frequency of terms in a given set of 

documents. 
 

 The use of a fuzzy conceptual structure for document indexing and user query 

expressing in the framework of information retrieval (Boughanem et al. 2004, Baziz et 

al. 2006). The conceptual structure is hierarchical and it encodes the knowledge of the 

topical domain of the considered documents. In this approach, the evaluation of 

conjunctive queries is based on the comparison of minimal sub-trees containing the 

two sets of nodes corresponding to the concepts expressed in the document and the 

query respectively. 

 

However in our context the terms of the hierarchy and the relations between terms are not 

fuzzy as in the two first categories of papers. Therefore, we could not inspire from those 

works to solve the questions we mentioned at the beginning of the introduction. We found 

more analogies with the third category of papers where the terms of the hierarchy and the 

relations between terms are not fuzzy as in our approach. Even if the interpretation of the 

weights are different and therefore leads to a different evaluation procedure, these authors 

show that the completion of the fuzzy sets representing the query and the document 

description, using the “kind of” relation of the conceptual structure, lead to better results. This 

idea is close to the notion of generalization of HFS we will present in this chapter. 

 

Basics of fuzzy sets  

 

We briefly present fuzzy sets, which will be used in the following to represent the required 

values in a flexible query or the possible values in an imprecise datum. We also introduce 

comparisons between fuzzy sets that will be used to compare an imprecise datum to a flexible 

query. Fuzzy sets (Zadeh, 1965) were introduced to represent concepts that are not strictly 

delimited, like “young” or “far” for instance. Unlike the case of a classic set, an element may 

belong partially to a fuzzy set. 

 

Definition 1: A fuzzy set A on a domain X is defined by a membership function A  from X to 

[0, 1] that associates the degree to which x belongs to A with each element x of X . 

 

The domain X may be continuous or discrete. Figure 1 presents two examples: the fuzzy sets 

ProductPreferences and ResponsibleBacterium. They are also denoted, respectively, 1/Milk + 

0.5/Yoghourt, and 1/Escherichia coli + 0.7/Shigella, which indicates the degree associated 

with each element. These fuzzy sets are user-defined, during the choice of the querying 

selection criteria (ProductPreferences), or during the entry of an imprecise datum 

(ResponsibleBacterium). 
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Figure 1 The fuzzy sets ProductsPreferences and ResponsibleBacterium 

 

In the following, we focus on two different comparisons between fuzzy sets: the inclusion 

relation, that we use to determine in a binary way whether an imprecise datum is an answer to 

a flexible query or not, and fuzzy pattern matching, which allows one to determine in a 

graduate way whether an imprecise datum somehow answers a flexible query. 

In the most commonly used inclusion relation between fuzzy sets, a fuzzy set A (in our case, 

an imprecise datum) is included in B (in our case, a flexible query) if its membership function 

is “below” the membership function of B, that is, if each element that somehow belongs to A 

belongs at least as much to B. More formally: 

 

Definition 2: Let A and B be two fuzzy sets defined on a domain X. A is included in B 

(denoted BA ) if and only if their membership functions A  and B  satisfy the condition: 

   ., xxXx BA    

 

In fuzzy pattern matching (Dubois & Prade, 1995), two scalar measures are classically used to 

evaluate the compatibility between an imprecise datum and a flexible query: (i) a possibility 

degree of matching (Zadeh, 1978); (ii) a necessity degree of matching (Dubois & Prade, 

1988). 

 

Definition 3: Let Q and D be two fuzzy sets defined on a domain X and representing 

respectively a flexible query and an imprecise datum: D is compatible with Q with the 

possibility degree  DQ,  and the necessity degree N(Q,D): 

 

 the possibility degree of matching between Q and D, denoted  DQ, , is an 

“optimistic” degree of overlapping that measures the maximum compatibility between 

Q and D, and is defined by 

 

      .,minsup, xxDQ DQXx   

 

 the necessity degree of matching between Q and D, denoted N(Q,D), is a “pessimistic” 

degree of inclusion that estimates the extent to which it is certain that D is compatible 

with Q, and is defined by 

 

      .1,maxinf, xxDQN DQXx     
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MAIN FOCUS OF THE CHAPTER 
 

In the first part of this section, we introduce the concept of hierarchical fuzzy set (HFS). Then 

in the second part, we present the MIEL flexible querying system which uses the concept of 

HFS. In the third part, we present two applications that rely on the MIEL querying system, 

including examples of Graphical User Interfaces (GUI) illustrating use-cases of the MIEL 

querying system, and experimental results. 

Hierarchical Fuzzy Set 

 

In this part, we propose a definition of a hierarchical fuzzy set (HFS) and specify its 

semantics. Then, we explain why and how we compute the closure of a HFS. Next, we extend 

the comparison operations between fuzzy sets we have recalled in the background section. We 

show that the notion of closure permits to group hierarchical fuzzy sets in equivalence classes 

and that each equivalence class has a unique representative, called minimal. Finally, we 

propose a method of generalization of a HFS based on the minimal HFS. 

Definition and semantics 

 

For a given selection attribute, if its domain of values is hierarchized, users always express 

their preferences on a subset of the domain. Indeed, they only choose the elements they are 

interested in and implicitly consider that: (i) the elements more specific than those they have 

chosen must be taken into account by the system, (ii) the other elements must not be taken 

into account (as the non-comparable elements for example). In the following, we say that an 

element elt of the domain is more general than an element elt’ (denoted by elttel  ) if elt’ is 

a predecessor of elt in the partial order induced by the hierarchy. An example of such a 

hierarchy is given in Figure 2 (for instance SubstrateMeat ). 

 

 
Figure 2 Example of a hierarchy 

 

A hierarchical fuzzy set is then defined as follows. 

 

Definition 4: A hierarchical fuzzy set (HFS) is a fuzzy set whose definition domain is a 

subset of the elements of a finite hierarchy partially ordered by the “kind of” relation. 
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Example 1: The example of HFS shown in Figure 3 has for definition domain the set of 

elements {Whole milk, Half-skim Milk, Skim milk} which is a subset of the set of the 

elements belonging to the hierarchy presented in Figure 2. This HFS may also be noted 

1.0/Whole milk + 0.9/Half-skim milk + 0.8/Skim milk. 

 

Whole milk Half-skim milk
0

0.9

1

0.8

Skim milk

 
Figure 3 Example of a HFS 

 

We can note that no restriction has been imposed concerning the elements that compose the 

definition domain of a hierarchical fuzzy set. In particular, the user may associate a given 

degree d with an element elt and another degree d' with an element elt' more specific than elt. 

dd   represents a semantic of restriction for elt' compared to elt, whereas dd   represents 

a semantic of reinforcement for elt' compared to elt. 

 

For example, if there is a particular interest in Skim milk because the user studies the 

properties of low fat products, but also wants to retrieve complementary information about 

other kinds of milk, these preferences can be expressed using for instance the following fuzzy 

set: 1/Skim milk + 0.5/Milk. In this example, the element Skim milk has a greater degree than 

the more general element Milk, which corresponds to a semantic of reinforcement for Skim 

milk compared to Milk. On the contrary, if the user is interested in all kinds of milk, but to a 

lesser extent in Condensed milk because of its smaller water content, the preferences can be 

expressed using the following fuzzy set: 1/Milk + 0.2/Condensed milk. In this case, the 

element Condensed milk has a smaller degree than the more general element Milk, which 

corresponds to a semantic of restriction for Condensed milk compared to Milk. 

 

Closure 

 

We can make two remarks concerning the use of hierarchical fuzzy sets: 

 

 the first one is semantic. Let 1/Skim milk + 0.5/Milk be an expression of preferences in 

a query. We can note that this hierarchical fuzzy set implicitly gives information about 

elements of the hierarchy other than Skim milk and Milk. For instance, one can deduce 

that the user does not expect results concerning products like meat or vegetable, even 

if the degree 0 has not explicitly been associated with these products. One may also 

assume that any kind of skim milk (sterilized, pasteurized, raw skim milk for example) 

interests the user with the degree 1; 

 the second one is operational. The problem rising from Definition 4 is that two 

different fuzzy sets on the same hierarchy do not necessarily have the same definition 

domain, which means they cannot be compared using the classic comparison 

operations of fuzzy set theory (see Definitions 2 and 3). For example, 1/Skim milk + 

0.5/Milk and 1/Milk + 0.2/Condensed milk are defined on two different subsets of the 

hierarchy of Figure 2 and thus are not comparable. 
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These remarks led us to introduce the concept of closure of a hierarchical fuzzy set, which is a 

developed form defined on the whole hierarchy. Intuitively, in the closure of a hierarchical 

fuzzy set, the “kind of” relation is taken into account by propagating the degree associated 

with an element to its sub-elements (more specific elements) in the hierarchy. For instance, in 

a query, if the user is interested in the element Milk, we consider that all kinds of Milk – 

Whole milk, Skim milk, Pasteurized milk, etc. – are of interest. On the opposite, we consider 

that the super-elements (more general elements) of Milk in the hierarchy – Milk product, 

Substrate ... – are too general to be relevant for the user's query. 

 

Definition 5: Let F be a hierarchical fuzzy set defined on a subset D of the elements of a 

hierarchy H. Its membership function is denoted F . The closure of F, denoted clos(F), is a 

hierarchical fuzzy set defined on the whole set of elements of H and its membership function 

)(Fclos  is defined as follows. For each element elt of H, let  nelt elteltE ,,1   be the set of 

the closest super-elements
2
 of elt in D (in the broad sense, i.e. eltelt i  ): 

 if eltE  is not empty,    iFniFclos eltelt   1)( max ; 

 otherwise   0)( eltFclos . 

 

In other words, the closure of a hierarchical fuzzy set F is built according to the following 

rules. For each element elt of H: 

 if elt belongs to F, then elt keeps the same degree in the closure of F (case where 

 eltEelt  ); 

 if elt has a unique smallest super-element elt1 in F, then the degree associated with elt1 

is propagated to elt in the closure of F (case where  1eltEelt   with elt1 > elt); 

 if elt has several smallest super-elements  neltelt ,,1   in F, with different degrees, a 

choice has to be made concerning the degree that will be associated with elt in the 

closure. The proposition made in Definition 5 consists in choosing the maximum of 

the degrees associated with  neltelt ,,1  . This choice is discussed in the following; 

 all the other elements of H, i.e. those that are more general than, or not comparable 

with the elements of F, are considered as non-relevant. The degree 0 is associated with 

them (case where eltE ). 

 

Example 2: Figure 4 shows an example of closure presented on the hierarchy. The elements of 

the HFS and their associated membership degree appear in bold italic. 

 

                                                 
2
 with the meaning of the « kind of » relation. 
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Figure 4 Closure of the hierarchical fuzzy set 0.8/Milk + 1/Whole milk + 0.3/Condensed milk 

 

In the hierarchical fuzzy set 0.8/Milk + 1/Whole milk + 0.3/Condensed milk of the au-

dessusabove Figure, the user has associated the degree 1 with Whole milk but only 0.3 with 

Condensed milk. The maximum of these two degrees is thus associated with their common 

sub-element Condensed whole milk in the closure. The case of Sweetened condensed milk is 

different: the user has associated the degree 0.8 with Milk but has given a restriction on the 

more specific element Condensed milk (degree 0.3). As Sweetened condensed milk is a kind 

of Condensed milk, it inherits the degree associated with Condensed milk, that is 0.3. 

 

In the case where an element elt of the hierarchy, which does not appear in the initial 

hierarchical fuzzy set, has several smallest super-elements that appear in the hierarchical 

fuzzy set with different degrees, associating the maximum of these degrees with elt in the 

closure is a choice that may be discussed. We distinguish two cases: 

 if the hierarchical fuzzy set expresses preferences in a query, the choice of the 

maximum allows us not to exclude any possible answer (the possibility and the 

necessity degrees of matching can be higher). In real cases, the lack of answers to a 

query generally makes this choice preferable, because it consists in enlarging the 

query rather than restricting it. This is actually the case in our project; 

 if the hierarchical fuzzy set represents an ill-known datum, the choice of the maximum 

allows us to preserve all the possible values of the datum, but it also makes the datum 

less specific. We chose this solution in order to homogenize the treatment of queries 

and data. In a way, it also participates in enlarging the query, as a less specific datum 

may share more common values with the query (the possibility degree of matching can 

thus be higher, although the necessity degree can decrease). 

 

We have shown in Thomopoulos et al. (2006) that computing the closure clos(F) of a fuzzy 

set F defined on a domain  H dom(F)   has a complexity in |H|.|dom(F)|
2
, provided that the 

comparison of two elements of the hierarchy can be done in constant time. Generally, the 

definition domain of F is limited to a few elements, so that the actual computing time remains 

moderate. The closure operation has been implemented in the MIEL querying system. For a 

given query, MIEL computes the closures of the HFS associated with selection attributes 

before submitting it to the RDBMS. 
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Comparisons of HFS 

 

The introduction of the concept of closure allows all the fuzzy sets that are defined on a given 

hierarchy to have the same definition domain (the whole hierarchy) and thus to be compared 

using the classical comparison operations between fuzzy sets. 

 

Definition 6: Let F1 and F2 be two hierarchical fuzzy sets defined on the same hierarchy. 

Then: 

1.    2121 FclosFclosifFF  ; 

2. the possibility degree of matching between F1 and F2,  21, FF , is defined as 

    21 , FclosFclos ; 

3. the necessity degree of matching between F1 and F2, N(F1,F2), is defined as 

N(clos(F1),clos(F2)). 

 

Example 3: We present in Figure 5 the closures of the hierarchical fuzzy sets 1/Skim milk + 

0.2/Milk and 1/Milk + 0.5/Condensed milk. The elements of the HFS and their associated 

membership degrees appear in bold italic. Their comparison shows that 1/Skim milk + 

0.2/Milk is included in 1/Milk + 0.5/Condensed milk because the membership function of the 

former associates lower degrees with every element of the hierarchy. 

 

 
 

 
 

Figure 5 The closures of the hierarchical fuzzy sets 1/Skim milk + 0.2/Milk (upper part) 

and 1/Milk + 0.5/Condensed milk (lower part). 
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Minimal HFS  

 

In the previous section, we saw that each hierarchical fuzzy set has an associated closure that 

is defined on the whole hierarchy. We now focus on the fact that two different hierarchical 

fuzzy sets, defined on the same hierarchy, can have the same closure, as in the following 

examples. 

 

The hierarchical fuzzy sets Substrate1 = 1/Milk and Substrate2 = 1/Milk + 1/Skim milk have 

the same closure: the degree 1 is associated with Milk and every more specific element, the 

degree 0 is associated with all the other elements of the hierarchy. 

 

The hierarchical fuzzy sets Substrate3 = 1/Milk + 0.8/Whole milk + 1/Pasteurized milk and 

Substrate4 = 1/Milk + 0.8/Whole milk + 1/Whole pasteurized milk have also the same closure, 

represented in Figure 6. 

 

 
Figure 6 Common closure of the hierarchical fuzzy sets Substrate3 and Substrate4. 

 

Such hierarchical fuzzy sets form equivalence classes with respect to their closures. 

 

We can note that Substrate2 contains the same element as Substrate1 with the same degree, 

and also one more element (Skim milk, with the degree 1). The degree associated with this 

additional element is the same as in the closure of Substrate1. We say that the element Skim 

milk is deducible in Substrate2. 

 

Definition 7: Let F be a hierarchical fuzzy set, with    nj eltelteltFdom ,,,,1  , and F-j 

the fuzzy set resulting from the restriction of F to the domain dom(F) \ {eltj}. eltj is deducible 

in F if     jFjFclos eltelt
j

 


. 

 

As a first intuition, we could say that removing a deducible element from a hierarchical fuzzy 

set allows one to eliminate redundant information. But an element being deducible in F does 

not necessarily mean that removing it from F will have no consequence on the closure: 

removing elt from F will not impact the degree associated with elt itself in the closure, but it 

may impact the degrees of the sub-elements of elt in the closure. For instance, the element 

Pasteurized milk is deducible in Substrate3, according to Definition 7. Removing 

1/Pasteurized milk from Substrate3 would not modify the degree of Pasteurized milk itself in 

the resulting closure, but it would modify the degree of its sub-element Whole pasteurized 
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milk (which would have the degree 0.8 instead of 1). Thus, this remark leads us to the 

following definition of a minimal hierarchical fuzzy set. 

 

Definition 8: In a given equivalence class (that is, for a given closure C), a hierarchical fuzzy 

set is said to be minimal if its closure is C and if none of the elements of its domain is 

deducible (here the term “minimal” does not have the meaning of cardinality). 

 

Example 4: The hierarchical fuzzy sets Substrate1 and Substrate4 are minimal (none of their 

elements is deducible), contrary to Substrate2 and Substrate3. 

 

We propose an algorithm, given below, to calculate a minimal hierarchical fuzzy set. We have 

proven in Thomopoulos et al. (2006) that the stopping condition of this algorithm is always 

reached and that the HFS obtained with this algorithm is minimal. Computing the minimal 

fuzzy set mnl of a given closure C defined on a hierarchy H has a complexity in 

|H|.|dom(mnl)|
2
. Moreover, we have also proven in Thomopoulos et al. (2006) that the 

minimal HFS is unique for a given closure. 

 

Calculation of a minimal fuzzy set mnl having a given closure C 

Begin     

 mnl     

 If (clos(mnl) = C) 

 Then    

  stop (case where C is the hierarchical fuzzy set that associates 

  the degree 0 with every element of the hierarchy) 

 Else    

  let lin be an order such that each element of the hierarchy 

  is examined after its super-elements (that is, a linear  

  extension of the opposite order of that induced by the 

  “kind of” relation) 

  Repeat   

   elt next element according to lin 

   If (     eltelt Cmnlclos   ) 

   Then  

     eltmnlmnl   

       eltelt Cmnl    

   Endif  

  Until (clos(mnl) = C)   

 Endif    

End     
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Generalization of a HFS  

 

Using a HFS representing preferences in a query does not guarantee to retrieve an adequate 

number of answers. A complementary solution to retrieve pertinent answers in addition to 

exact answers consists in generalizing the HFS. Approaches proposed in the bibliography to 

generalize fuzzy sets on flat domains, already presented in the background section, are not 

well-adapted to HFS. Some approaches only concern fuzzy sets defined on a numerical 

domain (Bouchon-Meunier & Yao 1992, Bosc et al. 2004). Tolerant fuzzy pattern matching 

(Dubois & Prade, 1995) uses a similarity relation between elements to enlarge the 

preferences, but it does not take into account the case of hierarchically organized domains. 

For instance, elements may be added to the support of the fuzzy set in the enlargement 

mechanism, but more specific elements than those may remain outside of it, which is a major 

drawback for hierarchical domains (see Buche et al. 2005 for more details). 

In this section, more than a unique solution, we propose a methodology in order to generalize 

a hierarchical fuzzy set expressing preferences. Firstly, we define an elementary 

generalization operation of a HFS. Then, we introduce the notion of generalization rule which 

permits to parameter the generalization of a HFS using several criteria. Finally, we propose a 

generalization operation which applies iteratively several elementary generalizations. 

 

Elementary generalization of a HFS: The elementary generalization of a HFS consists in 

creating, given a hierarchical fuzzy set F, a more general hierarchical fuzzy set Fg, with the 

meaning of the inclusion relation extended to HFS. The proof of this property can be found in 

Thomopoulos et al. (2006). 

 

Definition 9: The elementary generalization of a HFS F is an operation that creates from F a 

hierarchical fuzzy set Fg obtained by adding a super-element of an element elt of dom(F), 

denoted eltg, with a given membership degree dg. The element eltg must satisfy the following 

condition: eltg may neither be an element of dom(F) nor be more specific than any element of 

dom(F). 

 

Example 5: Let F be the following hierarchical fuzzy set: F = 1/Condensed whole milk + 

0.5/Cheese. For elt = Condensed whole milk, we consider in the hierarchy of Figure 2 the 

super-element eltg = Milk and dg = 0.2. We obtain: Fg = 1/Condensed whole milk + 

0.5/Cheese + 0.2/Milk. 

 

Generalization rule: We consider that the generalization of a HFS F essentially depends on 

three parameters: (i) which elements of F will be generalized and in which order, (ii) for a 

given element of F, which super-elements will be considered for the generalization, (iii) how 

the membership degree associated with this super-element is determined. A generalization 

rule permits to determine those three parameters. 

 

Definition 10: A generalization rule Rg is a 3-tuple (ord, gen, calc), where: 

 ord is a total traversal order through the elements of a hierarchical fuzzy set F, defined 

on a hierarchy H; 

 gen is a mapping that associates a set of more general elements in H with each element 

elt in dom(F); 

 calc is a mapping that associates a degree between 0 and 1 with each pair (elt, eltg) 

such that  Fdomelt   and  eltgenelt g  . 
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Example 6:  

 ord may be, for instance, an order through the elements of F by decreasing degrees. 

This choice allows one to generalize in priority the elements of F that have the higher 

degrees, that is, the elements for which the user has expressed the higher preference; 

 gen(elt) may be, for instance, the set of smallest super-elements of elt in the hierarchy; 

this choice permits to minimize the risk to obtain too general answers; 

          90min
0

.eltμxμ)eltcalc(elt, FFxμFdomxg
F




 is an example of mapping that 

permits to retrieve in priority the elements specified by the user. 

 

Each element of F does not necessarily have a more general element that may be added to F 

for the generalization operation: as we saw previously in Definition 9, this more general 

element must satisfy a condition. Here we define the notion of generalizable element of F, 

according to a given generalization rule. 

 

Definition 11: Let F be a hierarchical fuzzy set. An element elt of dom(F) is said to be 

generalizable in F, according to a generalization rule Rg, if elt has a more general element eltg 

in gen(elt) that satisfies the condition: eltg may neither be an element of dom(F) nor be more 

specific than any element of dom(F). 

 

Generalization of a HFS: As we saw in section Closure, the MIEL querying system 

computes the closures of the HFS belonging to a query before submitting it to the RDBMS. 

Consequently, two queries using two different HFS which belong to the same equivalence 

class, retrieve the same answer. In order to preserve this property when MIEL performs the 

generalization of a HFS, this operation is not directly processed on the HFS, but on the 

minimal HFS, unique representative of the equivalence class which the HFS belongs to. 

 

Definition 12: The generalization of a hierarchical fuzzy set F, according to a generalization 

rule Rg, denoted gen(F), is an operation that provides a hierarchical fuzzy set Fg obtained as 

follows: 

 we call 0-degree generalization of F, denoted F0, the minimal fuzzy set that is 

equivalent to F; 

 let Fn be the n-degree generalization of F: 

 if there exists an element elt, first element (with the meaning of the order ord) 

of    nFdomFdom 0  generalizable in Fn according to Rg, then Fn+1 is obtained 

by an elementary generalization of Fn according to Rg, in which eltg is the first 

element of    nFdomFdom 0 , generalizable in Fn, and dg=calc(elt, eltg); 

 if not, the generalization of F is the fuzzy set Fg = Fn. 

 

Example 7: Let Rg be the generalization rule proposed in example 6 and F the following 

hierarchical fuzzy set: F = 1/Whole milk + 1/Condensed whole milk + 0.8/Half skim milk + 

0.2/Yoghourt. 

 F0, the minimal fuzzy set that is equivalent to F, is the following: F0 = 1/Whole milk + 

0.8/Half skim milk + 0.2/Yoghourt; 

 the first generalizable element of F0, in the order ord, is Whole milk, as 

         18.09.00.12.090min
0




.eltμxμ)milk, milkcalc(Whole FFxμFdomx F

the generalization provides F1 = 1/Whole milk + 0.8/Half skim milk + 0.2/Yoghourt + 

0.18/Milk; 
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 the first element of dom(F0) generalizable in F1 is Yoghourt, as 

,036.09.02.02.0Pr oduct)urt, Milkcalc(Yogho  the generalization provides  

F2 = 1/Whole milk + 0.8/Half skim milk + 0.2/Yoghourt + 0.18/Milk + 0.036/Milk 

product; 

 there is no element of dom(F0) generalizable in F2, so Fg = F2. 

 

We have proven in Thomopoulos et al. (2006) that the number of iterations of the 

generalization operation is finite and that the fuzzy set Fg obtained by generalization is more 

general than F with the meaning of the inclusion relation extended to HFS. 

MIEL querying system  

 

In this section, we present the MIEL flexible querying system which uses the concept of HFS. 

The MIEL graphical user interface allows the users to specify a query. Such a query is 

expressed in a view (selected by the user from a list of available views). The users also 

specify in the query a set of projection attributes and a set of selection criteria. Then the MIEL 

user interface sends the MIEL query to the relational subsystem. The relational subsystem 

adapts the query to the formalism it uses (an SQL query), then asks the RDBMS query 

processor to execute the query. Finally, the answers to the query are returned to the MIEL 

interface which presents them to the users. Firstly, we present the choices we made in the 

design of the MIEL data model. Then, we successively present the MIEL query language and 

the MIEL query processing. 

 

MIEL data model 

The MIEL data model is composed of an abstract data model, called the ontology, and several 

concrete data models which depend on the actual data model chosen to store the data (RDB or 

other formalisms). In this chapter, we are only concerned with the ontology and with the RDB 

concrete data model, i.e. the RDB schema. 

 

Ontology of the MIEL data model: the ontology contains the knowledge of the domain used 

by the MIEL system. The basic notion of the ontology is the concept of attribute which must 

be understood in its classic database meaning. In order to take into account the imprecision of 

the values stored in the data of the MIEL system, we propose to use, instead of crisp values, 

imprecise values expressed as possibility distributions represented by fuzzy sets (see Zadeh, 

1978). A variation domain and a definition domain are associated with each attribute. The 

variation domain corresponds to the universe of discourse; the definition domain is the set of 

fuzzy sets which can be defined on the variation domain: it corresponds to the actual domain 

in the classical database meaning. 

 

Definition 13: A is the finite set of attributes of the MIEL data model. Each attribute Aa is 

characterized by its type Type(a), its variation domain domv(a) and its definition domain 

dom(a). The type Type(a) of an attribute a can be numerical, symbolic or hierarchized. 

Depending on its type, the variation domain domv(a) of an attribute a is: 

 if Type(a) is numerical, domv(a) is defined as a subset of , the set of the real values; 

 if Type(a) is symbolic, domv(a) is defined as a set of symbolic constants; 

 if Type(a) is hierarchized, domv(a) is defined as a set of symbolic constants and a 

partial order defined on it. 

In all cases, dom(a) is defined as the set of all the possible fuzzy sets on domv(a). 
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Definition 14: The value of an attribute a belongs to dom(a) and is denoted  a . It is a map 

π of domv(a) to [0,1]. We denote π(x) the degree of possibility that the effective value of a is x 

(x  domv(a)). 

 

Example 8: The variation domain of the numerical attribute pH is the interval [0,14] on . 

The variation domain of the symbolic attribute Author could be the set {S.Ajjarapu, 

C.P.Rivituso, M.Zwietering}. A part of the variation domain of the hierarchized attribute 

Substrate is represented in Figure 7. 

Whole milk Half skim

milk

Milk Meat

Substrate

Skim

milk

Poultry

Beef Pork
Pasteurized

milk

Pasteurized

whole milk

 
Figure 7 A part of the variation domain of the attribute Substrate 

 

The value pH_value of Figure 8 schematizes an example of value for the attribute pH (that 

value belongs to dom(pH): it is a map of domv(pH) into [0,1]). The value Substrate_value of 

Figure 8 schematizes an example of value for the attribute Substrate (that value belongs to 

dom(Substrate): it is a map of domv(Substrate) into [0,1]; the elements of domv(Substrate) 

having a degree equal to 0 are not represented). 

 

4
0

1

pH_value

5 7 9 Milk

0

1

Substrate_value

Whole

Milk
Skim

Milk

0.7
0.5

 
Figure 8 Two examples of imprecise values 

 

Note that in our data model, we consider that all the values are imprecise values. The case of a 

crisp value for an attribute a is a particular case of an imprecise value, such that 

      0,,1  yxyandxadomx v  . 

 

For simplicity, and since it corresponds to the application needs, we chose to limit the 

representation of numerical values to trapezoidal functions in the actual database. These 

trapezoidal functions are stored by means of 4 characteristic points defining the limits of the 

support and the kernel of the fuzzy set. In the example of Figure 8, these 4 characteristic 

points are [4, 5, 7, 9]. 

 

Schema of the relational database: In the following, we do not present in detail the relational 

database schema (which is a classic RDB schema), but we focus on the choices we have made 

in order to map the ontology of the MIEL data model presented previously onto the RDB 

schema. We present how the attributes and their variation domains are represented in the 

RDB. We successively consider the way of representing an attribute belonging to the 
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ontology of the MIEL data model, when that attribute is respectively of type numerical, 

symbolic or hierarchized.  

 

Representation of a numerical attribute: The representation of a value of a numerical attribute 

in the relational schema is done by means of a row of an additional table which contains the 

unique identifier of the numerical fuzzy set and 4 attributes which correspond to the 4 

characteristic points of the trapezoidal function. Existing techniques (see Galindo et al. 2006) 

could be used to represent other kinds of values (such as ranges, unknown, undefined…). 

 
Example 9: The tables in Figure 9 present an example of a numerical attribute represented in the 

relational database. 

ExpeId Substrate FuzzyPHId 

10 Pork 200 

11 Skim Milk 231 

 

 

FuzzySetId MinSupp MinKer MaxKer MaxSupp 

200 4 5 6 7 

231 6 6 6 6 

 
Figure 9 The upper table presents an example of relation referencing numerical fuzzy values. The lower 

table contains a part of the relation NumericalFuzzySet which stores the actual numerical fuzzy sets (the 

second row corresponds to a crisp value in this example). 

 

Representation of a symbolic attribute: The representation of a value of a symbolic attribute a 

of A in the relational schema is done by means of one or several rows of an additional table 

which contains three columns: the unique identifier of the fuzzy set, an element of domv(a) 

and its associated membership degree in that fuzzy set. We remind that a fuzzy set on a 

symbolic variation domain is defined as a set of pairs (element, degree).  

 

Example 10: Tables in Figure 10 present an example of the value of a symbolic attribute 

represented in the relational database. 

 

Substrate FuzzyOriginId 

Pork 100 

 

 

 

FuzzyOriginId Country Degree 

100 USA 1 

100 Germany 1 

100 France 0.8 

Figure 10 The left table presents an example of relation referencing symbolic fuzzy values. The right table 

contains a part of the relation SubstrateOrigin which contains symbolic fuzzy sets (only one fuzzy set is 

represented in this example). 

 

In addition, the variation domain of each attribute a of A of type symbolic used in the 

relational schema is stored in a reference table which contains all the possible values that 

compose domv(a). 

 

Representation of a hierarchized attribute: The representation of a value of a hierarchized 

attribute of A in the relational schema is done in exactly the same way as the representation of 

a symbolic attribute (see above). 

The variation domain of each attribute a of A of type hierarchized used in the relational 

schema is stored in two specific tables: a table which contains all the possible values that 

compose domv(a) and a table which contains all the pairs  

{vi, vj} of the cover relation of the partial order of domv(a). 
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Example 11: Tables presented in Figure 11 are partial instances of relations Ref_Substrate and 

Hier_Substrate describing the hierarchized variation domain for substrates in the relational 

schema. 

 

Substrate 

Milk 

Full milk 

Pasteurized milk 

Pasteurized full milk 

 

SubstrateSup SubstrateInf 

Milk Full milk 

Milk Pasteurized milk 

Pasteurized milk Pasteurized full milk 

Full milk Pasteurized full milk 

Figure 11 The left table presents a part of relation Ref_Substrate. The right table presents a part of 

relation Hier_Substrate. 

 

When an attribute is known to be a “crisp” value (for example the substrate in 

 
Figure 9

 
Figure 9

 

Figure 9), the database designers have used classic database attributes of type real, integer or 

string instead of fuzzy values. 

 

As presented above, the ontology of the MIEL data model is stored in specific tables of the 

relational database schema. This is due to the fact that we have to proceed to referential 

integrity control in the data we store. 

 

Flexible query language 

 

A query asked on the MIEL system is expressed in the MIEL query language through the 

MIEL graphical user interface. In the following, we present the notions we use in a way close 

to domain relational calculus (Ullman, 1988). We use this query language in a data integration 

system in which data are stored using different models (relational model, conceptual graph 

model or XML model presented in section Futures Trends). It is the reason why a MIEL 

query is always expressed in a view. It provides two advantages: (i) the user always interacts 

with a unique querying language and does not need to know which models are used to store 

the data (ii) the data integration system is extensible: to add a new data model, one have to 

design a new mediator which translates a MIEL query expressed in a view into a query 

adapted to the data model. 

 

The notion of view: A view is a usual notion in relational databases: it is a virtual table built 

from the actual tables of the relational database schema by means of a query. In the MIEL 

system, a set of views (which are pre-written queries) is proposed to the users in order to hide 

the complexity of the database schema. 

 

Definition 15: A view V on n (n > 0) queryable attributes naa ,,1   of the MIEL ontology is 

defined by   nVn ,a,aP,a,aV  11  where PV is a predicate which characterizes the 

construction of the view. 
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Example 12: The view OneFactorExperience is defined on 5 attributes: 

OneFactorExperience = {Substrate, PathogenicGerm, PH, Factor, ResponseType | 

POneFactorExperience (Substrate, PathogenicGerm, PH, Factor, ResponseType)}. The predicate 

POneFactorExperience defines the way the attributes involved in the view are linked together. That 

view characterizes the result of experimentations in which only one factor is controlled (for 

example: the temperature). The response type can be, for example, the growth speed of a 

pathogenic germ in a given substrate. 

 

Expression of a query: A query in the MIEL system is a specialization of a given view by the 

end-user, who specifies a set of projection attributes as a subset of the queryable attributes of 

the view and a set of conjunctive selection criteria on some other attributes. 

 

Definition 16: A query Q asked on a view V is defined by: 

       qqppnVnqp vavaaaPaaaaQ    11111 ,,,,,,  and qp gg ,,1   and 

    2

minmin 1,0,  N  where PV is the predicate which characterizes the view V, paa ,,1   are 

the projection attributes, qp aa ,,1   are the selection attributes and their respective values 

qp vv ,,1   given as selection values by the user, qp gg ,,1   are boolean values specifying 

whether the fuzzy set qp vv ,,1   must be generalized or not,     2

minmin 1,0,  N  its 

minimum possibility and necessity degrees. The attributes nq aa ,,1   are the queryable 

attributes of the view which are not used in that query. 

 

In the previous definition, the comparator   stands for “approximately equal” and will be 

interpreted in the answer by the two classical scalar measures used in fuzzy pattern matching 

(Dubois & Prade, 1995) to evaluate the compatibility between an imprecise datum and a fuzzy 

set representing the selection values. 

 

Example 13: The query Q is expressed in the view OneFactorExperience: 

Q = {Substrate, PathogenicGerm, pH, Factor, ResponseType | POneFactorExperience (Substrate, 

PathogenicGerm, pH, Factor, ResponseType)  (Substrate SubstratePreferences)  (pH 

pHPreferences)} where the fuzzy sets SubstratePreferences and pHPreferences are presented 

in Figure 12 and their associated boolean values in the query are false (no generalization). The 

minimum possibility and necessity degrees are set to 8.0min   and 0.0min N . 

4
0

1

pHPreferences

5 6 7 Whole

milk

0

1

SubstratePreferences

Skim

milk
Half

skim

milk

0.9
0.8

 
Figure 12 Preferences expressed by the user 

 

 

The answers: An answer A to a query Q in the MIEL system is a set of tuples. Each tuple is 

composed of values (which are fuzzy sets as presented in Definition 14). Each tuple satisfies 

the selection criteria of the query. If the generalization of a selection value is required in the 

query, the way this operation is processed depends on the type of the selection attribute. For 

an attribute of type numerical or symbolic, the generalization is processed as in Dubois & 

Prade (1995). When the attribute is of type hierarchized, the generalization of the hierarchical 
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fuzzy set is processed as described in definition 12 of section Generalization of an HFS. In the 

following definition, for any type of selection attribute, we denote by gen(F) the 

generalization of the fuzzy set F, its corresponding fuzzy selection value. 

 

Definition 17: Let        qqppnVnqp vavaaaPaaaaQ    11111 ,,,,,,  

be a query, qp gg ,,1   its boolean values and  minmin , N , its minimum possibility and 

necessity degrees. The answer A to the query Q is:  rA  ,,1  , the set of tuples of the 

form     
ripii aa

11 ,,   , such that every tuple of A satisfies all the selection criteria of Q, 

with           qqqpppi avfavft  ,,,, 111     and 

          qqqpppi avfNavfNtn  ,,,, 111   their respective possibility and necessity 

degrees of matching (as defined in Definition 3), such as mini and minNN i   , t a t-norm 

and    jjj vgenvf  if bj is true and vj otherwise. 

 

We have chosen the min operation to implement the t-norm t which is a classical choice to 

represent the conjunction but of course other t-norms may be used. 

 

Example 14: An example of answer corresponding to the query of example 13 expressed in 

the view OneFactorExperience is given in Figure 13. 

 

 N,  Substrate PathogenicGerm pH 

[min, max] 

Factor ResponseType 

(1.0, 1.0) Whole milk Bacillus Cereus [5.1, 5.2] Temperature Temporal 

cinetic 

(0.9, 0.9) Half skim 

milk 

Listeria [5.0, 5.4] Temperature Growth speed 

(0.8, 0.0) Skim milk Listeria [6.0, 8.0] Temperature Level of 

contamination 
Figure 13 Part of an answer 

 

Query processing  

 

The MIEL user interface sends the MIEL query to the relational subsystem. The relational 

subsystem adapts the MIEL query to the formalism it uses: an SQL query. The views in the 

relational database of the MIEL system are SQL queries. In the actual implementation of the 

MIEL system, the views are stored in a specific table of the database called LViews, in which 

each tuple represents a view and is composed of four columns: IdView is the unique identifier 

of the view, SelectPart is the list of projection attributes, FromPart is the list of relations 

involved in the view, WherePart is the list of join predicates between those relations. We did 

not use the notion of view because it is not implemented in all RDBMS, especially MySQL 

which is very popular. 

 

Example 15: The SQL query which corresponds to the view SubstrateList defined in Figure 

14 is: select P.Title, S.Substrate from Publication P, Substrate S where P.IdPub = S.IdPub. 

 

IdView SelectPart FromPart WherePart 

SubstrateList P.Title, Publication P, P.IdPub=S.IdPub 
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S.Substrate Substrate S 
Figure 14 A partial instance of relation LViews 
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The query processing in the database subsystem is processed as follows: 

 

1. selection of the view corresponding to the query; 

2. for each selection attribute of type hierarchized, computation of the fuzzy set closure 

and optionally, if it is expressed in the query, computation of the generalization of the 

hierarchical fuzzy set; 

3. for each selection attribute of type numerical or symbolic, optionally if it is expressed 

in the query, computation of the generalization of the fuzzy set; 

4. transformation of the fuzzy values of the selection criteria into classic SQL conditions 

(we call that process “defuzzification”). This transformation depends on the type of 

the selection attribute. If the type is hierarchized, a list of queried values is built from 

the list of elements which belong to the fuzzy set closure. If the type is symbolic, a list 

of queried values is built from the list of elements which belong to the associated 

fuzzy set. If the type is numerical: a list of boolean conditions checks both cases of 

overlapping between the fuzzy sets which represent the selection criterion and the one 

representing the imprecise datum (see Haemmerlé et al 2007 for more details); 

5. completion of the SQL query corresponding to the view in order to build the actual 

“defuzzified” SQL query; 

6. subsmission of the SQL query to a standard relational database management system 

(ORACLE or Postgresql in the present version); 

7. computation of the adequation degree of each tuple of the answer. 

 

Example 16: We assume that the query asked through the MIEL graphical user interface is: 

{Title, Substrate | SubstrateList(Title,Substrate)  (Substrate  SubstratePreferences)}. The 

selected view is that of example 15 and the fuzzy set SubstratePreferences is that of example 

13. Using the hierarchy of Figure 7, the fuzzy set closure and the defuzzification of the 

selection criterion lead to the actual selection criterion: Substrate in (‘Whole milk’, ‘Skim 

milk’, ‘Half skim milk’, ‘Pasteurized whole milk’). The SQL query submitted to the RDBMS 

query processor is then: select P.Title, S.Substrate from Publication P, Substrate S where 

P.IdPub = S.IdPub and S.Substrate in (‘Whole milk’, ‘Skim milk’, ‘Half skim milk’, 

‘Pasteurized whole milk’). 

 

Applications and experimentation 

 

In this part, we present two applications based on the MIEL querying system. Then examples 

of Graphical User Interface (GUI) illustrating a use-case are given. Finally, we give some 

experimental results about the closure and the generalization of a HFS. 

 

Presentation of two applications  

 

We have designed and implemented two instances of the MIEL flexible querying system, 

involving hierarchical fuzzy sets for two different relational databases: 

 

 the Sym’Previus (http://www.symprevius.org/) database which contains around 

10.000 data about the behaviour of microbial contaminants in foods. This system has 

been developed with industrial partners (Danone, Bongrain, Pernod-Ricard, …) and 

governmental institutions (French Ministry of Agriculture and Fisheries); 
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 the Mét@risk (http://metarisk.inapg.inra.fr/) database which contains around 50.000 

data about chemical contamination in foods. This system has been developed by the 

Mét@risk INRA research unit with a national governmental institution (the French 

ministry of Agriculture and Fisheries) and an international institution (the WHO
3
 

Gems Food). 

 

Both systems are operational and a copy is accessible from the Web: 

 Sym’Previus database: http://www.symprevius.org/ (contact 

olivier.couvert@adria.tm.fr to obtain an access) 

 Mét@risk database: http://idot.inapg.fr/mielContaminant/web/ (contact 

Buche@agroparistech.fr to obtain an access) 

The Sym’Previus ontology contains 2 attributes of type hierarchized. For the attribute 

Substrate, the ontology contains 507 terms with a maximum specialization depth of 7. For the 

attribute MicrobialContaminant (microorganism), the ontology contains 167 terms with a 

maximum specialization depth of 7 too. 

The Mét@risk ontology contains 7 attributes of type hierachized. Six attributes describe the 

food: ProductType (481 terms), FoodSource (2239 terms), CookingMethod (42 terms), 

TreatmentApplied (628 terms), PackingMedium (37 terms), ContainerOrWrapping (285 

terms). For those attributes, the maximum specialization depth is 6. For the attribute 

ChemicalContaminant, the ontology contains 222 terms with a specialization depth of 1. 

Examples of GUI  

 

We present some dialogues with the user through an example of query. Although those 

dialogs could of course be enhanced to help users introducing fuzzy sets, they have been 

judged enough “intuitive” by our microbiologist partners who helped us to design the GUI. 

The user wants to query the view OneFactorExperience (see example 12). Five queryable 

attributes are available: Substrate, PathogenicGerm, pH, Factor, ResponseType. The user 

expresses preferences about the Substrate using the HFS (1.0/Cheese: soft + 0.9/Cheese) and 

about the pH using the numerical fuzzy set [4, 5, 6, 7]. Figure 15 shows the window in which 

the user expresses the HFS about the Substrate. The part of the ontology concerning the 

attribute Substrate can be accessed by the user in the frame Hierarchy of food products. The 

user’s preferences are registered in the list boxes of the frame Set of values. The list boxes 

also give access to the ontology by alphabetic order. In the frame Hierarchy of food products, 

the button Vizualise the choice asks the MIEL system to color in red the terms of the ontology 

which belong to the fuzzy set closure and in purple the terms obtained by a generalization of 

the fuzzy set. This last operation is computed by the system when the check box Extended 

selection of the frame Set of values is marked. 

 

                                                 
3
 World Health Organization 

mailto:olivier.couvert@adria.tm.fr
http://idot.inapg.fr/mielContaminant/web/
mailto:Buche@agroparistech.fr
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Figure 15 Graphical user interface to register a HFS 

 

Figure 16 shows the window which permits one to define a fuzzy set of a numerical type. It is 

used in the example to specify pH preferences.  

 

 
Figure 16 Graphical user interface to register a fuzzy set of type numerical 

 

A part of the answer to the query is presented in Figure 17. The first column contains the 

possibility degree of matching (see Definition 17) of each tuple. For instance, the first answer 

is about the behaviour of Escherichia coli in Cheese and has been published in Reitsma 

(1996). Data have been collected in a farm in the USA. The second answer is about the 

behaviour of Bacillus cereus in Processed cheese and has been collected by an anonymous 

industrial partner of the Sym’Previus network. As both answers correspond to a cheese or a 

kind of cheese (Processed cheese), they are associated with the degree 0.9. Answers can be 

downloaded on the user’s computer in Excel format for further manipulations. 
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Figure 17 An example of answer to a query in the view OneFactorExperience 

 

 

Experimentation 

 

We have made an experimentation in order to evaluate the efficiency of the closure and the 

generalization operations. We have defined with the experts of the domain 7 test queries 

which cover around 10 percent of the Sym’Previus database entries (1132 data entries among 

10.000 entries). The same query has been executed 3 times: without the computation of the 

closure (denoted standard queries), with the computation of the closure, with the computation 

of the closure and the generalization. Exact answers correspond to the answers obtained either 

by the standard queries or by the queries with the computation of the closure. All the answers 

obtained with the computation of the closure have been considered as correct by the experts. 

They represent 99 percent of the exact answers (1 percent of the exact answers correspond to 

the standard queries). It represents an excellent result for the closure operation. Among the 

results obtained by the generalization operation, answers that are judged pertinent by the 

experts (80 percent of the total number of answers obtained by generalization) are those 

which have the highest matching degrees (between 0.6 and 0.8), whereas the answers that are 

judged non-pertinent (20 percent) have degrees that go from 0.6 to 0.2. An essential remark is 

that the value 0.6 can thus be considered as a threshold above which results are classified as 

pertinent, and below which results are classified as non-pertinent by the experts. The 

evaluation results are thus also very good for the generalization method, as (i) pertinent results 

can be clearly identified using their matching degrees; (ii) generalization results bring an 

important amount of complementary results (56 percent of the total number of results 

regarded as exact or pertinent). 
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FUTURE TRENDS 
 

In this section, we expose in more details the continuation of this project within our own 

research team. 

 

In this chapter, we have presented the concept of hierarchical fuzzy set and its application to 

query a possibilistic database, thanks to the MIEL flexible querying system, in the framework 

of the relational model. The concept of hierarchical fuzzy set has also been implemented in 

two other representation formalisms, the conceptual graph model and XML, in the framework 

of the design of a data integration system. Our data integration system integrates three 

subsystems: a relational database (RDB) subsystem, a conceptual graph base (CGDB) 

subsystem and an XML base (XMLDB) subsystem. 

 

The relational database contains the stable, well-structured part of the information. The 

conceptual graph base contains the weakly structured pieces of information which do not fit 

the relational schema. As changing a relational schema is quite an expensive operation, we 

decided to use an additional base in order to store information that was not expected when the 

schema of the database was designed, but that is useful nevertheless. We chose to use the 

conceptual graph model for many reasons, including (i) its graph structure, which appeared as 

a flexible way of representing complementary information, and (ii) its readability for a non-

specialist. The XML base contains information found semi-automatically on the Web by the 

AQWEB tool. AQWEB scans the Web, retrieves and filters documents which “look like” 

scientific publications. Tables containing scientific data are extracted automatically from each 

document and stored in an XML document. In order to be able to query efficiently the XML 

documents containing data tables, those tables are annotated using the domain ontology. For 

instance, AQWEB tries to match each term of the table with the closest terms of the ontology. 

XML documents including annotations are stored in an XML native database to enhance their 

querying. 

 

The data stored in the three bases are expressed in different formalisms, but conform to a 

single domain ontology. That domain ontology consists of a set of attributes and their 

associated variation domain (see Definition 13). The user expresses his query in the MIEL 

language. This query is then sent simultaneously to the three subsystems which transform the 

MIEL query into a formalism adapted to each subsystem (an SQL query in the RDB 

subsystem, a conceptual graph query in the CGDB subsystem and an Xquery query in the 

XMLDB subsystem). The mediators which process this task have been presented respectively 

in Haemmerlé et al. (2007) for the CGDB subsystem and Buche et al. (2006) for the first 

version of the XMLDB subsystem. The query is executed by each subsystem and the answers 

are retrieved by the MIEL graphical interface to be presented in a homogeneous way to the 

user. 

 

In the framework of the French national project WebContent (http://www.webcontent.fr), we 

are currently working on a new version of the AQWEB tool. In particular, we produce a new 

annotation represented as a fuzzy set, associating terms of the ontology with their similarity to 

the term of the web table (Hignette et al., 2005). Consequently, we will have to consider that a 

hierarchical fuzzy set associated with an attribute of type hierarchized may have not only two 

but three different semantics: a semantics of preference or of possibility distribution (the ones 

we studied in this chapter), but also a semantics of similarity. We will have to take into 
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account all the consequences of this extension in the new version of the MIEL XMLDB 

mediator which will be developed in the framework of the WebContent project. 

 

CONCLUSION 
 

Fuzzy sets are used both in flexible querying, to allow the expression of user’s preferences, 

and in possibilistic databases, to represent imprecise data by means of possibility 

distributions. In this chapter, we have focused on the case where these fuzzy sets are defined 

on hierarchically organized domains. Such domains are widely used in ontology-based 

systems. Defining fuzzy sets on hierarchically organized domains is not a trivial issue since 

the degree associated with an element in such a fuzzy set must be coherent with those 

associated with sub-elements or super-elements, and compatible with reasoning using fuzzy 

set operations. 

 

We first proposed an overview of existing works in two fields, whose combination is the core 

of the chapter: flexible querying of imprecise data, and fuzziness in hierarchies. 

Then we introduced the concept of hierarchical fuzzy set (HFS) and presented its properties: 

two ways of defining it, on a part of a hierarchy or by computing its closure on the whole 

hierarchy; the extension of fuzzy set operations to hierarchical fuzzy sets, based on the HFS 

closures; the existence of equivalence classes composed of hierarchical fuzzy sets that share 

the same closure; the existence of a unique representative which has a property of minimality 

within each equivalence class; the generalization of a hierarchical fuzzy set, based on its 

equivalent minimal fuzzy set and useful for flexible querying purposes. 

We presented the framework of the MIEL flexible querying system, its data model, its query 

language, its query processing. It implements the concept of hierarchical fuzzy set and is used 

for the querying of two different relational databases, containing imprecise data, in the 

domain of risk assessment in food products. 

We illustrated the chapter with the examples of the two applications, their graphical user 

interface and an experimental evaluation. This evaluation shows that 99 percent of the total 

number of exact answers is obtained thanks to the closure computation and that 56 percent of 

the total number of results regarded as exact or pertinent is obtained by the generalization 

mechanisms presented in the chapter. 

Finally we outlined some future trends concerning both hierarchical fuzzy sets and the MIEL 

flexible querying system. 

 

The essential point to retain from this chapter appears to us as being the relevance of 

hierarchical fuzzy sets for ontology-based systems, which extends their use beyond the 

framework of a particular application or a particular representation formalism. 
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KEY TERMS 
 

Flexible Querying: methods for querying a database that enhance standard querying 

expressiveness in various ways such as the expression of user’s preferences, query 

generalization, etc., in order to facilitate the extraction of relevant data. 

 

Fuzzy Set: a mapping from a universe of discourse – definition domain of the fuzzy set – into 

the interval [0,1]. The concept of fuzzy set extends the notion of Boolean membership to a set 

to the notion of degree of membership. 

 

Hierarchy: a set of elements that are partially ordered by the “kind of” relation. 

 

Hierarchical Fuzzy Set: a fuzzy set whose definition domain is a part of a hierarchy. 

 

Ontology: a formalization of the description of a domain knowledge at a conceptual level. 

 

Possibilistic Database: a database that contains ill-known data represented by means of the 

possibility theory. 
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Possibility Distribution: a fuzzy set whose semantics represents the possible ordered values of 

an imprecise datum, only one of these values being the effective – but ill-known – value of 

the datum. 

 

Query Generalization: an operation that creates, from a given query Q1, a query Q2 such that 

Q1 is included in Q2, that is, the answers to Q1 are included in the answers to Q2, for any 

database. 

 

MIEL language: a flexible querying language which permits to express in a given view a 

conjunctive query. Current implementations have been done under Oracle and Postgresql 

RDBMS. 

 

MIEL query: a conjunctive query where the selection value associated with a queried attribute 

is expressed by a fuzzy set representing preferences. 


