
HAL Id: lirmm-00365620
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00365620

Submitted on 2 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mining Multiple-Level Fuzzy Blocks from
Multidimensional Data

Yeow Wei Choong, Anne Laurent, Dominique Laurent

To cite this version:
Yeow Wei Choong, Anne Laurent, Dominique Laurent. Mining Multiple-Level Fuzzy Blocks from Mul-
tidimensional Data. Fuzzy Sets and Systems, 2008, 159 (12), pp.1535-1553. �10.1016/j.fss.2008.01.011�.
�lirmm-00365620�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00365620
https://hal.archives-ouvertes.fr

Mining Multiple-Level Fuzzy Blocks from

Multidimensional Data ?

Yeow Wei Choong a Anne Laurent b Dominique Laurent c

aHELP University College - Kuala Lumpur - Malaysia
choongyw@help.edu.my

bLIRMM - CNRS UMR 5506 - Université Montpellier 2 - France
laurent@lirmm.fr

cETIS - CNRS UMR 8051 - Université Cergy-Pontoise - France
dominique.laurent@u-cergy.fr

Abstract

Multidimensional databases are now recognized as being the standard way to store
aggregated and historized data. Multidimensional databases are designed to store
information on measures (also known as indicators) regarding a set of dimensions.

One important issue in this framework is the identification of homogeneous areas
in data cubes, which allows users to summarize and visualize the data through the
main trends they contain. In our previous work, we have proposed a levelwise ap-
proach to mine homogeneous areas of the data, called blocks that can be interpreted,
for instance, as If product is Chocolate and month is between January and March
and city is London or Paris, then the number of sales is 5.

However, in this work, the information provided by the hierarchies defined over
the dimensions is not taken into account. In this paper, we consider the case where
measure values are discretized using a fuzzy partition, and we extend our method
so as to mine multiple-level fuzzy blocks, that is, blocks that are defined using
hierarchies and that characterize fuzzy measure values. Moreover, in order to avoid
redundancies in the output set of blocks, only the most specific ones (according to
hierarchies) are computed. We show that our algorithms are linear in the size of the
cube, thus providing an efficient method for summarizing data cubes.

Key words: Multidimensional Databases, Hierarchies, Levelwise Algorithms,
Fuzzy Data Mining.

? This paper is an extended version of the work presented in the proceedings of
the eleventh international conference IPMU 2006, under the title “Building Fuzzy
Blocks from Data Cubes” ([1]).

Preprint submitted to Elsevier

1 Introduction

Multidimensional databases have become very popular for decision making
frameworks. They are designed to store information about particular so-called
measures (e.g., number of sales) organized by means of dimensions (e.g., prod-
uct, city, type of customer and month). For this reason, such databases are
called hypercubes, or simply cubes. Considering a position on every dimension,
the corresponding information is the measure value for this combination of
values, and is called a cell.

These databases are aggregated views of raw data stored in operational databases,
which are far too voluminous to be analyzed efficiently. For instance, it is not
possible for shopping malls to record and analyze all the detail sales (cashier
ticket by cashier ticket) as: (i) the number of transactions is huge, and (ii)
decision makers do not care about the details, but rather prefer being aware
of some trends.

In this context, the huge amounts of data stored in multidimensional databases
are used by decision makers who:

• either try and navigate through this data using On-Line Analytical Process-
ing tools, usually referred to as OLAP tools
• or use reporting tools,
• or use data mining techniques to automatically get relevant information.

Roughly speaking, a multidimensional database allows to define cubes, that
are used to analyse the data according to specified dimensions and to one or
several measures. Moreover, hierarchies can be defined over dimensions so as to
analyze the data at different levels of granularity. For instance, sale quantities
can be analyzed according to dimensions Location and Product, over which
hierarchies can be used to aggregate sale quantities at different levels (e.g.,
country instead of city for the dimension Locations, or type of product instead
of individual product for the dimension Product).

OLAP tools provide users with operations over cubes (usually coming with
graphical tools using commercial software) to navigate through the data.
Even if there is no consensus on the operations defined for multidimensional
databases, it is usually agreed on defining operations for:

• visualizing data from different points of view ;
• visualizing data at different levels of granularity using the roll-up and drill-

down operations (note that these operations require the use of an aggrega-
tion operator so as to merge different values into a sigle one) ;
• selecting data, either by means of criteria on dimensions, or by means of

criteria on measure values.

2

Although asking for reports and navigating through the data are key issues
when anylizing multidimensional data, they require that the user has some a
priori background knowledge about the data, which might not be the case for
a casual user.

It is thus very important and challenging to design new tools to automatically
extract relevant knowledge from multidimensional databases, based only on
the stored data. In this framework, many issues are still open, such as the
automatic identification of relevant parts in the data. These parts can for
instance be related to homogeneous parts. The identification of such areas
would then provide users with methods to summarize and visualize their data
by using the main trends that they contain.

In our previous work ([2]), we have defined methods to mine homogeneous
areas of the data, called blocks. Roughly speaking, a block can be seen as a
sub-cube. These blocks are built up according two quality measures, called
support and confidence. Given a measure value m and a block b, the support
of b for m is defined as being the ratio of the number of cells of b that contain
m over the total number of cells in the data set. Similarly, the confidence of b
for m is defined as being the ratio of the number of cells of b that contain m
over the total number of cells in b.

Given a support threshold σ and a confidence threshold γ, the blocks whose
support and confidence are respectively above σ and γ are mined using a lev-
elwise method that has been shown to be scalable when facing large amounts
of data. In our method, the powerset of the set of dimensions is iteratively
scanned level by level, so as to combine intervals of member values defined
on dimensions. These intervals are computed at the first iteration, considering
successively each individual dimension.

In [3], this approach has been extended to the case of fuzzy blocks, whereby,
instead of considering individual measure values as such, measure values are
partitioned in a fuzzy way. This allows for aggragating values closed to each
other, and thus, provides a more relevant way of analyzing the data. For
instance, a block identifying an area interpreted as

When product is Chocolate and month is between January and March and
city is London or Paris then the number of sales is almost 5

involves sale values such as 4.8 or 5.7 with a membership degree defined by
the considered fuzzy partition.

Note that these areas are described over the dimensions defining the dataset,
which are usually more numerous than 2. Thus, when it comes to visualize
these areas, they have to be displayed in a 2D manner. An approach to this
issue was proposed in [4].

3

However, our previous work does not take into account the information pro-
vided by the hierarchies defined over the dimensions, and this prevents our
approach from discovering summaries defined over different levels in these
hierarchies.

For instance, when considering the sales almost equal to 8, even if no individual
product of type food can be associated to a block, it may be the case that,
when considering the data at a higher level, for instance at the level of types
of products, the number of sales almost equal to 8 is sufficient to appear in a
block, as shown by Figure 1.

In order to take this remark into account, in this paper, we assume that
measure values are partitioned according a fuzzy partition and we consider
multiple-level fuzzy blocks, i.e., fuzzy blocks characterizing a fuzzy interval in
the partition of measure values, and that are defined by intervals of values at
different levels of the hierarchies defined on the dimensions. It is important to
note that, in doing so, we do not aggregate measure values as would be done
by applying a roll-up operation on the cube. Instead, each cell is considered
at the lowest level and counted as such in the supports, but the blocks are
defined according to a given level of the hierarchy on each dimension.

In our example, at the level of category of products and geographical areas,
when considering the block defined by the category Food and the South area,
we still consider individual cells for counting the support and the confidence.
In this case the support and the confidence are equal to 5/24 and 5/6, re-
spectively. As these values are respectively greater than the corresponding
thresholds, namely 3/24 and 80%, the block is output.

On the other hand, it should be noticed that counting supports and confidences
at the levels of individual products and cites produces no block. This is so
because, according to our method, the cube contains two slices with at least 3
cells whose measure value is almost 8, namely the slices defined by City1 and
bread, respectively. But

• when combining these slices, the produced block contains only one cell and
thus, cannot have a support greater than or equal to 3/24,
• when considering these slices as blocks, their confidences are 3/4 and 5/6,

respectively, which is less than 80%.

We note in this respect that this example illustrates that our approach is not
complete, in the sense that there might exist blocks that fullfil the threshold
conditions but that are not output. This point is discussed in details in [3], in
the case where no hierarchies over dimensions are considered.

Thus compared to our previous work ([2,3]), the main contribution of this
paper is to propose an extended method in order to mine multiple-level fuzzy

4

Fig. 1. Rolling-Up for Discovering Blocks (σ = 3/24 and γ = 80%)

blocks from multidimensional databases. These blocks are defined so as:

• Measure values are considered according to a fuzzy partition over their
domain, thus complying with the fact that two measure values closed to
each other can be considered as almost equal.
• For each dimension, the most specific level in the associated hierarchy is

considered, in order to avoid redundancies among output blocks.

To do so, we assume that we are given a support threshold σ and a confidence
threshold γ, and we use a levelwise approach that roughly works according to
the following two steps, for each fuzzy interval ϕ defined over measure values:

(1) The first step consists in computing for each dimension and at all levels
of the corresponding hierarchy all maximal intervals of member values
that define a slice whose support is greater than or equal to σ.

(2) In the second step, the intervals are combined to form blocks defined over
all dimensions, among which only the most specific ones whose support
and confidence are respectively greater than or equal to σ and γ are kept.

It is important to note that considering hierarchies over dimensions can still be
processed efficiently, since it is shown in this paper that the time complexity
of the corresponding algorithms is linear in the size of the cube. Moreover, it is
also shown that our approach can be extended, while keeping linear algorithms
in the size of the cube, to the cases where (i) a fuzzy hierarchy is defined over

5

measure values, and (ii) hierarchies over dimensions are fuzzy.

The paper is organized as follows: In Section 2, we introduce the basic no-
tions regarding the multidimensional data model (cubes and their associated
hierarchies, and representations) and our approach (blocks and slices). In Sec-
tion 3, we define the notions of support and confidence of a block, along with a
specificity relation between blocks, with respect to which the support measure
is shown to be anti-monotonic. Section 4 is devoted to the implementation
issues of our approach (namely the corresponding algorithms and their time
complexity) and to the extensions mentioned above. In Section 5, we report on
preliminary experiments that show the effectiveness of our approach, and in
Section 6, we briefly survey related work. We conclude the paper in Section 7.

2 Background

2.1 Multidimensional Databases

A cube can be seen as a set of cells. A cell represents the association of a
measure value with one member value in each dimension. Moreover, hierarchies
can be defined over dimensions so as to aggregate the data. Formally, a cube
is defined as follows.

Definition 1 - Cube. A k-dimensional cube C, or simply a cube, is a tuple
〈dom1, . . . , domk, domm, mC〉 where

• dom1, . . . , domk are k finite sets of symbols for the members associated with
dimensions 1, . . . , k respectively,

• let dommes be a finite totally ordered set of measures. Let ⊥ 6∈ dommes be a
constant (to represent null values). Then domm = dommes ∪ {⊥},
• mC is a mapping from dom1 × . . . × domk to domm assigning a measure

value (possibly null) to each k-tuple of member values.

A cell c of a k-dimensional cube C is a (k + 1)-tuple 〈v1, . . . , vk, m〉 such that
for every i = 1, . . . , k, vi is in domi and where m = mC(v1, . . . , vk). Moreover,
m is called the content of c and c is called an m-cell. A hierarchy over a
dimension of a cube C is defined as follows.

Definition 2 - Hierarchy. Let C be a k-dimensional cube and di a dimension
of C. A hi-level hierarchy Hi over di is a hi-tuple of pairs (domj

i , h
j
i) where for

every j = 1, . . . , hi, domj
i and hj

i are respectively a set of values and a mapping
defined as follows: Using the convention that domi can also be denoted by dom0

i ,
Hi is such that

6

• For all distinct j and j′ in {0, . . . , hi}, domj
i ∩ domj′

i = ∅.
• The set domhi

i is a singleton whose element is denoted by >i.
• For every j = 1, . . . , hi, hj

i is a mapping from domj−1
i to domj

i .

For every j = 1, . . . , hi, and every element v in domj−1
i , hj

i (v) is called the
successor of v according to Hi, and v is called a predecessor of hj

i (v) according

to Hi. For every j′ = j, . . . , hi, hj′

i (. . . (hj
i (v)) . . .) is called an ancestor of v

according to Hi, and v is called a descendent of hj′

i (. . . (hj
i (v)) . . .) according

to Hi.

For example, referring back to Figure 1, we consider a 2-dimensional cube
C. If the dimension represented on the horizontal axis is d1, then a 2-level
hierarchy H1 is defined on d1 by:

• dom1 = dom0
1 = {water, soda, butter, bread}, dom1

1 = {Beverage, Food}
and dom2

1 = {>1},
• h1

1(water) = h1
1(soda) = Beverage and h1

1(butter) = h1
1(bread) = Food,

• h2
1(Beverage) = h2

1(Food) = >1.

Thus, Beverage is the successor and so, one ancestor of water and soda.
Similarly, >1 is an ancestor of all elements in dom1.

2.2 Representations

Operations such as selection, projection, rotation or switch have been defined
in the literature to manipulate data cubes. In [5], the switch operation is
used to modify the representation of a cube without altering the data, while
presenting the cube in an “ordered” way, so as to ease data exploration. We
recall the main definition of [5] below.

Definition 3 - Representation. A representation of a cube C is a set R =
{rep1, . . . , repk} where for every i = 1, . . . , k, repi is a one-to-one mapping
from domi to {1, . . . , |domi|}.

Figures 1 and 2 display two different representations of the same cube, and it
should be clear that, although displaying the same cube, these two represen-
tations do not yield the same blocks.

Let C be a k-dimensional cube and R = {rep1, . . . , repk} a representation of
C. Given a dimension di in C, and v1 and v2 in domi, v1 and v2 are said to be
contiguous if repi(v1) and repi(v2) are consecutive integers, i.e., if |repi(v1)−
repi(v2)| = 1. Then, the interval [v1, v2] is the set of all contiguous values
between v1 and v2.

7

CITY

City6 12 12.8

City4 4.8 6.2 18

City5 14

City3 8.3 4.1

City2 8.2 17 8.4 2.9

City1 7.8 7.9 8

bread soda butter water PRODUCT

Fig. 2. A non Hierarchy-Consistent Representation of the Cube of Figure 1

Since hierarchies are taken into account in this work, we generalize the notion
of representation as follows. Let C be a k-dimensional cube with hierarchies
H1, . . . , Hk. Then, a representation R of C is said to be hierarchy-consistent
if the following holds:

For every i = 1, . . . , k and every j = 1, . . . , hi, the set of all member values
in dom0

i having the same ancestor in domj
i is an interval.

For example, the representation of the cube in Figure 1 is hierarchy-consistent,
whereas the representation of the same cube shown in Figure 2 is not. Indeed,
the representation in Figure 2 is obtained from that of Figure 1 by switching
City4 and City5 on dimension CITY , and water and bead on dimension
PRODUCT . Although switching City4 and City5 preserves consistency for
the hierarchy over this dimension, when switching water and bread, the set
of all members having Food as ancestor, namely {butter, bread}, is not an
interval in this representation.

Considering a hierarchy-consistent representation, for every i = 1, . . . , k and
every j = 1, . . . , hi, it is then possible to define one-to-one mappings repj

i from
domj

i to {1, . . . , |domj
i |}. Consequently, the notions of contiguous values and of

intervals in domj
i are defined as above at any level of any hierarchy H1, . . . , Hk.

Moreover, in order to simplify notation, an interval containing only one value,
i.e., an interval of the form [v, v], is simply denoted by [v].

Based on this notation, when considering a hierarchy-consistent representa-
tion, it is easy to see that for every i ∈ {1, . . . , k}, if for j ∈ {0, . . . , hi}, δj

i is
an interval in domj

i then, for every j′ > j, the set

{v′ ∈ domj′

i | (∃v ∈ δi)(v
′ = hj′

i (. . . (hj
i (v)) . . .)}

is an interval in domj′

i . This interval is denoted by hj′

i (δi).

8

In the remainder of this paper, we consider a fixed k-dimensional cube C and
a fixed hierarchy-consistent representation of C, R = {rep1, . . . , repk}.

2.3 Blocks

In our approach, a block of C is a sub-cube of C.

Definition 4 - Block. Given a k-dimensional cube C with hierarchies H1, . . . ,
Hk, a block b is a set of cells of C defined by b = δ1 × . . . × δk where for
i = 1, . . . , k, δi is an interval of contiguous values in domj

i , for some j in
{0, . . . , hi}.

Note that we consider a block b = δ1 × . . . × δk as defined by k intervals,
meaning that it can happen that intervals can contain the whole set of member
values for a dimension. Such an interval is denoted by ALLj

i , where j is the
level of the hierarhy Hi according to which δi is defined, i.e., the integer in
{0, . . . , hi} such that δi ⊆ domj

i . It should be noticed that a block b defined
by b = δ1 × . . .× δi−1 ×ALLj

i × δi+1 × . . .× δk contains the same cells as the
block b′ defined by b′ = δ1 × . . .× δi−1 × [>i]× δi+1 × . . .× δk.

Moreover, two blocks are said to overlap if they share at least one cell. It is
easy to see that two blocks b = δ1 × . . .× δk and b′ = δ′1 × . . .× δ′k overlap if
and only if for each dimension di, δi ∩ δ′i 6= ∅.

In our formalism, a slice is defined as a particular block.

Definition 5 - Slice. Let vi be a value from domi. A slice of C associated
with vi, denoted T (vi), is the block δ1× . . .× δk such that δi = [vi], and for all
j 6= i, δj = ALL0

j .

Two slices defined on the same dimension di are said to be contiguous if they
are associated with two contiguous values from domi.

For instance, in Figure 1, the slices T (City3) and T (City4) are contiguous
since City3 and City4 are contiguous in the considered representation. On
the other hand, T (soda) and T (bread) are not contiguous because soda and
bread are not contiguous.

3 Multiple-Level Fuzzy Blocks

As mentioned in the introductory section, in order to obtain relevant sum-
maries, we do not consider measure values as such. Instead, we assume that

9

a fuzzy partition is defined over the set dommes. In this case, counting the
support and the confidence of a given block b is achieved accordingly.

3.1 Definitions

When considering fuzzy intervals, counting cells in a block b with respect to a
fuzzy interval ϕ can be computed according to the following methods ([6,7]):

(1) The Σ-count sums up the membership degrees of all cells of b.
(2) The threshold-count counts those cells of b whose membership degree is

greater than a user-defined threshold.
(3) The threshold-Σ-count sums up those cell membership degrees that are

greater than a user-defined threshold.

In what follows, given a fuzzy interval ϕ and a cell c with content m, we
denote by µ(c, ϕ) the membership value of m in ϕ. Moreover, given a block b,
Σf

c∈bµ(c, ϕ) denotes the count of cells in b whose content is in ϕ, according to
one of the three counting methods mentioned above. In this case, the support
and confidence of a block b are defined as follows.

Definition 6 - Fuzzy Support and Confidence. The support of a block b
in C for a fuzzy interval ϕ is defined as:

supp(b, ϕ) =
Count(b, ϕ)

|C|

where Count(b, ϕ) = Σf
c∈bµ(c, ϕ). Given a support threshold σ, b is said to be

σ-frequent for ϕ if supp(b, ϕ) ≥ σ.

Similarly, the confidence of b for ϕ is defined as:

conf(b, ϕ) =
Count(b, ϕ)

|b|
.

In order to illustrate the definition above, let us consider the cube shown
in Figure 1. Let us assume that ϕ is a fuzzy interval whose kernel is [7, 8]
and whose support is [6, 9] and that counting is achieved using the Σ-count
function. For the block b = [soda, bread]× [South], we have:

(1) If we consider the cells of b in a left-right and bottom-up way, we have:
supp(b, ϕ) = 0+0+0+0.9+0.6+0+0.8+0.8+0.7

24
= 3.8

24
.

(2) Thus, conf(b, ϕ) = 3.8
9

.

Consequently, for a support threshold σ = 3/24, b is σ-frequent for ϕ, but, if
we consider a confidence threshold γ = 80%, we have conf(b, ϕ) < γ.

10

We now define the following specificity relation between blocks of a given k-
dimensional cube C and its associated hierarchies H1, . . . , Hk.

Definition 7 - Specificity Relation. Let b = δ1 × . . . × δk and b′ = δ′1 ×
. . .× δ′k be two blocks. b′ is said to be more specific than b, denoted by b v b′,
if for every i = 1, . . . , k,

δi 6= δ′i ⇒ (j > j′) ∧ (hj
i (δ

′
i) ⊆ δi)

where j and j′ are the levels in Hi over which δi and δ′i are defined, that is, j

and j′ are integers in {0, . . . , hi} such that δi ⊆ domj
i and δ′i ⊆ domj′

i .

For instance, in the cube of Figure 1, for b = [>PRODUCT]× [City1, City3] and
b′ = [Food]× [City1, City3], we have b v b′ since the intervals defining b and
b′ satisfy the above definition.
On the other hand, b and b′′ = [water, butter] × [North] are not compara-
ble according to v, because [water, butter] is defined at a lower level than
[>PRODUCT], whereas [North] is defined at a higher level than [City1, City3].

3.2 Properties

The following lemma states that the relation v as defined above is a partial
ordering over the set of all blocks of the cube C that refines inclusion of blocks.

Lemma 1 Given a k-dimensional cube C with hierarchies H1, . . . , Hk, the
relation v is a partial ordering over the set of all blocks. Moreover, for all
blocks b and b′, if b v b′ then b′ ⊆ b.

Proof. We first note that v is trivially reflexive. Regarding anti-symmetry,
let us consider b = δ1 × . . . × δk and b′ = δ′1 × . . . × δ′k such that b v b′ and
b′ v b. If b 6= b′ then there exists i ∈ {1, . . . , k} such that δi 6= δ′i. In this case,
according to Definition 7, these intervals are defined at levels j and j′ of Hi

such that j < j′ and j′ < j, which is a contradiction. Therefore, b = b′, which
shows that v is anti-symmetric.
Let us now consider three blocs b = δ1 × . . . × δk, b′ = δ′1 × . . . × δ′k and
b′′ = δ′′1 × . . . × δ′′k such that b v b′ v b′′, and let us show that b v b′′. If
b = b′′ then the result follows trivially. Otherwise, let i be such that δi 6= δ′′i .
In this case, we have δi 6= δ′i or δ′i 6= δ′′i . Thus, assuming that δi, δ′i and δ′′i are
respectively defined at levels j, j′ and j′′, by Definition 7, we have j > j′′ and
hj

i (δ
′′
i) ⊆ δi. Therefore, v is transitive.

Let b and b′ such that b v b′, and let c = 〈v1, . . . , vk, m〉 be a cell in b′. Then,
for every i = 1, . . . , k, vi has an ancestor in δ′i. By Definition 7, for every
i = 1, . . . , k, we have either δ′i = δi or hj

i (δ
′
i) ⊆ δi. Thus, in both cases, vi has

an ancestor in δi, which shows that c belongs to b. Thus we have b′ ⊆ b. 2

11

Given a set of blocks B, the maximal (respectively minimal) elements of B are
said to be most specific (respectively most general) in B. Most specific blocks
and most general blocks are called MS-blocks and MG-blocks, respectively.

The following property states that the support measure is anti-monotonic with
respect to the preordering v.

Proposition 1 Let C be a k-dimensional cube. For all blocks b and b′ of C,
if b v b′, then for every fuzzy interval ϕ, supp(b′, ϕ) ≤ supp(b, ϕ).

Proof. Since we assume that b v b′, by Lemma 1, we have that b′ ⊆ b.
Then, considering any of the three counting method mentioned above, we
have Count(b′, ϕ) ≤ Count(b, ϕ), which implies that supp(b′, ϕ) ≤ supp(b, ϕ).
2

Proposition 1 above is used in our algorithms in the same way as done in [8] for
pruning the search space when computing frequent itemsets. More precisely,
given a support threshold σ, assuming that b is a block such that supp(b, ϕ) <
σ then, for every block b′ such that b v b′, we know that supp(b′, ϕ) < σ
without accessing the data.

The following proposition shows that when considering intervals over all di-
mensions of the cube, at all levels of the associated hierarchies, then the set
of blocks obtained by combining these intervals is a lattice.

Proposition 2 Let C be a k-dimensional cube with hierarchies H1, . . . , Hk.
Let I be a set of intervals such that, for every i = 1, . . . , k:

(1) I contains at least one interval I such that I ⊆ domj
i , for some j in

{0, . . . , hi}.
(2) If I and I ′ are intervals in I such that I ⊆ domj

i and I ′ ⊆ domj
i for some

j in {0, . . . , hi}, then I ∩ I ′ = ∅.
(3) For every I in I such that I ⊆ domj

i , for some j in {0, . . . , hi−1}, there
exists I ′ in I such that I ′ ⊆ domj+1

i , and hj+1
i (I) ⊆ I ′.

Let B(I) be the set containing the empty block along with all blocks of the
form I1 × . . .× Ik where, for every i = 1, . . . , k, Ii is in I. Then 〈B(I),v〉 is
a lattice.

Proof. Let b = I1 × . . . × Ik and b′ = I ′1 × . . . × I ′k be two blocks B(I). We
first note that condition (1) in the proposition ensures that at least one such
block exists. In order to show that 〈B(I),v〉 is a lattice, we have to prove
that B(I) contains a unique least upper bound and a unique greatest lower
bound for b and b′, according to v. For every i = 1, . . . , k, we have Ii ⊆ domj

i

and I ′i ⊆ domj′

i , where j and j′ are in {0, . . . , hi}. By Definition 2, we have
domhi

i = {>i}, thus by condition (3) in the proposition, there exist a unique

12

least integer j− in {0, . . . , hi} and an interval I−i in I such that:
(i) I−i ⊆ domj−

i and j− ≥ min(j, j′),
(ii) hi−

i (Ii) ⊆ I−i and hj−
i (I ′i) ⊆ I−i .

Moreover, the condition (2) in the proposition implies that this interval I−i is
unique. Thus, denoting by b− the block I−1 × . . .×I−k , we have that b− ∈ B(I).
Moreover, b− v b and b− v b′, and it turns out that b− is the unique greatest
lower bound of b and b′.
A similar reasoning holds for the lowest upper bound of b and b′, considering
the unique greatest j+ in {0, . . . , hi} and the interval I+

i in I such that:
(i) I+

i ⊆ domj+
i and j+ ≤ max(j, j′),

(ii) hi+
i (Ii) ⊆ I+

i and hj+
i (I ′i) ⊆ I+

i .
In this case, denoting by b+ the block I+

1 × . . .× I+
k , we have that b+ ∈ B(I),

b v b+ and b′ v b+, and it turns out that b+ is the unique lowest upper bound
of b and b′. We note however that b+ may be empty when, for at least one i
in {1, . . . , k}, I+

i = ∅. 2

Proposition 2 above is used in the algorithms given below in order to show
that, when computing σ-frequent blocks for a given fuzzy interval ϕ, the search
space is a lattice.

4 Implementation Issues

In this section we first present the algorithms for mining multiple-level blocks,
and we show that the time complexity of these algorithms is linear in the size
of the cube. Then, we discuss two possible extensions of our approach.

4.1 Algorithms

Given a k-dimensional cube C with hierarchies H1, . . . , Hk, a support threshold
σ and a confidence threshold γ, our method works according to the following
three steps, for every fuzzy interval ϕ:

(1) Step 1. Compute all intervals of values defining a σ-frequent slice for ϕ.
(2) Step 2. Compute all σ-frequent blocks for ϕ, based on the intervals ob-

tained at Step 1.
(3) Step 3. Among all blocks obtained at Step 2, sort out all non MS-blocks.

We now describe the three steps above in more details.

Step 1. For every i = 1, . . . , k, Algorithm 1 and Algorithm 2 compute all
maximal intervals I of values in domi such that, for every v in I, the slice
T (v) is σ-frequent for ϕ. It should be noticed that, while doing so, all levels

13

Algorithm 1: Computation of L1(m)
Data: A k-dimensional data cube C, a fuzzy interval ϕ, a support threshold σ

Result: The set of intervals L1(ϕ), the set of corresponding blocks B1(ϕ)
L1(ϕ)← ∅
foreach dimension di, i = 1, . . . , k do

foreach level p of Hi, p = 0, . . . , hi do
int(ϕ, i, p)← ∅
currentIntervalp ← [NIL]
precMemberp ← NIL

foreach j = 1, . . . , |domi| do
currentMember0 ← rep−1

i (j)
s0 ← supp(T (currentMember0), ϕ)
updateInterval(0)
precMember0 ← currentMember0

foreach level p of Hi such that p = 1, . . . , hi do
currentMemberp ← hp

i (currentMemberp−1)
if currentMemberp = precMemberp then

sp ← sp + s0

else
sp ← s0

updateInterval(p)
precMemberp ← currentMemberp

L1(ϕ)← L1(ϕ) ∪
(⋃p=hi

p=0 int(ϕ, i, p)
)

B1(ϕ) ← {b = δ1 × . . . × δk | (∃i)(∃p)(δi ∈ int(ϕ, i, p) and (∀j 6= i)(δj =
ALL0

j)) and conf(b, ϕ) ≥ γ}

Algorithm 2: Function updateInterval
Data: A level p in the hierarchy Hi associated to dimension i

Result: The updated values of currentIntervalp and int(ϕ, i, p)
if sp < σ then

if (currentIntervalp = [αp, NIL] where αp 6= NIL) and (precMemberp 6=
currentMemberp) then

/* close the current interval with precMemberp, and set the current interval
to the empty interval */
int(ϕ, i, p)← int(ϕ, i, p) ∪ {[αp, precMemberp]}
currentIntervalp ← [NIL]

else
if currentIntervalp = [NIL] then

/* start a new current interval with currentMemberp */
currentIntervalp ← [currentMemberp, NIL]

if j = |domi| and currentIntervalp = [αp, NIL] where αp 6= NIL then
int(ϕ, i, p)← int(ϕ, i, p) ∪ {[αp, currentMemberp]}

14

Algorithm 3: Discovery of MS-blocks
Data: A k-dimensional data cube C, a support threshold σ, and a confidence thresh-

old γ.
Result: The set of MS-blocks B associated with C
foreach fuzzy interval ϕ do

Compute L1(ϕ) and B1(ϕ)
Let b> = [>1]× . . .× [>k]
/* b> can be written as ALL0

1 × . . .×ALL0
i−1 × [>i]×ALL0

i+1 × . . .×ALL0
k

for any i = 1, . . . , k */
if supp(b>, ϕ) < σ then

/* This is tested using L1(ϕ) */
B0(ϕ)← ∅

else
if conf(b>, ϕ) < γ then

/* This is tested using B1(ϕ) */
B0(ϕ)← {b>}

l← 1
while Ll(ϕ) 6= ∅ do

l← l + 1
Bl(ϕ)← ∅
/* Generate and prune candidates at level l */
Cl ← Generate(Ll−1(ϕ))
Ll(ϕ)← ∅
foreach b = δ1 × . . .× δk in Cl do

if supp(b, ϕ) ≥ σ then
Ll(ϕ)← Ll(ϕ) ∪ {b}
if conf(b, ϕ) ≥ γ then Bl(ϕ)← Bl(ϕ) ∪ {b}

B(ϕ)← {b ∈
i=l⋃
i=0
Bi(ϕ) | b is an MS-block}

B ←
⋃
ϕ
B(ϕ)

of the corresponding hierarchy Hi are considered and all maximal intervals
of values in domj

i are computed for every j = 0, . . . , hi. In Algorithm 1, the
values in domi are scanned, and the support of the corresponding slice is
computed. For each such value, the support of the slices corresponding to
higher levels in Hi are computed accordingly, without any further access to
the cube. In Algorithm 2, the intervals are explicitly constructed at all levels
of the hierarchy Hi, in a bottom-up manner. Moreover, the confidence of the
slices are also computed in Algorithm 1, so as to obtain all slices seen as blocks
that are σ-frequent for ϕ and whose confidence is greater than or equal to γ.
We note that computing the confidence of a block knowing its support does
not require to access the cube.
It is also important to notice that, if at least one interval is computed for each
dimension, then in this case, the set of intervals obtained at this step satisfies

15

Algorithm 4: Function Generate
Data: The set Ll−1(ϕ) of blocks b of level l − 1 such that supp(b, ϕ) ≥ σ

Result: The set Cl of block candidates at level l

Cl ← ∅
for all b = δ1 × . . .× δk and b′ = δ′1 × . . .× δ′k in Ll−1(ϕ) do

if there exist two distinct integers i1 and i2 such that for every i 6= i1 and i 6= i2,
δi = δ′i then

if there exist p and q such that hp
i1

(δi1) ⊆ δ′i1 and hq
i2

(δ′i2) ⊆ δi2 then
Let b12 = µ1 × . . .× µk be the block such that
− µi = δi, for every i such that i 6= i1 and i 6= i2
− µi1 = δi1 and µi2 = δ′i2
/* Pruning */
if for every i = 1, . . . , k, Ll−1(ϕ) contains a block µ1× . . .×µi−1× νi×
µi+1 × . . . × µk such that, either νi = >i, or for some p ∈ {1, . . . , hi},
hp

i (µi) ⊆ νi then
Cl ← Cl ∪ {b12}

the three hypotheses of Proposition 2. Indeed:

(1) The first hypothesis is trivially satisfied.
(2) The second hypothesis stating that two distinct intervals at the same

level of the hierarchy Hi are disjoint is satisfied thanks to Algorithm 2.
Indeed, the domain domi is scanned in a linear manner without back-
tracking and at any level in Hi, a new interval is created with a member
value occurring after the member value closing the previous interval.

(3) Regarding the third hypothesis, if an interval is obtained at a certain level,
then by considering the higher levels of Hi in Algorithm 1, an interval at
each of these levels is obtained. This is so because it is easy to see that
if, for v in domj

i (0 ≤ j ≤ hi−1), T (v) is σ-frequent for ϕ, then T (hj
i (v))

is also σ-frequent for ϕ.

Thus, by Proposition 2, the set of all blocks obtained by combining the inter-
vals computed at this step is a lattice.

Step 2. The intervals obtained by the previous step are combined in a levelwise
manner as shown in Algorithm 3. The first level consists in checking wether
the whole cube is σ-frequent for ϕ. We note that this test does not require to
scan the cube. Indeed, the cube can be seen as any slice of the form ALL0

1 ×
. . . × ALL0

i−1 × [>i] × ALL0
i+1 × . . . ALL0

k, for any i = 1, . . . , k, and thus,
these blocks are computed during the previous step, if they are σ-frequent for
ϕ. We also note that, in this case, the confidence of the block is equal to its
support, and thus, again, no scan is necessary at this stage. Moreover, if the
whole cube is not σ-frequent for ϕ, then the computation stops, due to the
anti-monotonicity property of the support (see Proposition 1).
Otherwise, the intervals computed at the previous step are used to form in a

16

levelwise manner all possible candidates whose support have to be counted. In
this computation, the hierarchies over dimensions are considered in a top-down
manner. Moreover, when generating the candidates at level l, we consider the
σ-frequent blocks for ϕ at level l− 1 in a similar was as done in [8]. This step
is achieved in Algorithm 4 in which a pruning phase is included to sort out
all candidates for which one immediate precedessor according to the partial
ordering v is not σ-frequent for ϕ. As in [8], this pruning step is a consequence
of the anti-monotonicity of the support (see Proposition 1).
Once all σ-frequent blocks for ϕ are computed, which requires one scan of the
cube for the current level, the confidence of these blocks is checked against
the threshold γ, and this does not require to access the cube.

Step 3. Based on the set of all blocks computed in the previous step, only
those blocks that are MS-blocks are kept in the output set. To do so, each
block is compared to the others with respect to the ordering v, which does
not require to access the cube.

4.2 Complexity Issues

In this section, we show that our method for computing blocks is linear in
time with respect to the size of the cube. To see this, given a k-dimensional
cube C with hierarchies H1, . . . , Hk, we denote by:

• |C| the size of C, i.e., the number of cells contained in C,
• h the maximal height of the hierarchies H1, . . . , Hk,
• N the number of fuzzy intervals that are defined over the set dommes of

measure values.

Let ϕ be a fuzzy interval. In Algorithm 1, the cube is scanned once for each
dimension di. Thus, this step requires k scans of the cube C. On the other
hand, regarding the complexity of Algorithm 3, at each level, the whole cube is
scanned at most once in order to compute the support of all candidate blocks.
Therefore, this step requires at most a number of scans equal to the maximal
height of the considered lattice. As shown in Algorithm 4, the candidates
generated at level l are obtained from the σ-frequent blocks for ϕ in Ll−1(ϕ) by
“going down” one level in the hierarchy associated to one of the k dimensions.

Thus, the maximal height of the lattice is h . k, and so, the computation of
all σ-frequent blocks for ϕ requires a number of scans of C in O(h . k). As
computing the confidence of a block knowing its support does not require the
scanning of the cube (because the size of a block is the product of the sizes
of the intervals defining this block), the time complexity of Algorithm 3 is in
O(h . k . |C|).

17

Therefore, considering all fuzzy intervals, it turns out that the computation of
the blocks is in O(N . h . k . |C|), i.e., linear with respect to the size |C| of C.

We note that the complexity result above does not take into account the fact
that the hierarchies H1, . . . , Hk have to be scanned during the processing. This
is so because we assume these hierarchies to be stored in main memory, which
is justified in practice by the fact that the cardinalities of the domains domi

(i = 1, . . . , k) is negligeable compared to that of the cube.

4.3 Extensions of the Approach

In this section, we show that the following extensions of our approach can
be implemented, based on the algorithms given previously, without increasing
their time complexity in the number of scans of C.

(1) Instead of considering a fuzzy partition over measure values, assume that
a fuzzy hierarchy is defined over measure values.

(2) Consider fuzzy hierarchies over dimensions, instead of crisp ones.

(1) When considering a fuzzy hierarchy over measure values, which we denote
by Hm, a naive way to deal with this case could be to apply the algorithms
given above at each level of Hm. Of course, such an implementation would
increase the complexity of the approach, simply because the number of fuzzy
intervals over measure values becomes larger in this case.

However, when considering a fuzzy interval ϕ at the lowest level of Hm, it
is also possible to compute the supports and the confidences of blocks with
respect to all fuzzy intervals in Hm that generalize ϕ. To this end, given a fuzzy
interval ϕ at the lowest level of Hm, Algorithm 1 and Algorithm 3 have to be
modified so as to compute respectively the intervals and then the σ-frequent
blocks associated to all intervals generalizing ϕ. It is important to note that,
considering these modifications, the complexity in the scans of the cube C of
the algorithms is not changed.

(2) Let us now consider the extension of our approach to the consideration of
fuzzy hierarchies over dimensions. In this case, given a block b = δ1× . . .× δk,
the intervals δ1, . . . , δk are fuzzy intervals, and thus, the definitions of support
and confidence must be modified accordingly.

To this end, we consider a fixed way of fuzzy counting, denoted by Σf (see
Section 3), and we denote membership of a member value vi to a fuzzy interval
δi by µi(vi, δi). Then, given a cell c = 〈v1, . . . , vk, m〉 in C, membership of c
to b, denoted by µ(c, b), is defined by µ(c, b) =

⊗i=k
i=1(µi(vi, δi)), where ⊗ is a

t-norm (usually the minimum or the product, as mentioned in [7]). Using this

18

notation:

• The fuzzy cardinality of b, denoted by |b|f , is defined by: |b|f = Σf
c∈C(µ(c, b)).

• If ϕ is a fuzzy interval of measure values, the count of cells in b whose
content is in ϕ, denoted by f -Count(b, ϕ), is defined by: f -Count(b, ϕ) =
Σf

c∈C(µ(c, b)⊗ µ(c, ϕ)).

In this setting, the fuzzy-support and the fuzzy-confidence of a block b for
ϕ, respectively denoted by f -supp(b, ϕ) and f -conf(b, ϕ), are then defined as
follows:

f -supp(b, ϕ) =
f -Count(b, ϕ)

|C|
and f -conf(b, ϕ) =

f -Count(b, ϕ)

|b|f
.

As a consequence, based on the algorithms given above, the extension to fuzzy
partitions on the dimensions can easily be implemented by simply changing
the ways the supports and confidences are computed. Moreover, it is important
to note that, in this case, the obtained algorithms are still linear in the size
of C. This is so, because knowing the value of f -supp(b, ϕ), f -conf(b, ϕ) can
be obtained without scanning the cube, since computing |b|f requires only to
scan dimensions.

5 Experiments

In this section, we report on experiments in terms of runtime, number of
blocks, and rate of overlapping blocks, with and without taking into account
hierarchies over dimensions. These experiments are run on synthetical datasets
and on a real data set.

5.1 Synthetic Data

For experiments performed on synthetic multidimensional, data have been
randomly generated.

Depending on the experiments, the cubes contain up to 107 cells, the number
of dimensions ranges from 2 to 9, the number of members per dimension ranges
from 2 to 10, and the number of cell values ranges from 5 to 1, 000.

The first experiments report on the impact of taking into account single values,
crisp intervals, or fuzzy intervals, when dealing with measure values. It should
be noticed in this respect that the case of fuzzy intervals considered in the
present paper is the most general one, compared to considering single measure

19

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

N
um

be
r

of
 b

lo
ck

s

Number of dimensions

Single values
Intervals

Fuzzy intervals

Fig. 3. Number of discovered blocks w.r.t. the number of dimensions

 0

 20

 40

 60

 80

 100

 120

 0 2 4 6 8 10

N
um

be
r

of
 b

lo
ck

s

Number of members per dimension

Single values
Intervals

Fuzzy Intervals

Fig. 4. Number of discovered blocks w.r.t. the number of members

values or crisp intervals of measure values. As shown below, fuzzy intervals
lead to more valuable results than single measure values or crisp intervals.

Figure 3 shows the number of blocks output by the three methods (single
values, crisp intervals and fuzzy intervals) according to the number of dimen-
sions, and Figure 4 shows the number of blocks output by the three methods
(single values, crisp intervals and fuzzy intervals) according to the number of
members per dimension.

It should be noted that we obtain more blocks based on intervals than blocks
based on single values. This is due to the fact that taking intervals into account
increases the chance for a value to match a block value. However, the number
of blocks based on fuzzy intervals is lower than the number of blocks based on
the other two methods. This is due to the fact that fuzzy blocks can merge
several blocks (which would have overlapped, as shown below).

20

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

R
un

tim
e

(s
ec

on
ds

)

Total Number of Cells per Cube

Single values
Intervals

Fuzzy Intervals

Fig. 5. Runtime w.r.t. the size of the cube

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

T
im

e
(s

ec
on

ds
)

Number of cells

Single values
Intervals

Fuzzy intervals

Fig. 6. Runtime w.r.t. the size of the cube

Figures 5 and 6 show the runtime of the three cases (single values, crisp in-
tervals, fuzzy intervals) according to the size of the cube (number of cells). It
can be seen that taking crisp and fuzzy intervals into account leads to slightly
higher runtimes, if compared with the case of single measure values. However,
all runtimes are still comparable and behave the same way.

Figure 7 shows the rate of overlapping blocks depending on the method (single
values, crisp intervals of fuzzy intervals) according to the number of dimen-
sions of the cube. This figure suggests that, in the case of this dataset, using
crisp methods leads to the fact that many blocks overlap (100% in the case of
this experiment), while taking fuzziness into account reduces the rate of over-
lapping. This fact should be put in relation with the imprecision/uncertainty
trade off, i.e., the more certain, the less precise and conversely.

In order to assess the impact of hierarchies, we have performed tests against
data sets involving hierarchies having 1 level (i.e., no hierarchy), and then 2

21

Number of dimensions

O
ve

rla
pp

in
g

R
at

e

Fig. 7. Rate of Overlapping Blocks w.r.t. the Number of Dimensions

and 3 levels. These levels are successively generated by randomly partitioning
the domains of the dimensions into fuzzy intervals. Moreover, these databases
contain 5 up to 1, 000 distinct measure values, which are treated as fuzzy
intervals.

Figure 8 reports on the runtime depending on the size of the cube, while Figure
9 reports on the number of discovered blocks using fuzzy intervals over the
measure, with respect to the size of the cube.

It should be noted that we obtain more blocks when considering hierarchies
over dimensions. We also note that the number of blocks is even increased
when hierarchies are fuzzy. This is due to the fact that, in this case, more cells
contribute in building blocks. Of course, this increase in the number of blocks
implies an increase in the runtime, as more support computations have to be
performed, which is the most time-consuming task in levelwise approaches. We
also note that the results shown in Figure 8 and Figure 9 have been obtained
after several runs, from which the average have been computed.

5.2 Real Data

The real database we have used is a Trademark Database, storing all regis-
tered industrial title deeds. This trademark database stores about 2 million
trademarks that have been registered between 1961 and 2004.

This database has been studied for mining sequential patterns in [9]. In this
work, the aim was to study the sequences of characters within the names. For

22

 0

 500

 1000

 1500

 2000

 2500

 0 100000 200000 300000 400000 500000

R
un

tim
e

(s
ec

)

Size (number of cells)

WITHOUT Hierarchies
WITH 1 level of hierarchies

WITH 2 levels of hierarchies

Fig. 8. Runtime w.r.t. the number of levels of hierarchies

 0

 100

 200

 300

 400

 500

 600

 0 100000 200000 300000 400000 500000

N
um

be
r

of
 B

lo
ck

s

Size (number of cells)

WITHOUT Hierarchies
WITH 1 level of hierarchies

WITH 2 levels of hierarchies

Fig. 9. Number of Blocks w.r.t. the number of levels of hierarchies

instance rules as

〈([#character, lot])([#character, lot][#letter, lot])〉 (33%)

were discovered regarding telecomunication trademarks. Such a rule means
that “One third of trademarks consisting of two words contain one word with
a lot of characters, then one word with a lot of characters among which a lot of
letters, given that letters are distinguished from numbers, special characters,
punctuations, etc.

In the context of the present paper, we aim at discovering trends in the re-
lationships between lengths, deposit years and categories of trademarks, re-
garding the number of registered trademarks. To this end, we have built a
3-dimensional cube in which the measure value is the number of title deeds
that have been registered. The dimensions of the cube are denoted by: year,
length and category. The domain of the dimension category is set according to
the so called classification de Nice that specifies the field of the trademark,

23

1 2 3 4 5 6 7 8 15 30..............

V
ery S

h
o

rt

S
h

o
rt

O
f N

o
rm

al L
en

g
th

L
o

n
g

V
ery L

o
n

g

S
m

all

Typ
ical

E
xten

d
ed

Fig. 10. Fuzzy Hierarchy defined on the Length of a Registered Name

e.g., toys, clothing, shoes, food. . .

The domains of dimensions year, length and category contain 42, 279 and 45
distinct values, respectively. This results in 527, 310 cells, among which 90, 113
are not equal to 0 (showing that real multidimensional data can be sparse).

The goal of analyzing such a database is, for the linguistic expert, on the one
hand to understand how trademarks impact customers depending on the way
they are built, and on the other hand, the evolution of this impact over the
years and over the categories of product. The hierarchies over the dimensions
length and category have been defined with 3 levels by the linguistic expert:
Over the dimension length is defined a fuzzy hierarchy that characterizes how
a name can be said to be very short, short, of normal length, long or very
long (see Figure 10). On the other hand, the hierarchy defined over dimension
category contains four values in its intermediate level, namely Food, Sciences
and Technology, Transportation and miscelaneous.

Analyzing this dataset without considering hierarchies over dimensions pro-
duces lot of large blocks, but only associated to measure value 1 or almost
1, meaning that no trend could be extracted as only one trademark is regis-
tered in these cases. However, taking into account the hierarchies described
above, allowed to discover blocks associated to measure values other than 1,
which has provided the linguistic expert with relevant knowledge in the data
analysis.

It is also important to note that the blocks have been built up based on fuzzy
intervals over the measure value, because no block, apart from those associated
with measure value 1, could be discovered using individual measure values.

24

As an example of discovered block, we mention the following:

Around year 2000, for all categories, the number of trademarks registered
with a long name is almost 300.

We emphasize in this respect that no block was discovered for measure value
almost 300 when no hierarchies were taken into account, thus preventing the
linguistic expert from discovering such trends.

6 Related Work

The work on building blocks of similar values in a given data cube as presented
in this paper can be related to the work on data clustering of high dimensional
data, which is an important area in data mining. However, it is important to
note that, to the best of our knowledge, no other work considers hierarchies
over dimensions and fuzzy intervals over measure values, as we do in this
paper.

For a large multidimensional database where the data space is usually not uni-
formly occupied, data clustering identifies the sparse and dense areas and thus
discovers the overall distribution patterns (or summary) of the dataset. Some
examples of work on clustering of high dimensional data include CLARANS
[10], BIRCH [11], CLIQUE [12] and CURE [13].

Several subspace clustering methods are introduced to detect clusters residing
in different subspaces (i.e., subsets of the original dimensions). In this case, no
new dimension is generated. Each resultant cluster is associated with a specific
subspace. Some examples of these methods are CLIQUE [12] and ORCLUS
[14].

CLIQUE (CLustering In QUEst) adopts a density-based approach to cluster-
ing in which a cluster is defined as a region that has higher density of points
than its surrounding area. To approximate the density of data points, the data
space is partitioned into a finite set of cells. Note that a block in our work is
almost similar to the concept unit in [12] which is obtained by partitioning
every dimension into intervals of equal length. Thus a unit in the subspace is
the intersection of an interval from each of the k dimensions of a k-dimensional
cube. However, contrary to our approach, the construction of the blocks in [12]
is not determined by the same measure value, but rather by arbitrary chosen
partitions of the member values. We notice again that in [12], hierarchies over
dimensions are not considered.

Research work on (fuzzy) image segmentation may appear as related works

25

[15]. Although the goals are the same, it is not possible to apply such methods
in the case of multidimensional databases, due to problems of scalability and
because also of the multidimensional nature of data. For example, clustering-
based color image segmentation [16] is normally limited to a 2-dimensional
environment with the possibility of an extension to 3 dimensions. Again, in
this case, hierarchies over dimensions have not been considered.

Segmentation methods (e.g., clustering) have been proposed in the multidi-
mensional context [12], [17]. In [18], the authors study the generation of fuzzy
partitions over numerical dimensions. However, these propositions are not re-
lated to our measure-based approach, and thus these propositions are different
from our work where the measure value is the central criterion.

On the other hand, the feature selection methods are used to select a subset of
dimensions for supervised classification problem [19]. The idea is to produce
an optimal pool of good dimension subsets for searching clusters. Therefore, in
this approach, clusters are built up according to criteria related to dimensions
whereas in our approach, blocks are built up according to similarrity criteria
on the measure values.

In [20] the authors aim at compressing data cubes. However there is no con-
sideration on cube representations and homogeneous blocks generation.

The work presented in [21] proposes a method to divide cubes into regions
and to represent those regions. However, the authors aim at representing the
whole cube. They use statistical methods to construct an approximation of
the cube, while we aim at discovering relevant areas, which may not cover the
whole cube.

In [22], the authors propose the concept of condensed data cube. However,
the authors aim at considering the cube without loss of information, while we
aim at displaying relevant information to the user, which may be a partial
representation of data.

7 Conclusion

In this paper, we have considered an approach to summarize a data cube by
means of multiple-level fuzzy blocks. Fuzziness comes from the fact that we
assume that measure values in the cube are partitioned according to a fuzzy
partition. On the other hand, blocks are defined at different levels of granu-
larity, according to predefined hierarchies over the dimensions. These blocks
are computed using a levelwise algorithm similar to Apriori ([8]), and the pre-
liminary tests reported in the paper show the effectiveness of our approach.

26

We are currently considering further tests involving hierarchies so as to better
measure the impact on performance and on the overall quality of the out-
put blocks. Moreover, we are implementing the two extensions mentioned in
the paper; while doing so, we are investigating possible optimizations of our
algorithms.

We also intend to investigate the following research directions. First, the qual-
ity of the blocks output by our method will be assessed according to measure
qualities other than support and confidence, based on [6,7]. Second, as we
compute most specific blocks, we think that it would be relevant to consider
algorithms such as MaxMiner ([23]), or ZigZag ([24]) that have been designed
to this end. However, a deeper study of the structure of the search space in
our approach is necessary in order to adapt efficiently these algorithms to our
case.

Acknowledgements

This work was partially supported by the French Ministry of Foreign Affairs
under the STIC-Asia EXPEDO project. Moreover, the authors wish to thank
the French Embassy in Malaysia for its valuable support.

References

[1] Y. Choong, D. Laurent, A. Laurent, Building fuzzy blocks from data cubes, in:
Proc. of Int. Conf. IPMU’06, 2006.

[2] Y. Choong, D. Laurent, A. Laurent, Summarizing multidimensional databases
using fuzzy rules, in: Proc. of Int. Conf. IPMU’04, 2004, pp. 99–106.

[3] Y. Choong, D. Laurent, A. Laurent, Summarizing data cubes using blocks, in:
Data Mining Patterns: New Trends and Applications, IDEA Group Inc., 2007.

[4] Y. Choong, D. Laurent, A. Laurent, Pixelizing data cubes: a block-based
approach, in: Proc. of Visual Information Expert Workshop (VIEW), Vol. 4370
of LNCS, Springer-Verlag, 2007, pp. 63–76.

[5] Y. Choong, D. Laurent, P. Marcel, Computing appropriate representation for
multidimensional data, Data and Knowledge Engineering Int. Journal 45 (2003)
181–203.

[6] D. Dubois, E. Hüllermeier, H. Prade, A note on quality measures for fuzzy
association rules, in: Proc. of Int. Fuzzy Systems Association World Congress
on Fuzzy Sets and Systems, LNAI 2715, 2003, pp. 346–353.

27

[7] D. Dubois, E. Hüllermeier, H. Prade, A sytematic approach to the assessment
of fuzzy association rules, Data Mining and Knowledge Discovery 13 (2006)
167–192.

[8] R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of
items in large databases, in: Proc. of ACM SIGMOD, 1993, pp. 207–216.

[9] C. Fiot, A. Laurent, M. Teisseire, B. Laurent, Why Fuzzy Sequential Patterns
can Help Data Summarization: an Application to the INPI Trademark
Database, in: Proc. of the 15th IEEE International Conference on Fuzzy
Systems, 2006, pp. 699–706.

[10] R. T. Ng, J. Han, Clarans: A method for clustering objects for spatial data
mining, IEEE Transactions on Knowledge and Data Engineering 14 (5) (2002)
1003–1016.

[11] T. Zhang, R. Ramakrishnan, M. Livny, Birch: an efficient data clustering
method for very large databases, in: Proc. of ACM SIGMOD, ACM Press,
1996, pp. 103–114.

[12] R. Agrawal, J. Gehrke, D. Gunopulos, P. Raghavan, Automatic subspace
clustering of high dimensional data for data mining applications, in: Proc. of
ACM SIGMOD, 1998, pp. 94–105.

[13] S. Guha, R. Rastogi, K. Shim, Cure: An efficient clustering algorithm for large
databases., in: Proc. of ACM SIGMOD, 1998, pp. 73–84.

[14] C. Aggarwal, P. Yu, Finding generalized projected clusters in high dimensional
space, in: Proc. of ACM SIGMOD, 2000, pp. 70–81.

[15] S. Philipp-Foliguet, M. B. Vieira, M. Sanfourche, Fuzzy segmentation of color
images and indexing of fuzzy regions, in: Proc. of CGIV, 2002, pp. 507–512.

[16] R. Turi, Clustering-based colour image segmentation, Ph.D. thesis, Monash
University (Australia) (2001).

[17] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, X. Xu, Incremental clustering
for mining in a data warehousing environment, in: Proc. of Int. Conf. on Very
Large Data Bases (VLDB), 1998, pp. 323–333.

[18] A. Gyenesei, A fuzzy approach for mining quantitative association rules, Tech.
Rep. 336, Turku Center for Computer Science (TUCS) (2000).

[19] H. Motoda, L. H. Liu, Feature Selection for Knowledge Discovery and Data
Mining, Kluwer Academic Publishers, 1998.

[20] L. Lakshmanan, J. Pei, J. Han, Quotient cube: How to summarize the semantics
of a data cube, in: Proc. of Int. Conf. on Very Large DataBases (VLDB), 2002,
pp. 778–789.

[21] D. Barbara, M. Sullivan, Quasi-cubes: Exploiting approximation in
multidimensional databases, SIGMOD Record 26 (1997) 12–17.

28

[22] W. Wang, H. Lu, J. Feng, J. X. Yu, Condensed cube: An effective approach to
reducing data cube size, in: Proc. of Int. Conf. on Data Engeneering (ICDE),
2002, pp. 155–165.

[23] R. Bayardo, Efficiently mining long patterns from databases, in: Proc. of ACM
SGMOD, 1998, pp. 85–93.

[24] F. D. Marchi, F. Flouvat, J. Petit, Adaptive strategies for mining the
positive border of interesting patterns: Application to inclusion dependencies in
databases, in: Constraint-Based Mining and Inductive Databases, LNCS 3848,
Springer-Verlag, 2004, pp. 81–101.

29

