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Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that
under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes
containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and
carrying it to the next, thereby performing or absorbing some work. In particular, quantum heat engines,
employing two-level atoms as working agents, are modeled by reservoirs containing balls of weight 0 or 1. The
mechanical model helps us prove that the maximum efficiency of quantum heat engines is the Carnot effi-
ciency. Heat pumps and negative temperatures are considered.
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I. INTRODUCTION

Quantum heat engines employ multilevel systems �quan-
tized free particles in a box, three-level atoms, quantized
harmonic oscillators, or electrons immersed in a magnetic
field� as working agents instead of classical gases. The op-
eration of such quantum heat engines has been treated by
Geva and Kosloff �1�, Feldmann et al. �2�, Opatrny and
Scully �3�, and He et al. �4�. Advanced papers on quantum
heat engines �1,3,4� are often concerned with maximizing
powers. We restrict ourselves here to the work performed
over slow cycles. A related discussion is given by Kieu �5�.
The recent detailed discussion by Quan et al. �6� contains a
good list of references to which the reader is referred for a
more complete historical account.

We consider particularly two-level agents such as elec-
trons immersed in magnetic fields B. In that case the elec-
trons may reside in either one of two energy levels separated
by ��B or, in appropriate units, �=B. In the conventional
form of heat engines, a “working agent” containing electrons
may be in contact with a thermal bath and be submitted to
some � value. The so-called “Otto cycle” consists of putting
the working agent in contact with a hot bath and submitting
it to some large �. The working agent is then isolated from
the hot bath, put in contact with a cold bath, and submitted to
some small � value. Finally, the working agent returns to the
hot bath, thereby closing the cycle. The Otto cycle just de-
scribed is not optimum as far as efficiency is concerned, but
we consider it initially for the sake of simplicity �in a more
general configuration, � varies also while the working agent
is in contact with the hot and cold baths�.

Our model differs slightly from the conventional one just
described. Work is produced when a randomly selected elec-
tron is carried from a high-magnetic-field high-temperature
region into a low-magnetic-field low-temperature region, and
conversely. That work is delivered to the source of the field
that carries the electrons from one region to the other, e.g., an
electrical battery.

Note that heat engines operate with �hot and cold� reser-
voirs that are so large that their temperatures are negligibly
affected by the energy-delivering cycles. One may consider
instead an ensemble of engines that are initially all in the
same state. The work performed over a cycle by one member
of the ensemble may slightly differ from the work performed
by another member of the ensemble. But only average ener-
gies are presently considered.

On the historical side, it is worthwhile recalling that, con-
trary to what some authors have said in the past, the theory
of classical heat engines and heat pumps established by Car-
not around 1824 is entirely accurate. The first law of thermo-
dynamics was expressed by Carnot in those terms: “Heat is
nothing but motive power, or rather another form of motion.
Wherever motive power is destroyed, heat is generated in
precise proportion to the quantity of motive power de-
stroyed; conversely, wherever heat is destroyed, motive
power is generated” �7,8�. Carnot also gave an accurate cor-
respondence between a calorie �the amount of heat required
to raise the temperature of one gram of water by 1 °C� and
the energy required to raise a mass of one kilogram by one
meter in the earth gravitational field. On the other hand, it is
an empirical fact that heat may flow spontaneously from hot
to cold bodies, but that the converse never occurs. This fact
is accounted for by introducing the concept of entropy, called
calorique by Carnot: “Carnot used chaleur when referring to
heat in general, but when referring to the motive power of
fire that is brought about when heat enters an engine at high
temperature and leaves at low temperature, he uses the ex-
pression chute de calorique, never chute de chaleur. Carnot
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had in the back of his mind the concept of entropy, for which
he reserved the term calorique” �9,10�.

The efficiency � of a heat engine is defined as the ratio of
the work W performed and the high-temperature-reservoir
heat consumption −Qh, both being expressed in the same
energy unit, e.g., in joules. Carnot found that heat engines
reach their maximum efficiency when they are reversible.
The famous formula �C��max=1−Tl /Th, where Tl and Th
denote the cold and hot reservoirs absolute temperatures, re-
spectively, follows from his work. The work performed is
then W= �Th−Tl�S, where S denotes the entropy transferred
from the hot to the cold bath. Carnot gave approximate ex-
pressions for Th, Tl, and S on the basis of experimental re-
sults known at his time.

If we introduce the inverse absolute temperatures �, the
Carnot formula reads

�C = 1 −
�h

�l
, �l � �h � 0. �1�

The cases where one of the two heat reservoirs, or both, have
negative temperatures will be considered. Observation of
negative temperatures was first reported in 1951 by Purcell
and Pound, �see, e.g., ��11�, p.102��. In the case of electrons
submitted to a magnetic field, negative temperatures are ob-
tained by suddenly reversing the magnetic-field direction. In
our mechanical model described below, it suffices to select a
number of weight-1 balls that exceed half the total number of
balls. The operation of heat engines and heat pumps with
negative reservoir temperatures has been adequately treated
by �12�.

The purpose of this paper is to show that quantum heat
engines are equivalent to purely mechanical engines akin to
water mills. Specifically, we consider a series of reservoirs at
different altitudes in the Earth’s gravitational field, contain-
ing balls of different weights. A cycle consists of picking up
at random a ball from one reservoir and carrying it to the
next, thereby performing or absorbing some work. In par-
ticular, quantum heat engines that employ as working agent
electrons submitted to magnetic fields are modeled by reser-
voirs containing balls of weight 0 or 1. The efficiency of our
mechanical engine is defined as the ratio of the work W
performed to the work that would be performed if the high-
reservoir content were dropped all the way down to some
lower reference level. This efficiency is less than unity even
under ideal conditions.

As said earlier, the heat engine that we consider is labeled
“quantum” because the working agent may reside in only a
few discrete energy levels, typically 0 and 1. The Planck
constant does not enter in our discussion because the param-
eter controlling the working agent is an energy � determined
from the outside. In contradistinction, in the case of oscilla-
tors �see, e.g., �13��, the externally controlled parameter is
not directly the energy but instead the oscillator angular fre-
quency �. In that case the Planck constant divided by 2�, 	,
enters through the expression of the elementary oscillator
energy according to the Planck-Einstein formula, �=	�.
Questions relating to the coherence of the wave function do
not enter in our discussion.

The statistical properties of the mechanical engines con-
sidered follow from a simple urn model. A reservoir �or urn�
contains n balls of weight 1 and N−n balls of weight 0. The
probability of picking up any particular ball is equal to 1 /N.
It is, of course, implied that once a ball has been introduced
in the reservoir or removed from it some stirring occurs and
sufficient time is allowed before a new ball is being picked
up or added, as is the case for lottery machines. The average
ball weight n /N will be called “force” and denoted f . Al-
though the total number of balls shown in Fig. 1 is N=5 for
the sake of clarity, it is implied in the theory that N and n are
large numbers, so that the rational number f may be viewed
as a real number.

To our knowledge, the model considered in the present
paper relating mechanical engines to thermodynamics cycles
�14� has not been published before in the open literature. It
provides a feel for the method of extraction of mechanical
energy from heat baths using only elementary concepts. The
purely mechanical device presently discussed could have
been constructed in ancient times, with macroscopic balls
�with a mass �0.1 kg� in a series of lottery-type containers.
The only theoretical knowledge required to evaluate the av-
erage work W performed by such a mechanism is the concept
of potential energy, and the fact that the probability of pick-
ing up a particular ball among a collection of N similar balls
is equal to 1 /N. Fluctuations of the work produced could be
evaluated on the same basis, but this is not done in the
present paper.

In Sec. II we consider Otto engines. In Otto heat engines,
the parameter �e.g., the length of a gas-filled cylinder for a
classical engine, or the magnetic field for the electron quan-
tum heat engine� does not vary when the working material is
in contact with a heat bath. Our mechanical model in that
case consists of two reservoirs containing N balls each, at

high magnetic field reservoir

low magnetic field reservoir

upper reservoir

lower reservoir

ground reference level
(a) (b)

FIG. 1. �a� Schematic representation of a quantum heat engine
employing electrons submitted to a magnetic field of intensity B as
working agents. Electrons are shown as two-level systems in either
their upper or lower state of energy. The lower-level energy is set at
zero, and the upper-level energy is denoted �=B, in appropriate
units. We consider two reservoirs containing N=5 electrons each. In
the l reservoir there is a single electron in the upper state, while in
the h reservoir two electrons are in the upper state. In �b� electrons
in their low-energy level are represented by balls of weight 0 �open
circles�, while electrons in their high-energy levels are represented
by balls of weight 1 �black-filled circles� of potential energy � that
equals the altitude. In both �a� and �b� a cycle consists of picking up
at random an electron �respectively, a ball� from a reservoir and
carrying it to the next. This operation preserves the total number of
balls in each reservoir, but some work is being performed �heat
engine, the case of the figure� or absorbed �heat pump�.
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altitudes �l and �h, respectively. In Sec. III we consider 2m
reservoirs, split into a series of m high reservoirs, and a
series of m low reservoirs. We show in Sec. IV that in the
m→
 limit and appropriate parameter values, the efficiency
and work performed are given by the Carnot expressions
quoted earlier. Our reservoir parameters �altitudes and
forces� are related to statistical mechanical concepts of tem-
perature and entropy in Sec. V. Finally, in Sec. VI, an appli-
cation is made to quantum heat engines and heat pumps.

II. OTTO CYCLE

Figure 1 represents in �a� a quantum heat engine that em-
ploy as working agent electrons immersed in magnetic fields
Bl or Bh, and in �b� the equivalent mechanical model consist-
ing of balls of weight 0 N �white circles� or 1 N �black
circles�. On the left �low reservoir� the weight-1 balls at al-
titude �l=1 m have potential energy 1 J. On the right �high
reservoir�, weight-1 balls at altitude �h=2 m have potential
energy 2 J. Of course, weight-0 balls have no energy what-
ever their height.

The low reservoir contains four balls of weight 0 and one
ball of weight 1, so that the average weight, or force f l
=1 /5. The high reservoir contains three balls of weight 0 and
two balls of weight 1, so that the average force fh=2 /5.
Clearly, the ball model exhibits the same level energies as
the electronic system, except perhaps for a scale factor. If the
ball system is put in contact with a heat bath, the latter is
supposed to be able to exchange balls with the system, so
that temperatures eventually equalize.

More generally, the two reservoirs contain N�1 balls
each. The number of balls of weight 1 in the reservoir at
level �h is denoted by nh, while the number of balls of weight
1 in the reservoir at level �l is denoted by nl. We define
forces �or average ball weights� as fh�nh /N, f l�nl /N. Ac-
cording to classical mechanics, when a ball of weight 1 is
added to a reservoir at altitude � the reservoir potential en-
ergy is incremented by �. On the other hand, the probability
of picking up any particular ball from a reservoir is 1 /N.
Accordingly, when a randomly selected ball is removed from
a reservoir at altitude � the reservoir average potential energy
is reduced by �f . From now on, increments in reservoirs
potential energies are labeled by the letter Q, anticipating a
correspondence with heat.

We first consider Otto cycles because they involve only
two reservoirs. We also consider only two energy levels. In
our mechanical model, a cycle consists of transferring a ran-
domly selected ball from the high reservoir to the lower one,
while a ball randomly selected from the low reservoir is be-
ing transferred to the higher one. Note that the total number
of balls in each reservoir remains N �this ball exchange is
symbolized in Fig. 1 by arrows�.

In conventional classical or quantum heat engines, a
single working agent is considered �for example, a gas- or
atom-filled cylinder� repeatedly displaced between hot and
cold baths. Presently, we are instead considering a sequence
of working agents �called “reservoirs”�. Further, instead of
displacing reservoirs as a whole, this is their content which is
being displaced at random. Because only average works are

being considered �and not work fluctuations�, the mechanism
considered in the present paper is effectively the same as the
conventional one, as we shall see. Accordingly, the reader
should not be disturbed by the fact that the random ball
displacement mechanism discussed below seems at first to
differ from the conventional heat-engine mechanism.

Upon the exchange of randomly selected balls between
the two reservoirs, the energies added to the low and high
reservoirs read, respectively,

Ql = �l�fh − f l� ,

Qh = �h�f l − fh� . �2�

The work performed follows from the law of conservation of
energy W+Ql+Qh=0; that is,

W = − Ql − Qh = ��h − �l��fh − f l� . �3�

The engine efficiency is defined as the ratio of the work
performed W and the energy −Qh lost by the higher reser-
voir; that is,

� �
W

− Qh
= 1 −

�l

�h
. �4�

For example, if �l=1 m, �h=2 m, the engine efficiency �
=0.5. For the force values shown in the figure, the work
performed W= �2−1��2 /5−1 /5� J=0.2 J.

The identification of efficiency in Eq. �4� with that of a
classical Otto cycle has been discussed by Quan et al. �6�.
Readers are referred to their work.

III. m SUBRESERVOIRS

Let us consider first two low reservoirs �referred to as low
subreservoirs� at altitudes �l1

,�l2
, with forces f l1

, f l2
, respec-

tively, and two high subreservoirs at altitudes �h1
,�h2

, with
forces fh1

, fh2
, respectively �see Fig. 2�, where the forces f

are shown on the horizontal axis and the altitudes � on the
vertical axis.

Consider the exchange of a randomly picked ball from
subreservoir l1 to subreservoir l2, from subreservoir l2 to sub-

0.03 0.06 0.09 0.12

2

4

6

8

FIG. 2. This figure represents the ��f� diagram of a mechanical
device involving two high reservoirs �h subscripts� and two low
reservoirs �l subscripts�. The four reservoirs are shown as dots with
f �n /N in the abscissa, where n represents the average number of
balls of weight 1 in the reservoir. The work performed per cycle,
W�0.193 J, is equal to the shaded area, and the efficiency �
�0.643 is the maximum possible value under the present
conditions.
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reservoir h1, from subreservoir h1 to subreservoir h2, and
finally, from subreservoir h2 to subreservoir l1, thereby clos-
ing the cycle indicated by an arrow on the figure. Using the
same argument as in the previous section we evaluate the
total potential energy Ql added to the two low reservoirs, and
the total potential energy Qh added to the two high reservoirs

Ql = �l1
�fh2

− f l1
� + �l2

�f l1
− f l2

� ,

Qh = �h1
�f l2

− fh1
� + �h2

�fh1
− fh2

� . �5�

Referring to the closed path in Fig. 2, −Qh is the area under
the upper line, and Ql is the area under the lower line, so that
the work performed W=−Qh−Ql is the shaded area on the
figure.

More generally for m low subreservoirs and m high sub-
reservoirs, we have

Ql = �l1
fhm

+ �
i=1

m−1

f li
��li+1

− �li
� − �lm

f lm
,

Qh = �h1
f lm

+ �
i=1

m−1

fhi
��hi+1

− �hi
� − �hm

fhm
. �6�

Note that the expressions for Ql and Qh given above are the
same provided the labels l ,h are interchanged. The expres-
sions for the total work performed W and the efficiency �
follow from the expressions of Ql and Qh given above.

IV. CARNOT CYCLE

We considered above subreservoirs with arbitrary forces f i
and altitudes �i. We now restrict the generality by supposing
that the forces depend on the reservoir altitudes according to
laws of the form

f li
= f��l�li

�, fhi
= f��h�hi

�, i = 1,2 . . . m , �7�

where �l�1 /Tl and �h�1 /Th denote two arbitrary numbers,
and f� � denotes an arbitrary function of its argument, to be
specified later on. Under that restriction, the above expres-
sions for the reservoir energy increments read, according to
Eqs. �6� and �7�,

�lQl = L1f�Hm� + �
i=1

m−1

f�Li��Li+1 − Li� − Lmf�Lm� ,

�hQh = H1f�Lm� + �
i=1

m−1

f�Hi��Hi+1 − Hi� − Hmf�Hm� , �8�

where we have defined Li=�l�li
and Hi=�h�hi

, i
=1,2 , . . . ,m.

If the � values do not vary much from one low subreser-
voir to the next, and likewise, do not vary much from one
high subreservoir to the next, sums may be replaced by in-
tegrals and we have

�lQl = s�L1,Hm� − s�Lm� ,

�hQh = s�H1,Lm� − s�Hm� , �9�

where

s�x,y� � xf�y� − �x

f�x��dx�, s�x� � s�x,x� , �10�

the lower limit of the integral being unimportant.
When L1=Hm and H1=Lm the quantity �lQl+�hQh van-

ishes and the maximum efficiency

� = 1 −
Tl

Th
�11�

is reached. The work performed W=−Ql−Qh is the product
of Th−Tl and the change of s, namely,

W = �Th − Tl�S, S � s�L1� − s�H1� , �12�

where the s� � functions are defined in Eq. �10�. These ex-
pressions for the work and efficiency are formally the same
as those applicable to a reversible heat engine.

V. STATISTICAL MECHANICS AND THE f FUNCTION

The main concept of statistical mechanics is that states of
isolated systems corresponding to the same energy are
equally likely to occur. The degeneracy �or statistical weight�
W is the number of distinguishable states. Let N denote the
total number of balls in a reservoir at altitude � in the Earth’s
gravitational field and n the number of balls of weight 1, the
other balls being weightless �14�. The potential energy is
clearly U=n�. On the other hand, we have �see, e.g., �11,15��

W�n� =
N!

n ! �N − n�!
. �13�

For N=2, for example, the degeneracy W�1�=2 because ei-
ther one of the two balls may have weight 1.

The entropy is defined from the statistical mechanical
point of view as: S�n�=ln�W�n��, the Boltzmann constant
being set equal to unity. The inverse temperature is further
defined as ��dS /dU��1 /��d ln�W�n�� /dn. The derivative
cannot be evaluated exactly since n is an integer. The best
one can do is to apply the Stirling approximation of factori-
als: d ln�n!� /dn� ln�n!�−ln��n−1�!�=ln�n�. We obtain from
Eq. �13�,

�� = ln	N

n
− 1
 ⇔ f =

1

exp���� + 1
. �14�

The reservoir temperature is positive when n�N /2 and
negative when n�N /2. For two states, the f� � function in-
troduced in Eq. �7� is therefore f�x�=1 / �exp�x�+1�, from
which the s�x ,y� function introduced in Eq. �10� follows
from a simple integration.

The mechanical equivalent of an atom with q evenly
spaced states is a reservoir containing balls with q evenly
spaced weights. A discussion about multilevel quantum Otto
heat engines can be found in �16�. For q evenly spaced states,
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Eq. �14� straightforwardly generalizes using similar reason-
ing,

f�x� =
1

exp�x� − 1
−

q

exp�qx� − 1
, �15�

which reduces to the previous expression if q=2 and to the
expression applicable to harmonic oscillators when q→

�13�, except for an arbitrary additive constant.

The two-argument entropy defined in Eq. �10� reads

s�x,y� = S�x,y� − S�qx,qy� ,

S�x,y� �
x

exp�y� − 1
− ln�1 − exp�− x�� . �16�

From a previous expression of the work performed, it fol-
lows that the maximum work in a Carnot cycle is Wmax
= �Th−Tl�ln�q�.

For the sake of comparison with previous works, note that
the quantity denoted here, f �n /N, corresponds to the elec-
tron spin �divided by 	� plus 1/2. The magnetic field � cor-
responds to the quantity denoted by � in �1�. The relation
between n /N and the inverse temperature � given later on in
Eq. �17� coincides with the one given in that reference.

VI. APPLICATIONS

For two-level systems the reservoirs inverse temperatures
are, according to Eq. �14�,

�l =
ln� N

nl
− 1�

�l
, �h =

ln� N
nh

− 1�
�h

, �17�

respectively. Note that � is positive when n is smaller than
N /2 and negative when n is larger than N /2.

Positive temperatures. When the two reservoirs have posi-
tive temperatures the maximum efficiency given in Eq. �1�,

�C = 1 −
�h

�l
= 1 −

�l

�h
ln	N/nh − 1

N/nl − 1

 , �18�

always exceeds the Otto-cycle efficiency �=1− ��l /�h� since
nh�nl when the work produced is positive.

As an example of a heat engine, suppose that �l=1 m and
�h=2 m. The calculated efficiency for an Otto cycle is �
=0.5. Further, for N=10 000, nl=2000, and nh=3000, the
work delivered per cycle is W=0.1 J. For the above numeri-
cal values, we calculate that �l=1.38, �h=0.42, and there-
fore the maximum �Carnot� efficiency �C=0.69. The shaded
areas in Fig. 3 are obtained numerically by randomly select-
ing positive � values. It can be proven that the minimum
efficiency is proportional to W in the case of Carnot cycles.

To exemplify heat pumps, it suffices to exchange the val-
ues of nl and nh, keeping �l and �h the same as before. In-
stead of efficiency, it is usual �and natural� in the case of heat
pumps to define a coefficient of performance �COP� as the
ratio of the amount of heat generated in the hot reservoir
�e.g., in the house� to the work required to operate the system
�e.g., from the power line�. Thus, for reciprocal engines, the
COP is the reciprocal of �. Negative work in Fig. 3 corre-
sponds to heat pumps.

Negative temperatures. If the number of weight 1 balls in
the reservoir at altitude �=1 is equal to 7000 and the number
of upper state electrons in the reservoir at energy �=2 is
equal to 8000 the reservoir temperatures are both negative,
with �l=−0.69, �h=−0.85. It follows that the reservoir at
altitude �h=2 is the colder one, while the reservoir at altitude
�l=1 is the hotter one. The Q and W values are simply op-
posite in sign to the ones given in the previous paragraph.
The system is a heat pump with some work flowing into it
and heat being transferred to the hotter reservoir. If the above
values of nl and nh are interchanged, the system becomes a
heat engine indistinguishable from the one initially consid-
ered as far as the operating parameters are concerned.

Positive and negative temperatures. If nl=4500, nh
=5500, and �l=1, �h=2 as before, the temperature of one
reservoir is positive while the temperature of the other res-
ervoir is negative. The maximum attainable efficiency is in
that case unity.

VII. CONCLUSION

We have shown that quantum heat engines may be
equivalent to purely mechanical engines akin to water mills.
Most people would picture heat as particles moving ran-
domly in a box, in which case heat energy is kinetic energy.
However, at the other extreme, heat may be solely potential
energy. This latter picture has the advantage of showing from
the very beginning that the concept of time is entirely irrel-
evant to the understanding of Carnot cycles. In contradistinc-
tion, the concept of kinetic energy requires that the concept
of time be introduced. This observation led us to the present
mechanical picture, the Carnot cycle being viewed as the
limit of infinitesimal Otto cycles.

Precisely, our model consists of a sequence of reservoirs
at various altitudes containing balls of various weights. An
infinitesimal Otto cycle consists of picking up a ball at ran-
dom from a reservoir and carrying it to the next. Let us note

0.2

-0.6 -0.4 -0.2 0.2 0.4 0.60

0.4

0.6

0.8

1

FIG. 3. Available heat-engine �right-hand side� and heat-pump
�left-hand side� efficiencies as a function of the average work per-
formed per cycle, W, in the case of m=1 �Otto cycle�, m=2, m=3,
and m=
 subreservoirs. Let us emphasize that to construct a Carnot
engine out of Otto cycles, every Otto cycle must be infinitesimal.
The Carnot cycles thus require an infinite number of subreservoirs.
We have set �l=1.38, �h=0.42. For reversible engines the coeffi-
cient of performance �COP� of heat pumps is the reciprocal of �.
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that from our viewpoint, thermal engines may be distin-
guished from conservative devices only by the fact that an
element of chance enters in the former and not in the latter.
That is, as long as we have no information concerning indi-
vidual balls in a bag containing N balls, the probability of
picking up any one ball is 1 /N. The treatment given in the
present framework is rigorous, while the introduction of tem-
perature as is done in classical thermodynamics makes sense
only in the large N limit.

When the concepts of temperature and entropy are intro-
duced according to the rules of quantum statistical mechan-
ics, the expressions for the Carnot efficiency and work per-
formed per cycle may be obtained. If the reservoir

temperatures are both negative, the results are symmetrical to
those relating to positive temperatures, heat engines, and
heat pumps getting interchanged. Let us emphasize that these
results were based on a simple probability law. Namely, that
the probability of picking up a particular ball from an urn
containing N identical balls is 1 /N. Thorough stirring of the
balls in the urn before a ball is being picked up is implied, a
condition that may not be fulfilled when the cycle is not
slow. Many recent papers on quantum heat engines and heat
pumps deal with the production of maximum power rather
than maximum energy per cycle, as is done here. To inves-
tigate such questions on the basis of our model a detailed
analysis of ball randomization would be needed.
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