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Abstract— This work proposes a new control approach for
biped walking robots. Its purpose is to make human-like robots
walk more smoothly and more efficiently with regard to energy.
Thus, it is based on the decomposition of a step into two phases:
a control phase which prepare a ballistic phase. As a first
step towards more complex studies, the tools are simple and
efficient: Lagrangian model, Newton’s impact law, non-linear
quadratic optimization problems used for trajectory planning
and partial feedback linearization used for trajectory tracking.
Although the final prototype will be the biped robot SHERPA,
this control law has been implemented and tested on a simpler
one: the cart-table. Numerous simulation results are presented
with two concrete examples.

Index Terms—biped robots walking, impacts, trajectory
planning, trajectory planning, optimization, linearization

I. INTRODUCTION

The most critical specificity of biped robots are their
dynamic balance during walking or the adaptability of their
trajectory to the change in their environment. But some
different purposes may be specified.

The most popular control approaches to ensure dynamic
balance during walking from now on are based on ZMP
(Zero-Moment Point) [1] or on similar indicator related to
the dynamic of the robot. Numerous famous works have
been done in this way. Among them AIST [2] plans the
trajectory of the CoM (Center of Mass) so that the ZMP lies
always inside the support polygon. The design of the control
law of the robot ASIMO from HONDA [3] is known to
use the ZMP. Numerous indicators like FRI (Foot Rotation
Indicator) and ZRAM (Zero Rate of change of Angular
Momentum) [4] have been created and implemented in order
to characterize dynamic balance.

Some other approaches try to achieve radically different
goals. For instance the robot Rabbit [5] is an underactuated
biped robot with adaptive speed. The robot Runbot [6] uses
learning techniques in order to master a wide range of speed.
Finally a control law for the robots from the MIT [7] were
designed to ensure a strong adaptability to rough terrain,
this work leading to the well-know Big Dog robot.

The manufacture of our robot SHERPA is in progress.
Its purpose is the transport of a light load in an office-like
environment with possible stairs (this issue will be discussed
in a future paper). Two stereo omnidirectional cameras on
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Fig. 1. The mechanical structure of SHERPA with six degrees of freedom
on each leg

top of its structure will enable it to follow somebody and to
tune its speed to the one of its leader.

SHERPA is a two-legged robot with six degrees of
freedom on each leg but no trunk as shown on figure 1.
The six degrees of freedom will be totally actuated thanks
to linear motor along with cable transmission [8]. The
characteristics of this technology is the small inertia and the
full reversibility. SHERPA will be 1m tall and will weight
30 kg.

SHERPA has been designed to fit with two specificity.
The first one is an energetically effective use of free dynam-
ics. A better use of impacts on the ground and disturbances
in the direction of the walking is the final goal. Thus the
mechanical design was led with such ideas as complete
reversibility of the actuators and compliant feet in mind.
Consequently it was obvious that the design of the control
law should be oriented towards an optimum use of the
energy. The second specificity is a very smooth gait, close to
the human one. It implies that we should consider phases of
loss and then regain of balance in the direction of walking.
Therefore constraining the ZMP inside the support polygon
is not interesting in our case.

Firstly this paper presents the general approach for this
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Fig. 2. Decomposition of a step for SHERPA into two phase, the free
dynamic and the impact preparation

control law. Then it focuses on its implementation on a
simplified model of a biped robot, the cart-table, with
details on trajectory planning and tracking. Some results of
simulation are shown through two concrete examples. Lastly
the numerous opportunities given by this type of control law
are listed.

II. AN INNOVATIVE APPROACH FOR SHERPA
A. Presentation of a step of SHERPA

The control of the walking speed of SHERPA must then
be based on an energetic aspect. Moreover impact is a
critical phase of the walking cycle regarding energy losses.
That is why we decided to design the control law around this
phase, thus allowing us to get advantage of the compliance
of the feet of SHERPA. For any given step length, the choice
of an impact speed determines the walking speed of the
robot. It becomes then critical to calculate this impact speed
and to control it.

A step of SHERPA is shown on figure 2. There is no
double support phase: the step is divided into an impact
phase and a single support phase, which is itself divided
into a free dynamics phase and an impact preparation phase.
During the free dynamics phase SHERPA’s motion is due to
the post-impact energy and the inertia of the robot. While
preparing the impact, the foot move so that it will hit the
ground with a model-based precalculated speed. This speed
involve a precise position and speed of the CoM at the end
of the free dynamics phase.

B. A simplified model of SHERPA

A two-dimensional simplified model has been chosen
in order to work more rapidly on the control law. It is
constituted of a cart moving on top of a table: it is the
cart-table. By controlling the force applied on the cart, it is
possible to make the table move. The two edges of the foot
of the table can be seen as the two feet of the biped robot and
the CoM of the cart as its CoM since the mass of the table
is considered ten times smaller than the mass of the cart.

mass of the table: M; 1kg
mass of the cart: Mo 10kg
total inertia: I 2.5kg.m?
height of the cart: hgo 0.5m
height of the table:hgy 0.4m
length of the table foot: Praa 0.2m
length of the table top:Lynax 0.4m

TABLE I
CHARACTERISTICS OF THE CART-TABLE

The cart-table has already been used as a linearized inverse
pendulum to model a biped robot during the single support
phase [2]. In our study it is used to simulate a complete step
with a critical phase, the impact between the table and the
ground.

How can we simulate an entire step of a biped robot with
such a cart-table? Let’s consider a biped robot which walks
with a fixed step length. The impact preparation phase seen
in figure 2 is obtained with the cart-table when the table
swing around its left edge. In this case the cart moves thanks
to the motor. Then the instantaneous impact phase on the
biped robot (figure 2) occurs with the cart-table when the
right edge of the table hit the ground while swinging around
the left edge. Finally the free dynamics of the biped robot
is obtained with the cart-table when the table swing around
its right edge. During this phase the control of the motor is
off and the cart can move freely thanks to the reversibility
of the motor. A complete step is thus realized. If we want
to simulate a second step of the biped robot with the cart-
table, it is possible to control the motor while swinging
around the right edge and let the cart move freely while
swinging around the left edge. So walking of a biped robot
correspond to the oscillation of the cart-table moving from
left to right or from right to left at each cycle.

In previous work the purpose of the cart-table model
was to generate a simplified equation of the dynamics of
walking. We have worked further by creating a complete
dynamic simulator with matlab and building a mechanical
prototype in order to test our control law until SHERPA
is available. The simulator is already fully operational and
numerous tuning parameters are available (mass, length,
friction, initial conditions...). The prototype will be available
soon for the first tests. It is constituted of a linear actuator,
a force sensor at the foot in order to measure the ZMP and
an attitude sensor.

III. DESCRIPTION OF THE CONTROL LAW
A. The Cart-table model

The planar cart-table model shown on figure 3 is an
underactuated robot with only one actuator and four degrees
of freedom if we consider the full hybrid model (the
horizontal and vertical position of the CoM of body 1, x
and y, the angle between the ground and the table, 6 and
the position of the cart on the table, [). Its characteristics
are listed in table I.
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Fig. 3. The cart-table model has four degrees of freedom: [z, y, 0, ]

This model is hybrid because there are different possible
contact conditions between the table and the ground: one full
contact conditions (equivalent to the double support phase
for SHERPA), two symmetric one-point contact conditions
(equivalent to the single support phase for SHERPA) and
two symmetric impact conditions. These different cases will
be noted with an indice ¢ varying from 1 to 3 for the contact
conditions (1 is the full-contact condition, 2 and 3 are the
one-point contact condition respectively on the left edge and
on the right edge) and an indice 7 varying from 1 to 2 (1
is the impact on the left edge, 2 is the impact on the right
edge). If we consider one of these contact conditions alone,
then the model is no more hybrid and the number of degrees
of freedom can be reduced to two: 6 and [ which is the
same as for the classical inverse pendulum model. A state
machine has been created in order to modify these contact
conditions when the cart-table move. The model for the full
and one-point contact is classically written [9]:

{ M(q)d + N(q, )4 + g(q) = IZ(Q)A + su 0
JC(CI)Q"' Hc(Q; (l) =0

q = [7,y,0,1]T is the vector of generalized coordinates,
M is the inertia matrix, N is the Coriolis and centrifugal
matrix, g is the potential energy vector, A is the vector of
the forces of the contact points, su is the command vector,
J. and II, are respectively the jacobian and the hessian of
the equations of contact when the cart-table is in the contact
situation c. The evolution of q is calculated by integrating
this equation.

Newton’s model is used as the impact model. It describes
the transmission of the energy during the impact with a
coefficient of restitution E,. Some more complex impact
law can be studied like Moreau’s law [10]. Additionally to
this law, the integration of equation (1) over an infinitesimal

time interval when considering acceleration and forces as
impulsional gives the system of equations:

{ M(q)(qs —d4-) = I7 (@) @
Ji(@)a+ = —EvJi(a)q-

d- and ¢, are respectively the speed of the generalized
coordinates before and after the impact, A; is the vector of
the integrated impulsional forces, J; is the jacobian of the
equations of contact during the impact ¢, E, is the matrix
of restitution from Newton’s model. Thanks to this equation
it is possible to obtain directly the speed of the generalized
coordinates after impact from those before impact. Indeed
equation (2) is equivalent to equation (3):

A= —(IMIT) (1, + B, )Jq
4y = (L - M7I (M I (L + Ey)Jo)g-

Eq(CI)

3
I,, is the unit matrix of size n, 4 is the number of generalized
coordinates and k is the number of contact constraints
considered in the impact case i. The modified matrix of
restitution Eg is the direct link between ¢4 and q_.

B. Implementing the model

The matrix M, N and the vector g are classically cal-
culated but we observe a particular property for the matrix
J; and thus the matrix Eq4. The jacobian of the constraints
during the impact is:

4 | 0 1 hgisind — Pyazcosd 0
Jila) = 1 0 hagicosd + Ppagsind 0 @)

From this observation, we can deduce that the speed of the
cart before impact [_ has no effect on the angular speed
after impact 6. It can also be observed with the matrix Eq
whose last column is [0,0,0,1]7. Moreover, at the impact
6 =0, so Eq is a function of [ only: Eq(q) = Eq({).

This hybrid model works around a state machine that can
be partially seen in figure 4. This state machine indicates
which model should be applied to calculate the dynamics,
depending on the values of the state variables. In our case
the successive states are 3 - 8 - 6 - 9 - 3. Since the phase
6 - 9 - 3 is symmetric with the phase 3 - 8 - 6, we will
only work with half the cycle. The state machine jumps
from 3 to 8 when # = 0 and from 8 to 6 when 6 < 0.
The system will be controlled during state 3 to reach state
8 with a precise speed. Then the system will evolve with
free dynamics during phase 6.

C. Calculating the impact speed

The free dynamics of phase 6 is entirely determined by the
dynamic equation (1) and the values of the state variable just
after the impact {, = [0, 04,1,,14]. So the desired final
position and speed at the end of the free dynamics (4 =
[Oar édf, lag, idf] is obtained by choosing the corresponding
¢ . Finally, considering the matrix Eq and the impact at
6 = 0, it is possible to linked directly (4 to the values of
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Fig. 4. The state machine of the cart-table

State 1:
State 2:
State 3:
State 4:
State 5:
State 6:

Full-contact state

Left-contact state

Right-contact state

Impact of the right edge of the table
Impact of the left edge of the table
Fall

the state variable before the impact {_. The key is to find a
method to determine the initial condition of a system from
its final condition and its dynamic equation.

This method consists in the reverse dynamics: it allows
to calculate the dynamic of a system, starting from the end
and thus to determine the initial condition. This method is
very similar to a movie running backward and is illustrated
with figure 5. If you choose the same image from a movie
running backward and forward, the position of the objects
will be the same in the two images but their velocity will
be opposite. Thus, by integrating the dynamic equation (1)
starting from the end with the values [de, —édf, Laf » —idf],
we obtain the values after impact [0, —0,1, —14].

Here is a very simple demonstration for this method. If
we consider the impact at ¢ = 0 to simplify the equations,
the classical integration of the dynamics gives:

—Cy = ff (t)dt®
Cf 4 = C( )dt

with the initial condition ¢ . By replacing the variable ¢’ =
ty —t (backward variable), it gives:

~¢r=1l'¢
c+ (&) = “ s
The system (5) shows that the reverse dynamics is obtained
by interchanging initial and final position (from the first
equation) and by interchanging initial and final velocity
and taking their opposite (from the second equation). So
it is really easy to obtain the values of the state variables

after impact starting from the values at the end of the free
dynamics thanks to the reverse dynamic. The values before

dt/?

#)dt’ ®)

v'f:7VU

Vo
Reverse
dynamic
Classic 4
dynamic

vi=-v,
! -
-+ z -+ Zs=124
Vv,

Classic and reverse dynamic of a falling ball

Fig. 5.
Objective: To determine the initial conditions v and z, that
leads the classic dynamic to the final condition vy and zy
Method: Using the reverse dynamic (like watching a movie
backward) with the initial conditions —v; and z; leads to
the final condition —vg and zg

impact can then be determined by reversing the impact
model as well. In our case it means the computation of
the inverse of Eq since ¢— = Eg L4, gives the values of
the state variables before impact. A control law has now to
be designed to impact the ground with these precise values.

IV. PARTIAL LINEARIZATION BY STATE FEEDBACK

The robot is underactuated so all the state variables can’t
be exactly controlled. As a first step to test the global
approach, a trajectory tracking on the variable 6 has been
selected. The trajectory was chosen in order to respect the
desired value at the impact when no disturbance is applied.
Then a nonlinear state feedback has been implemented to
ensure a partial linearization of the equation (1) relatively to
the variable . The characteristics of the trajectory tracking
is tuned with two coefficients operating in the state feedback.

A. Linearizing the dynamic equation

According to the notations given in figure 3 the nonlinear
model is:

mi6 — Mthzij- 2M(Ppas + 1)6:‘1. +g1=0
—Mshgot + Mol — MQ(Pmal- + l)92 + Msgsinf = u
(6)
myq1 18 the first-column first-row term of the inertia matrix
M and g is the first term of the potential energy vector g:

mir = IT+M1(PT%IGJI' +h2G1)
+Ms((Prmaz + 1) + hiy)
a1 = g(Mi(Ppazcost — hgysinb)

+Ms((Praxz + 1) cos8 — hga sin 6)



Trsey, = 0.25s Trsy = 0.1s
_ K, = 400 K, = 2500
m=01 { K, = 4 { Ko = 10
m=1 K, = 400 K, = 2500
K, = 40 K, = 100
TABLE II

VALUES OF THE COEFFICIENTS Kp AND K, DEPENDING ON THE
VALUES OF THE 5% RESPONSE TIME FOR A 1s SIMULATION AND THE
DAMPING RATIO m

In order to linearize this system relatively to the variable
0, we must choose u such that:
u = 2Mp B8] — My (P + )6 + 2, + Magsin g
IR (4 Ky (0g — 0) + K, (62— 0))
(7
K, and K, are coefficients whose tuning will give the char-
acteristics of the trajectory tracking (damping and speed).
The linearized system is then:

{ l;,::éd—i-Kv(éd—é)—l—Kp(ed—@)

l:JVL12+hG20+(Pmax+l)92*gSlne ®)

Two choices are necessary to determine completely u. The
first one is the reference trajectories éd, éd and 6,4 and the
second one is the coefficient K, and K, in order to tune
the reactivity of the trajectory tracking after a disturbance.

B. Calculating the reference trajectory

A 6 degrees polynomial has been chosen to define the
reference trajectory for 6. Two others are determined by
the initial conditions [y, 6] and two other degrees by the
desired conditions before impact [0_g4,0_g]. Lastly [y =
éo,pg = 9_] are used as parameters of an optimization
problem. This problem forces the values before impact
[l,,l','] to be the closest possible to the desired values
[l_d, l _d]l

min J =kl —1_g)? +ko(l_ —1_4)* + ksu?
Hi,p2

Oa = P(u1, p2)
(6)and¢
(7)
. _ ©))
¢o = [0+,0+,14,14] are the initial conditions to be used

with the dynamic equation (6), k; and ko are coefficient
which weight the state, enabling to give a greater importance
to the position or the velocity of [ before impact when no
exact solution exists. k3 when different from 0 adds the
minimization of the command energy to the optimization
problem. With the solution (11, i12) the reference trajectory
is completely defined. Thus we obtain the desired trajectory
04 and by derivation 9d and éd.

C. Choosing the coefficients to track the trajectory

The values of K, and K, rule the behavior of the
system with regard to the disturbances by reducing the error
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Fig. 6. Reference trajectories to ensure stop at the end of the step. The

duration has been arbitrarily fixed to Is.

between the desired value of 6 and its real value. With
these two coefficients it is possible to tune the response
time (T'rsq is the time response so that the error between
the real and the desired value is less than 5% of the real
value) and the oscillations (m is the damping ratio which
indicates the amplitude of the oscillations). Some values of
the coefficients K, and K, along with the characteristics
associated are presented in table II. Those results has been
calculated from the expression of K, and K,:

K, = 2muwy
K, = W

wp 1s the natural pulsation obtained from the damping ratio
m, the 5% response time T7rsy and the classical time
response graph.

V. TWO CONCRETE EXAMPLES AND SIMULATIONS

In order to illustrate this method, here are two concrete
examples. The first one explains how to stop the cart-table
by zeroing the speed of the state variables at the impact with
the ground. From this example we will extract the values of
K, and K, adapted to our system. The second example
deals with the realization of a full step and every details of
the method are explained.

A. Example 1: Stopping the walking with minimization of
the command energy

In this example the goal is to stop the cart. According
to our method, the impact speed of the state variables must
then be zeroed: #_ = 0 and [_ = 0. Thus, from equation
(2), the robot will stop whatever the matrix restitution Eg is.
Moreover, we must add the static balance equation to ensure
that the robot does not move after the impact. It means that
the projection of the CoM on the ground must lie inside the
support polygon. The best way of enforcing this criterion
is to force [ to be as close as possible from 0O at the end
of the step. This part is implemented in the expression of
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Fig. 7. Reference trajectories (dotted line) and real trajectory (plain line)
of the four state variables with K, = 400 and K, = 40

the cost of the optimization problem along with a term of
minimization of the command energy:

min J = k12 + ksl? + ksuTu
1,42

04 = P(p1, p2)
(6) @ ¢o
(7)
In this case, we choose ko > ki, k3 so that the main con-
dition [_ =0 weights bigger than the secondary condition.
By choosing ki,k3 = 1 and ko = 10°, with the initial
conditions 6y = % and 90 = 0, the reference trajectories
04, 9d and éd are shown in figure 6.
With these reference trajectories 0 is exactly zeroed when
f_ = 0. It is also possible to read the results of the
optimization problem on the last curve of figure 6:

[ - —9572
B2 =

1.5572
In order to study the trajectory tracking, a significant
disturbance has been introduced at the beginning of the
simulation. Indeed the initial condition on 6 have been set
to 0y = {5 whereas the value used to generate the trajectory
was tp = 5. The results of this simulation are presented in
figure 7 and 8 with different values for K, and K,.

These curves give two important leads to choose the
coefficient K, and K,. Regarding the two first curves of
each graph concerning 6 and 0, we observe some con-
siderable oscillations when m = 0.1. This behavior may
cause undesired impact between the table and the ground.
So selecting K, and K, such that m = 0.1 avoid this issue.
Furthermore regarding the two last curves of each graph
concerning ! and I, we do not obtain exactly the values
before impact which was stated by the optimization problem.
Indeed the system is underactuated and the tracking is done
to fit the trajectory of . Thus any disturbance on 6 induces
significant variations on » and so on [. That is why a

(10)

T
Tragctoie
0 020 T e
. 7-/:‘\_ T ke
rad v+ Nt
i I \ \ \ \ \
L 01 02 03 (4 05 (6 07 08 09 1
o \ \ \ \ \ \
-1 ~
rads™ )\ /)
L | | \ | \ |
i 0 [} 13 ¥ 15 I [ 18 [ 1
| e \ \ \ \ \ \ ]
(HS 1
m
| \ \ \ \ \ \
r o [} 03 u 15 05 [ 18 [ 1
5 T T T T T T
//-\\
[ - / i RN 1
By L/ \/\A’K\
ms s ‘ ‘ ‘ ‘ ‘ ‘
) t 0 0 13 u [ 6 [ 18 [ 1
Temps sec
Fig. 8. Reference trajectories (dotted line) and real trajectory (plain line)
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fast non-oscillatory behavior leads to values of [ and I
closer to the ones desired. In our simulation we then choose
K, =400 and K, = 40 which leads to such a behavior.

B. Example 2: Generation of a full step

In this example, the complete methodology to generate a
full step is exposed. Firstly we must decide the values of
the state variables we wish to reach at the end of the free
dynamic phase. Let’s choose:

O = 1
Hf = —ms~!
lf = 0.2m
ly = 05m.s™!

Secondly, using the reverse dynamic method and feeding
it with the initial conditions 0;,; = 0y, 0in; = —0f, lin; =



As a function of 6 and I
; n our example
Ly
1pelast1c 9~+ - i 6. — 18¢-1
impact i - i i - 0 -1
(e=1) = 0= - = Ums
intermediary . 6_ j _ -1
impact o+ = 5 { 0- = 3.6s 4
(6 — 05) l+ = [_ —0.456_| l_ = 1.62m.s
elastic 6 B 0
impact { o+ o . No solution
(e =0) Iy = 1--090_
TABLE III

RELATIONSHIP BETWEEN SPEED BEFORE AND AFTER IMPACT AS A
FUNCTION OF e AND EFFECTIVE VALUES FOR OUR EXAMPLE

ly and imi = > we can determined the values of the state
variables just after the impact. These values are read at the
end of the simulation shown in figure 9 (the simulation ends
when 6 = 0):

04_ = O

6, ~ 1.8s71
I+ =~ 022m
i+ ~ Om.s~!

Thirdly equation (3) enables the calculation of the values
of the state variables just before the impact depending on
the restitution matrix E,. If we consider this matrix of the

form: 0
e
B[00 )

with e the restitution coefficient, table III sums up the effect
of the choice of this coefficient on the values of the state
variables before impact. This table shows that this method
does not work if we consider a dissipative impact (e = 0).
If so no energy can be restituted to the free dynamic and
the robot cannot move further. For this example we thus
consider the impact as completely inelastic and we deduce
the values of the state variable just before impact:

0. = 0

6 ~ 18s!
- =~ 022m
I_ ~ Om.s™t

Lastly we must generate the control law that lead our
robot to this pre-impact state. The reference trajectory is
defined by the solution of the optimization problem:

min J =k (l_ —0.22)2 + kyl?
Hi,H2
Oa = P(p1, p2)
(6)and(,
(7)
As velocity has no reason to be more important than the
position in this case, we choose k; = ko = 1. The reference
trajectory obtained are shown in figure 10.

The full step is completely defined. The system must now
calculate u at each time step from the values of the current
state variables using equation (7).
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Fig. 10. Reference trajectories to ensure an impact with 6_ ~ 1.8s~1,
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Fig. 11. The mechanical prototype of the cart-table

VI. CONCLUSION AND FUTURE WORKS

This paper proposes a new method to implement a control
law for biped robot based on a two-phase step and control
of the velocity when the foot of the robot impact the ground.
This method is presented on a simplified model: the cart-
table. It can be summed up in this way:

o Decomposing the step in two phase: the free dynamic

phase and the impact preparation phase.

e Choosing values at the end of the free dynamic for the
state variables.

o Determining the corresponding values of the state vari-
ables just after the impact by using the reverse dynamic
method.

o Determining the corresponding values of the state vari-
ables just before the impact by using the restitution
matrix.

o Calculating an optimal reference trajectory that enables
to reach the desired pre-impact values of the state
variables.

o Calculating the command at each time step from the
error between the reference and the real trajectory.
Even though this rough method brings interesting results,

many improvements could refine it.

Our future works will concentrate on different tracks. The
priority one is to design a control law for the impact prepa-



ration phase that is much consistent with an underactuated
system like the cart-table. Then we will try the full method
on the cart-table prototype shown in figure 11. Afterwards
more subtile improvements could be made, especially about
the impact model.

The final goal is to transcribe this method on the prototype
SHERPA in consideration of its desired walking speed.
Moreover this speed must be adaptive to the speed of the
person leading SHERPA. Thus an important work on the
definition of the value of the state variables at the end of
the free dynamic should be done along with the definition
of the step length.
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