Y. Choong, D. Laurent, and A. Laurent, Building fuzzy blocks from data cubes, Proc. of Int. Conf. IPMU'06, 2006.
URL : https://hal.archives-ouvertes.fr/lirmm-00130714

Y. Choong, D. Laurent, and A. Laurent, Summarizing multidimensional databases using fuzzy rules, Proc. of Int. Conf. IPMU'04, pp.99-106, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108883

Y. Choong, D. Laurent, and A. Laurent, Summarizing data cubes using blocks, Data Mining Patterns: New Trends and Applications, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00130718

Y. Choong, D. Laurent, and A. Laurent, Pixelizing data cubes: a block-based approach, Proc. of Visual Information Expert Workshop (VIEW), vol.4370, pp.63-76, 2007.
URL : https://hal.archives-ouvertes.fr/lirmm-00130712

Y. Choong, D. Laurent, and P. Marcel, Computing appropriate representation for multidimensional data, Data and Knowledge Engineering Int, Journal, vol.45, pp.181-203, 2003.

D. Dubois, E. Hüllermeier, and H. Prade, A note on quality measures for fuzzy association rules, Proc. of Int. Fuzzy Systems Association World Congress on Fuzzy Sets and Systems, LNAI 2715, pp.346-353, 2003.

D. Dubois, E. Hüllermeier, and H. Prade, A sytematic approach to the assessment of fuzzy association rules, Data Mining and Knowledge Discovery, vol.13, pp.167-192, 2006.

R. Agrawal, T. Imielinski, and A. Swami, Mining association rules between sets of items in large databases, Proc. of ACM SIGMOD, pp.207-216, 1993.

C. Fiot, A. Laurent, M. Teisseire, and B. Laurent, Why Fuzzy Sequential Patterns can Help Data Summarization: an Application to the INPI Trademark Database, Proc. of the 15th IEEE International Conference on Fuzzy Systems, pp.699-706, 2006.
URL : https://hal.archives-ouvertes.fr/lirmm-00095901

R. T. Ng and J. Han, Clarans: A method for clustering objects for spatial data mining, IEEE Transactions on Knowledge and Data Engineering, vol.14, issue.5, pp.1003-1016, 2002.

T. Zhang, R. Ramakrishnan, and M. Livny, Birch: an efficient data clustering method for very large databases, Proc. of ACM SIGMOD, pp.103-114, 1996.

R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan, Automatic subspace clustering of high dimensional data for data mining applications, Proc. of ACM SIGMOD, pp.94-105, 1998.

S. Guha, R. Rastogi, and K. Shim, Cure: An efficient clustering algorithm for large databases, Proc. of ACM SIGMOD, pp.73-84, 1998.

C. Aggarwal and P. Yu, Finding generalized projected clusters in high dimensional space, Proc. of ACM SIGMOD, pp.70-81, 2000.

S. Philipp-foliguet, M. B. Vieira, and M. Sanfourche, Fuzzy segmentation of color images and indexing of fuzzy regions, Proc. of CGIV, pp.507-512, 2002.

R. Turi, Clustering-based colour image segmentation, 2001.

M. Ester, H. Kriegel, J. Sander, M. Wimmer, and X. Xu, Incremental clustering for mining in a data warehousing environment, Proc. of Int. Conf. on Very Large Data Bases (VLDB), pp.323-333, 1998.

A. Gyenesei, A fuzzy approach for mining quantitative association rules, 2000.

H. Motoda and L. H. Liu, Feature Selection for Knowledge Discovery and Data Mining, 1998.

L. Lakshmanan, J. Pei, and J. Han, Quotient cube: How to summarize the semantics of a data cube, Proc. of Int. Conf. on Very Large DataBases (VLDB), pp.778-789, 2002.

D. Barbara and M. Sullivan, Quasi-cubes: Exploiting approximation in multidimensional databases, SIGMOD Record, vol.26, pp.12-17, 1997.

W. Wang, H. Lu, J. Feng, and J. X. Yu, Condensed cube: An effective approach to reducing data cube size, Proc. of Int. Conf. on Data Engeneering (ICDE), pp.155-165, 2002.

R. Bayardo, Efficiently mining long patterns from databases, Proc. of ACM SGMOD, pp.85-93, 1998.

F. D. Marchi, F. Flouvat, and J. Petit, Adaptive strategies for mining the positive border of interesting patterns: Application to inclusion dependencies in databases, Constraint-Based Mining and Inductive Databases, vol.3848, pp.81-101, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01590952