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Abstract 

Standard protein substitution models use a single amino-acid replacement rate matrix which 

summarizes the biological, chemical and physical properties of amino acids. However, site evolution 

is highly heterogeneous and depends on many factors: genetic code, solvent exposure, secondary and 

tertiary structure, protein function, etc. These impact the substitution pattern, and in most cases a 

single replacement matrix is not enough to represent all the complexity of the evolutionary processes. 

This paper explores in a maximum-likelihood framework phylogenetic mixture models, which 

combine several amino-acid replacement matrices to better fit protein evolution. We learn these 

mixture models from a large alignment database extracted from HSSP, and test the performance using 

independent alignments from TreeBase. We compare unsupervised learning approaches, where the 

site categories are unknown, to supervised ones, where in estimations we use the known category of 

each site, based on its exposure or its secondary structure. All our models are combined with gamma 

distributed rates across sites. Results show that highly significant likelihood gains are obtained when 

using mixture models, compared to the best available single replacement matrices. Mixtures of 

matrices also improve over mixtures of profiles in the manner of the CAT model. The unsupervised 

approach tends to be better than the supervised one, but it appears difficult to implement and highly 

sensitive to the starting values of the parameters, meaning that the supervised approach is still of 

interest for initialization and model comparison. Using an unsupervised model involving 3 matrices, 

the average AIC gain per site with TreeBase test alignments is 0.31, 0.49 and 0.61, compared to LG, 

WAG and JTT, respectively. This 3-matrix model is significantly better than LG for 34 alignments 

(among 57), and significantly worse for 1 alignment only. Moreover, tree topologies inferred with our 

mixture models frequently differ from those obtained with single matrices, indicating that using these 

mixtures impacts not only the likelihood value but also the output tree. All our models and a PhyML 

implementation are available from http://atgc.lirmm.fr/mixtures. 

 

Keywords: amino-acid replacement matrices; JTT, WAG and LG; CAT profile model; maximum-

likelihood estimations; phylogenetic inference 
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Introduction 

Amino-acid replacement models are essential in most methods to infer protein phylogenies. In 

distance methods they are used to estimate the evolutionary distance (i.e. the expected number of 

substitutions per site) between all sequence pairs. In maximum-likelihood and Bayesian methods they 

are used to compute probabilities of change along the tree branches, and thus the likelihood of the 

data (see textbooks, e.g. Felsenstein 2003, Yang 2006). Standard models use a single amino-acid 

replacement matrix which summarizes the biological, chemical and physical properties of amino 

acids. Such 20 20×  matrix contains estimates of the instantaneous substitution rates from any amino 

acid to another one. For example, replacements between arginine (positively charged) and aspartate 

(negatively charged) are under strong negative selection and have low rate, while replacements 

between isoleucyne and valine (both hydrophobic, aliphatic and very non-reactive) are frequent and 

have high rate (see textbooks, e.g. Betts and Russell 2003).  

A number of replacement matrices have been proposed since the seminal work of Dayhoff et 

al. (1972), notably JTT (Jones et al. 1992) and WAG (Whelan and Goldman 2001). Several studies 

showed that specific matrices should be used for certain analyses, e.g. with membrane (Jones et al. 

1994) or mitochondrial (Yang et al. 1998) proteins. However, general matrices are usually robust and 

tend to perform well in many cases, as shown by Keane et al. (2006) for WAG (and to some extent 

for JTT). Recently, we proposed a new general matrix called LG (after the authors, Le and Gascuel 

2008), which significantly improves over previous general matrices. LG was learned from a very 

large alignment database extracted from Pfam (Bateman et al. 2002), using a maximum-likelihood 

estimation method that refines Whelan and Goldman’s (2001) by incorporating the variability of 

evolutionary rates across sites in the matrix estimation. 

 Site evolution is highly heterogeneous and depends on many factors: genetic code, solvent 

exposure, secondary and tertiary structure, protein function, etc. All these factors impose different 

constraints on the sites. Some sites are highly conserved, while some others are subject to little 

pressure and evolve rapidly. This variability of evolutionary rates among sites is well modelled by the 

use of discrete gamma rate categories (Yang 1993). However, site heterogeneity not only impacts the 

evolutionary rate but also the substitution pattern. It was shown by several authors (e.g. Koshi and 

Goldstein 1995, Thorne et al. 1996, Goldman et al. 1998) that the substitution pattern differs 

depending on solvent exposure and secondary structure. Moreover, several models were proposed 

(e.g. Bruno 1996, Koshi and Goldstein 1998, Lartillot and Philippe 2004, Crooks and Brenner 2005) 
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to account for the fact that depending on their position and role in protein structure and function, sites 

generally accept only a specific subset of the 20 amino acids. These approaches use sets of models in 

which the equilibrium frequencies of the 20 amino acids are site-specific. These models rely on 

simple multinomial processes over the 20 amino-acids, analogous to the F81 (Felsenstein 1981) 

model of DNA substitution, and are entirely characterised by their amino-acid equilibrium 

distribution or “profile”. Recently, we learned a series of profile sets with various sizes from a large 

alignment database extracted from HSSP (Schneider et al. 1997). Our results showed that this 

empirical profile approach (called CAT, following Lartillot and Philippe 2004) tends to outperform 

standard replacement matrices, at least with alignments showing a high level of saturation (Le et al. 

2008). However, F81-like models are relatively poor as they assume uniform probabilities for 

mutation from one amino acid to another one, and thus miss a part of the biological constraints acting 

on site evolution. Better results are expected from models where the mutational processes of each site 

are modelled using refined (typically general time-reversible) replacement matrices. The purpose of 

this paper is to study such matrix-based site-dependent models. 

 Estimating one model per site is not statistically feasible (this would involve too many 

parameters), and therefore most site-dependent approaches use mixture models. As the most 

appropriate replacement matrix (or profile) for each site is usually unknown, the likelihood at each 

site is a weighted average over all alternative matrices (see textbooks, e.g. Pagel and Meade 2005, 

Gascuel and Guindon 2007). When the site category is known (e.g. secondary structure or solvent 

exposure) we can use a partitioning approach which analyses each site with the appropriate matrix. 

Moreover, several authors proposed to refine the mixture approach using hidden Markov models (e.g. 

Thorne et al. 1996, Felsenstein and Churchill 1996, Goldman et al. 1998) that account for the 

dependence of site categories (e.g. secondary structure) along the sequence. Another refinement of 

mixtures was proposed by Holmes and Rubin (2002), where the site category can change along the 

course of time in a way similar to the covarion-like model of Tuffley and Steel (1999). 

In this paper we further explore the use of phylogenetic mixture models for proteins in a 

maximum-likelihood (ML) framework, using up-to-date ML matrix estimation procedures and a very 

large alignment database, among those that are currently available. In the continuation of (Koshi and 

Goldstein 1995, Thorne et al. 1996, Goldman et al. 1998) we learn different matrices for the different 

structural states of the sites (exposed, buried, alpha-helix, beta-sheet and coil). We also estimate 

matrix mixtures in an unsupervised way, i.e. without a priori definition of site categories, in a way 
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close to that of Holmes and Rubin (2002). Contrary to these previous works, all our models 

incorporate a gamma distribution of site rates. This rate distribution is used to infer trees, as is now 

usual, but also in the matrix estimations as described in (Le and Gascuel 2008). Results of these new 

matrix mixtures are compared to those of JTT, WAG and our recent LG and CAT models, using test 

alignments from TreeBase (Sanderson et al. 1994). In the following, we first describe our data, then 

the various mixture models and their estimation procedures, and finally compare all these approaches 

with test alignments. 

Alignment data sets 

To estimate our mixture models we used HSSP (Homology-derived StructureS of Proteins; Schneider 

et al. 1997). This database comprises ~35,000 alignments of protein families, each usually containing 

numerous members (~550 on average). Each alignment is obtained by aligning a protein with known 

3-D structure in the Protein Data Bank (PDB), to all its likely sequence homologs in SWISS-PROT. 

The protein with known structure is named the “test protein” of the alignment; its secondary structure 

and accessibility to solvent are calculated using DSSP (Kabsch and Sander 1983) and assumed to be 

representative of the structure of all homologs in the alignment. 

HSSP is highly redundant. Typically, a protein may be the test protein of a given alignment 

and belongs to all alignments corresponding to its homologs with known structure. Moreover, HSSP 

alignments often contain a huge number of gaps, mainly due to absent or unsequenced domains for 

some proteins. We thus performed an intensive cleaning of HSSP to extract independent alignments 

and, within each of the alignments, to select sequences and sites corresponding to well aligned, non-

gapped regions. Moreover, we only selected globular proteins, thus discarding membrane proteins 

that show clearly different patterns of amino-acid replacement (Jones et al. 1994). To eliminate 

redundancy we used the SWISS-PROT identifiers of proteins; selected alignments do not share any 

common identifier and correspond to clearly distinct protein families. For each of the retained 

alignments we selected sequences and sites to obtain a sub-alignment based on a several criteria: 

presence of the test protein in the sequence set; large number of sequences (≥ 10) and sites (≥ 100); 

informative percentage of identities between any sequence pair ([40%, 99%] range); low number of 

gaps, using GBLOCKS (Castresana 2000) with default options to achieve a final cleaning. 

We obtained 1,771 non-redundant sub-alignments (alignments for short from now), with an 

average of ~56 sequences and ~254 sites per alignment, ~27 million amino-acids in total and very 
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few gaps (<0.1%). 1,471 alignments were randomly selected for training, while we used the 

remaining 300 to compare our various models. Using HSSP annotations each site is classified as 

extended (E), alpha-helix (H), or other (S, T, B, G, I, “.” or “?”). We also classified the sites based on 

their relative accessibility to solvent (Shrake and Rupley 1973). We used the same two-category 

partition as in (Goldman et al. 1998) and several other studies, with accessibility threshold equal to 

10% and nearly equally weighted buried and exposed categories (~46% and ~54%, respectively). We 

also used a 3-category partition: the buried class (accessibility < 8%) contains ~40% of the sites, the 

highly exposed class (accessibility > 45%) contains ~20% of the sites, and the intermediate class 

~40% of the sites. This 3-category partition focuses on the highly exposed sites, which are often 

saturated and appear to have a strong impact on the likelihood value. Additional criteria and details of 

the selection procedure are described in (Le et al. 2008), and the database is available on request. 

To assess the performance of our models we used test alignments from TreeBase (Sanderson 

et al. 1994). TreeBase contains alignments that have been produced especially for phylogenetic 

analyses, and thus provide a good benchmark for comparing models meant for phylogenetic 

reconstruction. Moreover, use of test alignments from a different database should avoid possible 

biases induced by some feature specific to our HSSP training alignments. Most of TreeBase 

alignments are carefully aligned with rigorously selected taxa and sequences. These alignments are 

quite diverse: some are highly cleaned and do not contain any gaps, while some others contain up to 

95% gapped sites; some alignments are relatively large, while some others are limited  (minimum of 7 

and 55 taxa and sites, respectively). All protein alignments from TreeBase (May 2007) were selected, 

except 3 of them because the set of taxa differed in the alignment and in the published tree, and 2 of 

them because the maximum pairwise divergence seemed excessively large in a phylogenetic 

inference context (>2.0 substitutions per site, using a standard WAG distance). Moreover, we 

removed 5 redundant alignments and 2 very large genomic ones (for computational reasons, with the 

CAT model). We thus obtained 57 test alignments that should be representative of usual phylogenetic 

studies, with an average of ~25 sequences and ~550 sites per alignment. These alignments were also 

used to test our LG replacement matrix (Le and Gascuel 2008) and are available from LG web site: 

http://atgc.lirmm.fr/LG (but removing the 2 very large genomic alignments).     
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Mixture models, notation and background 

All matrices that we shall discuss comply with the general time-reversible (GTR) model (see 

textbooks, e.g.  Felsenstein 2003, Bryant et al. 2005, Yang 2006). Such a matrix contains estimates of 

the instantaneous substitution rates from any amino acid to another one, and is denoted as ( )xyq=Q , 

where xyq  is the rate of replacement from x to y ( )x y≠ . Q can be decomposed into three 

independent components using 

  
, ,

,
xy y x y

xx xy
y x

q r x y

q q
↔

≠

= ρπ ≠

= −∑  (1)   

where: ρ is the global rate of Q, equal to the expected number of substitutions per time unit; 

( )x= πΠ  is the vector of amino-acid equilibrium frequencies; ( )x yr ↔=R  is the (symmetric) 

exchangeability matrix, which represents the general propensity of exchanges between amino-acids, 

independently of the amino-acid frequencies within the studied sequences (represented by Π ). In the 

following, we assume that R is normalized (i.e. x xxq− π =ρ∑ ), and thus Q contains 

1(ρ)+19(Π)+189(R)=209 free parameters to be estimated from the data. When a single replacement 

matrix is used (e.g. WAG), it is normalized (i.e. 1ρ = ) to obtain a simple branch length interpretation 

in terms of number of expected substitutions per site. When several matrices are used, they are no 

longer normalized (e.g. exposed sites evolve about thrice as fast as buried sites) and the model 

requires a specific global normalisation that is discussed below. 

Amino-acid changes over the course of time are represented by the matrix ( ) ( )( )xyt p t=P , 

where ( )xyp t  is the probability of observing a change from x to y when the elapsed time is t. The 

probability ( )xyp dt  of changing from x to y ( )x y≠  in infinitesimal time dt is equal to xyq dt . This 

implies the following basic relationship between the substitution rates and probabilities of change: 

  ( ) tt e= QP , (2) 

where the right term denotes the matrix exponential. 

 Assuming a single replacement matrix Q and no variability of rates among sites, the 

likelihood of the data (denoted D) for a given tree T (including branch lengths) is: 

  ( ) ( ), ; , ; i
i

L T D L T D=∏Q Q , (3) 
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where the product runs over all the sites (independence assumption), and where ( ), ; iL T DQ  is the 

likelihood of the data at site i (denoted iD ) given T and Q. ( ), ; iL T DQ  is computed by applying 

Equation (2) to each tree branch (t is the branch length) and using the pruning algorithm (Felsenstein 

1981).  

However, it is acknowledged that sites do not evolve at the same rate due to various 

evolutionary pressures. In the ML framework, practical implementations rely on a simple mixture 

model with discrete categories of rates. Each site belongs to a category { }1,2,...c C∈  with rate cρ . 

Yang’s (1993) approach involves categories with identical probabilities (equal to 1 C ) and cρ  rates 

being defined by the parameter α  of a gamma distribution, which is usually fitted to the analysed 

data set. The likelihood of the data for tree T, replacement matrix Q and gamma distributed rate 

categories is: 

  ( ) ( )
1

1, , ; , ;c i
c Ci

L T D L T D
C≤ ≤

α = ρ∑∏Q Q . (4) 

In the mixture defined by Equation (4), we have C replacement matrices that only differ by 

their global rates. In this paper we consider the more general setting where site categories (e.g. 

buried/exposed) correspond to different substitution patterns, each modelled using a different 

replacement matrix. Let Θ  denote the set of substitution pattern categories, θ  be a pattern category 

of Θ , θQ  the replacement matrix corresponding to θ , θπ  the a priori probability of θ , and θρ  the 

global rate of θQ . In the partition approach, the category of each site i is known and each site is 

analysed with the proper replacement matrix (e.g. see Gascuel and Guindon 2007). However, site 

categories are not always known, or may be known with a large uncertainty (e.g. secondary-structure 

states are somewhat arbitrary and non-fully conserved among homologous proteins). Moreover, we 

will discuss models where site categories do not have any obvious interpretation and are learned 

empirically from the data (the unsupervised way). Mixture models are used to cope with such cases. 

For each site we sum over all possible categories, and the likelihood of the data is expressed as: 

  ( ) ( )
1 1

1, , ; , ;c i
c Ci

L T D L T D
Cθ θ

≤θ≤Θ ≤ ≤

⎡ ⎤
⎢ ⎥Θ α = π ρ
⎢ ⎥⎣ ⎦
∑ ∑∏ Q . (5) 

Equation (5) defines a mixture with Θ  (number of patterns) × C  (number of rates) categories, each  

with probability Cθπ  and replacement matrix c θρ Q . All mixture models discussed in this paper 

comply with Equation (5). The differences come from the number of pattern categories, the properties 



9/30 

of the θQ  matrices (GTR or F81), and the way these models were learned from the data. The gamma 

distribution of rates is assumed to be the same among pattern categories, as we did not observe any 

significant improvement when using several rate distributions. 

 In all models (except CAT, see below) the proportions θπ  of pattern categories are fitted to 

the analysed data set. This is an important feature as proteins are highly heterogeneous. For example, 

some proteins contain alpha-helices and no beta-sheets, while others contain beta-sheets only, and 

finally some contain both. Analysing all proteins with fixed proportions of alpha-helices and beta-

sheets would poorly fit this biological reality and result in a loss of likelihood value. Mixtures defined 

by equation (5) thus require 1Θ −  additional free parameters, compared to Yang’s model in 

equation (4). Moreover, we have to normalize the mixture to ensure branch-length interpretation. In 

practice, since the θπ  proportions vary from one data set to another one, we do not normalize the 

mixture but rescale the inferred tree, which is equivalent. This post-processing involves multiplying 

every branch length by the expected rate of the mixture (i.e. θ θπ ρ∑ ), after all parameters ( θπ , 

topology, branch-lengths, etc.) have been estimated from the data. 

 The CAT model (Lartillot and Philippe 2004; Le et al. 2008) uses simplified F81-like 

replacement matrices (all exchangeabilities , ,x yr x y↔ ≠  are equal). Each matrix is thus defined by an 

amino-acid profile (19 free parameters) corresponding to the equilibrium distribution of the 

substitution process, and a number of profiles (up to 60 in our experiments) are used to accurately 

model amino-acid substitutions. This model is intended to fit the common observation that sites only 

contain a few amino-acids corresponding to precise biochemical constraints, even in case of 

saturation. Thus, the CAT profiles contain a few amino-acids with significant probability, while the 

other amino-acids have nearly-zero probability. In (Le et al. 2008) it was not clear whether adjusting 

the profile proportions (the θπ  parameters) results in an increase in likelihood sufficient to 

compensate for the high number of additional parameters (59 with 60 profiles). We thus preferred to 

use fixed profile proportions, and the same holds in this paper. 

 In tree inference, all models simply use Equation (5) to compute the tree likelihood and 

optimize the topology, branch lengths and model parameters. The computational cost depends greatly 

on the number of mixture categories. In standard implementations, both the memory requirement and 

the computing time are nearly proportional to the number of categories (see textbook, e.g. Bryant et 

al. 2005). For example, using a 3-matrix mixture model with 4 gamma categories should be 3 times 

slower than using a single matrix, and 12 times slower than using a single matrix without rates across 
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sites. Moreover, the same holds for memory requirement, which may be problematic for large data 

sets. The problem with CAT (up to 60 × 4 categories) is partly alleviated using implementation 

refinements (Lartillot and Philippe 2004). Assume that a profile corresponds to the aliphatic amino-

acids; to analyse the data with this profile we only need a 4 4×  matrix corresponding to I, L, V and 

Other amino-acids. This appreciably reduces the computing time and memory requirement, but in our 

current implementation CAT is still slow (e.g. CAT with 60 profiles is ~8 times slower than a 3-

matrix mixture). Moreover, mixtures often require more iterations to optimize the parameters than 

single matrices (e.g. running a 3-matrix mixture is ~4 times slower than a single matrix as WAG or 

JTT). 

 In matrix estimation, we shall see that to accelerate the computation Equation (5) can be 

simplified without loss of accuracy. Moreover, a specific EM algorithm was designed to learn CAT 

profiles (see Le et al. 2008). 

The supervised approach: estimation procedure and models 

The supervised approach involves using available knowledge to guide the learning procedure. Here, 

we know (e.g. Koshi and Goldstein 1995, Goldman et al. 1998) that the replacement process differs 

depending on secondary structure and solvent exposure. We thus estimated different replacement 

matrices for several site partitions, based on the information available in HSSP. Three models were 

learned:  

• EX2 is a 2-matrix model corresponding to exposed/buried sites (see above). 

• EX3 is a 3-matrix model corresponding to highly-exposed/intermediate/buried sites. 

• EHO is a 3-matrix model corresponding to extended/helix/other sites. 

The same estimation procedure was used for these three models. This procedure is closely 

related to that used to estimate our LG matrix (Le and Gascuel 2008) and is summarized below with 

EX2. 

(1) For every alignment aD  in the training database, estimate a phylogenetic tree aT  using PhyML 

(Guindon and Gascuel 2003) with LG with four gamma categories (Γ4 option). 

(2) For every site i in aD , classify i into the rate category with maximum a posteriori probability 

(MAP); let ( )iρ  denote the corresponding rate. 
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(3) Using HSSP annotations divide the training database into exposed/buried sites and separately 

estimate a matrix for each category using XRATE (Klosterman et al. 2006) and the inferred aT  

trees. Just as with LG, do not use standard site likelihood (4) summing over all rate categories, 

but simply use the MAP rate category, that is: 

  ( ) ( )( ), , ; , ;a a a a a
i iL T D L T i Dα = ρQ Q . (6) 

In this equation, aT  and ( )iρ  are fixed and only the replacement matrix Q has to be  

estimated from the data. All parameters of Q (ρ, Π and R, see equation (1)) are estimated by ML 

using XRATE. 

(4) For each site category, compute the expected a priori rate by averaging the ( )iρ  values, and 

multiply the global rate found by XRATE by this average rate. This operation rescales the two 

matrices so that their global rates are comparable and they can be applied to the same trees. 

Moreover, to help interpretability, normalize the mixture using the constraint 1θ θρ π =∑ , where 

θ  is exposed/buried and θπ  is the global proportion of exposed/buried sites in the training set. 

(5) Go to (1) and iterate this estimation procedure, but use the exposed and buried matrices and a site 

partition in place of LG. Steps (2), (3) and (4) remain identical, and the procedure is repeated 

until convergence. However, the aT  trees are inferred only once using the partition model 

(during the second iteration), since this part of the computation is very heavy. Further iterations 

use the nearly optimal trees thus obtained, which are sufficient to obtain accurate matrix estimates 

(Whelan and Goldman 2001, Le and Gascuel 2008). Three iterations were enough for all models. 

XRATE is able to deal with the standard mixture equation (4), instead of MAP equation (6), at least 

when a unique discrete rate distribution is chosen for all training alignments. But we observed that 

using (6) is much faster, less affected by local optima and tends to provide better results (Le and 

Gascuel 2008). This is why we adopted the same strategy here, which is close to Viterbi’s 

approximation that provides very good results when estimating HMMs (Durbin et al. 1998). Running 

times of this supervised scheme are relatively high, due to the size of the training data set, but 

acceptable; e.g. ~2 days of computation were needed to estimate the EX3 model using our cluster (16 

X 2.33GHz biprocessors with 8 Gb RAM).   

The main features of the matrices thus estimated are summarized in Table 1. We see that: 



12/30 

• The global rate is quite different for the exposed and buried categories: with EX3 the buried 

category is about twice as slow as the intermediate category, while the highly-exposed category is 

almost twice faster. This contrast is higher than that observed by Goldman et al. (1998) using a 

counting estimation procedure. They found a ratio of about 2.08 between exposed and buried 

rates (EX2 site partition), compared to 2.45 here, probably due to the fact that counting tends to 

underestimate the number of hidden substitutions compared with ML estimations. We also find a 

slightly higher contrast than found by Goldman et al. with secondary-structure categories (e.g. 

1.36 versus 1.28 for Helix/Extended), but our results confirm their main conclusion that the 

global substitution rate does not change much among secondary-structure categories. 

• The correlations between the amino-acid frequencies and exchangeabilities of the various 

matrices and those from LG indicate clear differences in the substitution patterns (see also 

matrices and graphics on http://atgc.lirmm.fr/mixtures). Mainly, we see that the amino-acid 

equilibrium frequencies are quite different among site categories. For example, as expected the 

buried category mostly contains hydrophobic amino-acids, while the helix category contains a 

large proportion of alanines but very few glycines. The correlations between exchangeabilities are 

much higher and above 0.9, except with highly exposed sites, which represent a clearly distinct 

site category. This high correlation level is explained by the fact that exchangeabilities represent 

the general propensities of amino acids, which are relatively invariant among categories (notably 

secondary-structure ones), while amino-acid frequencies largely account for the local constraints 

acting on sites. However, we shall see that the impact on tree likelihood of these moderate 

differences in exchangeabilities across categories is similar to that of the large differences in 

amino-acid frequencies. Indeed, we see from Table 1 that the correlations between the whole Q 

matrices mostly depend on exchangeabilities rather than on amino-acid frequencies. 

The unsupervised approach: estimation procedure and models 

In the unsupervised approach, we ignore available knowledge and try to directly infer new site 

partitions from the data, along with the corresponding replacement matrices. In principle, this should 

lead to better models than the supervised approach, as we have more degrees of freedom and can still 

recover the known site partitions. But the unsupervised approach involves complex numerical 

optimization with a number of local optima. An intermediate way is thus to use a semi-supervised 

procedure, where the starting solution is obtained using a known site partition and the procedure 
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described above, and then to refine this model in an unsupervised way. We performed several 

experiments along these lines to estimate two-category and three-category models, which we call 

UL2 and UL3 (Unsupervised Learning), respectively. We implemented two basic estimation 

strategies, both close to above supervised scheme. The first strategy (called mixed-strategy) uses the 

ability of XRATE to deal with mixtures, in combination with our Viterbi-like approximation (6). It 

uses the same 5 steps as the supervised procedure, and we only detail the differences:    

(1) Infer the aT  trees using PhyML, as in the supervised procedure. 

(2) Classify every site in the MAP rate category, as in the supervised procedure. 

(3) Use an appropriate phylogrammar in XRATE to define a mixture of  Θ  matrices ( θQ ) with 

proportions ( θπ ) estimated from the data but identical for all training alignments (XRATE does 

not allow for different category proportions among alignments). Then, run XRATE with site 

likelihood:  

   ( ) ( )( ), , ; , ;a a a a a
i iL T D L T i Dθ θ

θ

Θ α = π ρ∑ Q , (7) 

which is similar to (6) in that we do not sum over rate categories but use the MAP rate. However, 

we sum over pattern categories, and the estimation procedure is slow, even with UL2 (~2 days of 

computation on our cluster, for each XRATE run). 

(4)  Normalize the matrices using the constraint  1.θ θπ ρ =∑  

(5) Go to (1) and iterate the learning procedure until convergence (three iterations were enough in all 

experiments), but use the estimated mixture to infer the trees in place of LG and initialize 

XRATE in step (3). Other steps remain identical. 

For the first iteration, we need starting matrices in step (3). Several starting points were used in our 

experiments. For UL2, we started from EX2 matrices and from 2 matrices with uniformly randomly 

drawn exchangeabilities and amino-acid frequencies; best results were obtained with EX2. For UL3, 

we started from EX3 and 3 random matrices; best results were obtained with the random matrices. 

The fit of the various solutions was compared with TreeBase test alignments (Table 2).  

 The second strategy (called MAP-strategy) is even closer to the supervised scheme and does 

not use any mixture within XRATE. However, it requires starting from an initial mixture of θQ  

matrices. 
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(1) Infer the aT  trees using PhyML with Γ4 option and the mixture of θQ  matrices; the θπ  

proportions are optimized for each alignment separately (in this respect, the MAP-strategy is 

more flexible than the mixed-strategy). 

(2) For every site i, classify i in the MAP rate and pattern categories. 

(3) One matrix is learned for each pattern category separately, as in the supervised procedure. 

(4) Normalize the matrices, as in the supervised procedure. 

(5) Go to (1) and iterate until convergence (three iterations were enough in all experiments). 

We tested two starting mixtures. For UL2 (UL3), we used EX2 (EX3) and the 2-category (3-category) 

mixture obtained by the mixed-strategy. In both cases, best results were obtained by combining the 

two strategies. The mixed-strategy provided an initial mixture, which was significantly improved 

using the MAP-strategy, likely due its greater flexibility. Results with TreeBase are displayed in 

Table 2, and the same method ordering was obtained with HSSP test alignments (not shown), 

meaning that our model choice is not biased in favour of TreeBase. We see large differences between 

the two strategies and the various starting points. This suggests that other combinations could be 

tested, which would likely improve our current models. However, running any of these approaches 

requires important computational resources; e.g. about 12 days of computation on our cluster were 

needed to estimate the UL3 model with the mixed-strategy and a random starting point.   

The main features of our best UL2 and UL3 models (obtained by combining the mixed- and 

MAP-strategies) are displayed in Table 3 (see also http://atgc.lirmm.fr/mixtures). UL2 matrices are 

denoted as M1 and M2, while UL3 ones are denoted Q1, Q2 and Q3. We see that: 

• Unsupervised models are more distant from LG than supervised ones; e.g. all exchangeability 

correlations are below 0.9, while all supervised ones (but one) are above 0.9. LG represents the 

average model, and thus unsupervised models are more varied than supervised ones. This can be 

explained by two factors: (1) the supervised categories are somewhat imprecise and not fully 

reliable, meaning that they contain “average” sites that could be classified in other categories as 

well; (2) the unsupervised scheme tends to exacerbate the differences between the mixture 

categories.  

• UL2 is strongly correlated with EX2: M1 is quite close to the exposed matrix (proportion, global 

rate, frequencies and exchangeabilities), and the same holds with M2 and the buried matrix. UL2 

is obtained starting from EX2 and combining the two estimation strategies, but this high 
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correlation still holds when starting from random matrices (not shown), and similar results have 

been found by Holmes and Rubin (2002) using a different unsupervised approach. This means 

that the main factor in amino-acid substitution is accessibility to solvent, which corresponds to a 

known, well-documented fact. This affects the global substitution rate ( θρ ), but also the 

substitution process ( θR ) and (obviously) the amino-acid equilibrium frequencies ( θΠ ), which 

tend to be hydrophobic/hydrophilic depending on site exposure. As expected, M1 is close to the 

“other” secondary-structure category (containing the turns and coils, which are typically 

exposed), while M2 is close to “extended” sites (the most buried secondary-structure category).  

• UL3 is more difficult to interpret than UL2. Q1 is relatively close to the exposed (or even highly 

exposed) matrix, Q3 is relatively close to the buried matrix, while Q2 does not correlate with 

exposure-based matrices but is (relatively) close to the “other” secondary-structure matrix. A 

similar interpretation of Q2 is found with HSSP alignments when looking at the true structural 

categories of the sites; when Q2 is the mixture category with highest posterior probability, about 

half of the sites are buried and half exposed, while ~60% of the sites are in the “other” secondary-

structure category (versus ~43% in average). Most notably, Q2 amino-acid frequencies show a 

very high proportion of glycines and prolines (~30%, versus ~10% in average), which are unique 

amino acids in that they influence the conformation of the polypeptide and are often found in 

turns. Moreover, Q2 is well conserved with a low global rate, though it is closer to the exposed 

model than to the buried one. This site category was not found by Holmes and Rubin (2002) 

when testing their model with 3 (and 4) categories; they observed a third “tiny” category 

favouring alanine, glycine and serine (all of which have very small side-chains), in addition to the 

exposed and buried categories. Thus, UL3 seems to combine exposure and secondary-structure 

information (in an efficient way, as we shall see in the Result section). Further investigations 

would deserve to be conducted to better understand the evolutionary and biochemical properties 

of UL3 site categories and replacement matrices. 

Results with test alignments 

We used the 57 TreeBase test alignments to compare supervised (EHO, EX2 and EX3) and  

unsupervised (UL2 and UL3) matrix mixture models, to single matrices (JTT, WAG and LG) and 

profile mixtures (CAT20 and CAT60 with 20 and 60 profiles, respectively; see Le et al. (2008) for 

details). Note that the supervised models, which were learned using HSSP-based site partitions, are 
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used here as mixtures, as we do not have structural information in TreeBase (and in number of 

phylogenetic data sets). All models were run with PhyML using 4 gamma rate categories (Γ4), BioNJ 

(Gascuel 1997) starting tree and SPR-based tree topology search (Hordijk and Gascuel 2005). This 

imposed some adaptations of standard PhyML. In the current implementation, an initial ML tree is 

first inferred with LG+Γ4 in the usual way, and then the mixture is used to refine this first tree, with 

the model parameters (mixture proportions and gamma shape parameter) being adjusted along the 

way. 

 For all models, we measured the AIC criterion (Akaike 1974) on each of the test alignments: 

  ( ) ( ) ( )M, 2 M, ; 2# Ma a aAIC D LL T D parameters= − , 

where: ( )M, ;a aLL T D  is the log-likelihood of alignment aD  given model M and inferred tree aT ; 

( )# Mparameters  is the number of parameters of model M. Single matrix and CAT models involve 

the same number of parameters (number of branches plus one, corresponding to the gamma shape 

parameter), UL2 and EX2 require one additional parameter (mixture proportion), while EHO, EX3 

and UL3 require two additional parameters (two mixture proportions). We computed the average AIC 

per site of model M for all test alignments, which is simply 

  ( ) ( )M M, a a

a a
AIC site AIC D s=∑ ∑ , (8) 

where as  is the number of sites in aD . All models were compared to LG using criterion (8). To 

complete this global average result, we also counted the number of alignments where ( )M, aAIC D  is 

better/worse than ( )LG, aAIC D . Moreover, to assess the statistical significance of the observed 

difference between M and LG, we used a Kishino-Hasegawa (KH; 1989) test with p<0.01. 

 For each of the inferred trees, we measured the tree length (sum of branch lengths) and the 

gamma shape parameter, as best models tend to produce longer trees capturing more hidden 

substitutions (see Pagel and Meade, 2005, for a discussion on tree length and likelihood value). We 

also compared the topology of inferred trees. The true tree is not known with real data (as opposed to 

simulated data), and our aim was to measure the impact of the various models in terms of topology, 

i.e. whether we frequently infer a different tree topology when improving the substitution model. 

Indeed, it is commonly believed that tree topologies inferred with usual models (JTT, WAG, etc) tend 

to be identical, which would mean that any efforts to refine these models are somewhat useless. When 

different topologies are found, we should prefer the one with best likelihood value. However, the 
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difference may be slight and non-significant, so we cannot reject the topology with the lower 

likelihood value. Thus, we counted the number of alignments where the tree built using any given 

model M is not the same as the tree inferred with LG, and the significance of these topological 

differences was assessed using a KH test (p<0.01). 

 Average AIC results are displayed in Figure 1, and Figure 2 provides the number of 

alignments where each model is (significantly) better/worse than LG. We see that: 

• LG clearly outperforms JTT and WAG (as shown in Le and Gascuel 2008), but is outperformed 

by the mixture models. While LG is often significantly better (and rarely worse) than JTT and 

WAG, we observe the converse with mixtures (but CAT), which are often significantly better 

than LG and rarely worse; e.g. compared to UL3 (the best mixture), LG is significantly better 

with 1 alignment only, while UL3 is significantly better than LG with 34 alignments (among 57). 

Moreover, the AIC gain of matrix mixtures is largely due to the different exchangeabilities 

among sites categories, and not only to the differences in amino-acid composition. For example, 

we ran a 2-category mixture with EX2 frequencies (highly contrasted between exposed and 

buried sites), but LG exchangeabilities for both categories; the AIC gain of this model is 0.074, 

compared to 0.151 with the full EX2 model. 

• CAT results are a bit disappointing, as the average performance of CAT20 is only slightly better 

than that of LG, and as both CAT20 and CAT60 are often worse than LG, and even significantly 

worse (with 10 and 5 alignments, respectively). However, CAT was designed for saturated data 

sets, and we showed that it performs well with such data (Le et al. 2008). To this purpose, we 

used the saturation index defined by Lartillot et al. (2007), which corresponds to the parsimony-

based number of convergences and reversions. When looking (Figure 1) at the alignments with 

saturation index per site larger than 2, we see that CAT20 has nearly the same performance as the 

2-matrix models (EX2 and UL2). This makes sense as all these models involve about the same 

number of numerical values (~400 rates and probabilities) and thus similar amount of knowledge. 

Moreover, CAT60 is nearly as good as UL3 (1199 and 630 numerical values, respectively). 

Above all, we see that with such saturated data the contrast between all models is much 

increased; e.g. the difference between UL3 (best model) and JTT (worse model) is ~1.7 AIC 

point per site, meaning that with 300 sites the difference is as large as ~500 AIC points, which is 

considerable. 
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• Supervised models show similar performance. When all alignments are considered, exposure-

based models (EX2 and EX3) slightly improves secondary-structure-based model (EHO), while 

EX2 and EX3 are close. Thus, EX2 should be preferred for most studies as it requires less 

computing time and memory. 

• UL2 is also quite close to EX2, as expected since both are strongly correlated. As EX2 is based 

on known properties of proteins, and thus is easily interpretable, we believe that it should be 

preferred over UL2 in most cases. However, the unsupervised approach demonstrates its 

advantage with 3-matrix models, since UL3 clearly outperforms EHO and EX3. It also improves 

CAT60, despite the fact that it contains fewer numerical values, run faster (~8 times) and requires 

less memory. Unsupervised mixtures of matrices thus seem to be an efficient and accurate way to 

encode the main features of amino-acid replacements. 

Table 4 provides the main features of the trees inferred using the various models. We see that: 

• Though LG trees are longer than JTT and WAG trees, mixture trees are even longer. This is a 

clear tendency for all mixtures, indicating that these models tend to infer more hidden 

substitutions than LG (and JTT and WAG). The gamma shape parameter has a different 

behaviour. The variability of rates among sites tends to be lower (α is higher) with WAG than 

with LG (JTT and LG are nearly identical), and the converse is observed with CAT models, 

which is consistent with our observations with tree length, as evolutionary distances and branch 

lengths are increased when the α value decreases. With matrix mixtures the α value is higher than 

with LG, but this cannot be interpreted as a lower variability of rates, because part of this 

variability is accounted for by the variable global rates of the matrices defining the mixtures. 

• All models often infer topologies that differ from LG topology, and the topological differences 

frequently correspond to significant likelihood gains (mixture models), or losses (JTT and WAG), 

compared to LG. Moreover, the topological distance between trees is also high, especially with 

CAT. In fact, CAT often (~85% of alignments) infers trees that clearly (~25% of clades) differ 

from LG trees. The exact reasons for these marked differences between CAT and LG remain to 

be investigated. A possibility is that it corresponds to more accurate inferences. In this direction, 

we showed (Le et al. 2008) in some well documented case studies that CAT has a good resistance 

to long-branch attraction artefacts. Alternatively, the use of F81 processes could cause a loss of 

accuracy of CAT. All together, our results show that protein substitution modelling impacts the 

topology of inferred trees. Although it is not clear whether the resulting topologies are closer to 
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the true topologies, they are different from the topologies inferred using standard models (JTT, 

WAG), with higher likelihood values in most cases, and thus these alternative topologies should 

be of great interest for phylogeneticists. 

Discussion 

Our results with test alignments show that highly significant likelihood gains are obtained using 

mixture models, compared to single replacement matrices (JTT, WAG and LG). Unsupervised 

models tend to outperform supervised ones, but only slightly so with 2 matrices, as the main factor in 

amino-acid replacement seems to be the accessibility to solvent. With 3 matrices, our unsupervised 

model (UL3) combines exposure and secondary-structure aspects and is clearly the best model we 

tested; the average AIC gain per site with TreeBase test alignments is 0.31, 0.49 and 0.61, compared 

to LG, WAG and JTT, respectively. Moreover, UL3 is significantly better than LG for 34 alignments 

(among 57), and significantly worse with 1 alignment only. CAT performs well with saturated 

alignments (with 60 profiles, CAT60 is nearly as good as UL3), but is slow in an ML context due to 

the number of site categories (profiles). However, this limitation is alleviated in the Bayesian 

framework (thanks to data augmentation) where CAT60 should be quite relevant. 

 As said in the Introduction, the work presented here is a continuation of previous researches, 

mainly by Thorne et al. (1996) and Goldman et al. (1998) for the supervised scheme, and Holmes and 

Rubin (2002) for the unsupervised one. Moreover, Koshi and Goldstein (e.g. 1995, 1998) explored 

similar questions and models using Bayesian approaches. The main differences with these previous 

works are:  

• The size of our training database, which matters to estimate such large number of parameters; e.g. 

we showed in Le and Gascuel (2008) that about half of the gain of LG compared to WAG was 

induced by the training alignments.  

• The use of up-to-date ML programs (XRATE for matrices and PhyML for trees), while Thorne, 

Goldman and colleagues used NJ (Saitou and Nei 1987) and counting-based matrix estimations 

(and an EM algorithm to estimate their HMM model), and Holmes and Rubin inferred the 

phylogenies using NJ. Moreover, we iterated the learning procedure, i.e. repeatedly inferred the 

trees using the mixture and estimated the mixture parameters using these trees. The gain was 

appreciable with LG (Le and Gascuel 2008), but is higher with mixtures; e.g. with UL3, the 
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mixture obtained after the first iteration of the mixed-strategy has an AIC gain per site with 

TreeBase of 0.25 compared to LG, while the final UL3 model has 0.31. 

• The fact that all our models include a gamma distribution of rates, which is accounted for in 

model estimation. This feature explains the second half of LG’s gain compared to WAG (Le and 

Gascuel 2008). Moreover, modelling rates across sites in tree inference is of first importance, 

even with pattern-based site categories with variable global rates (e.g. buried/exposed). 

Preliminary experiments show that our models clearly outperform PASSML (Lio et al. 1998), 

which implements Thorne’s and Goldman’s structural models, but does not explicitly incorporate 

rates across sites as in our equation (5).  

• The use of mixtures with category proportions that are adjusted to the analysed alignment. This is 

a simple approach (simpler than HMM and Markov Modulated Markov models used in some of 

these previous researches), but it fits important features of proteins which are highly 

heterogeneous. 

All of this (very large database, full ML approach, refined models) has been possible thanks to today 

computers and the recent algorithmic developments on ML estimation of phylogenetic models (trees 

and replacement matrices). All together, we obtained simple, robust and ready-to-use models. A 

PhyML implementation is available from http://atgc.lirmm.fr/mixtures/ . 

 Further investigations should include: refinements of these models, e.g. using more site 

categories or non-parametric rate distributions; assessment of these models in a Bayesian framework; 

comparison with partition models, when the structure of the studied protein is known; algorithmic 

refinements of the unsupervised estimation procedure, to cope with the multiple local optima that we 

observed; estimation of mixture models specific to certain protein groups (e.g. mitochondrial or 

membrane proteins) or life domains (e.g. viruses or apicomplexa). 
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 EX2 EX3 EHO 

θ  Exposed Buried HExposed Intermediate Buried Extended Helix Other 

θπ  0.552 0.448 0.196 0.389 0.415 0.208 0.360 0.432 

θρ  1.360 0.557 1.897 1.046 0.534 0.857 1.163 0.932 

LGθΠ  0.619 0.673 0.468 0.832 0.659 0.729 0.777 0.625 

LGθR  0.927 0.934 0.856 0.942 0.925 0.964 0.935 0.958 

LGθQ  0.940 0.915 0.877 0.955 0.904 0.959 0.946 0.961 

 

Table 1: Replacement matrices for solvent-exposure and secondary-structure site categories 

 

Note: θπ : proportion of θ  in the training set; θρ : global rate of θ ; LGθΠ : correlation of θ  amino-

acid frequencies compared to LG frequencies; LGθR : correlation of θ  and LG exchangeabilities 

using log values (exchangeabilities are highly contrasted with some very small values); LGθQ : 

correlation of θ  and LG rates using log values; HExposed: highly exposed sites. 
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 MIXED  

EX START 

MIXED 

RANDOM START 

MAP  

EX START 

MAP 

MIXED START 

UL2 0.145 0.135 0.156 0.180 

UL3 0.250 0.282 0.223 0.306 

 

Table 2: Comparison of unsupervised learning strategies 

 

Note: The model fit is measured with 57 TreeBase test alignments, using the AIC per site gain 

compared to LG (see Results section for details). The higher the gain, the better is the model. 

MIXED: mixed-strategy; MAP: MAP-strategy; EX START: EX2 or EX3 models are used as starting 

points; RANDOM START: starting matrices are randomly drawn; MIXED START: use as starting 

point the best model obtained by the mixed-strategy. 
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 UL2 UL3 

θ  M1 M2 Q1 Q2 Q3 

θπ  0.498 0.502 0.320 0.282 0.398 

θρ  1.27 0.735 1.647 0.702 0.690 

LGθΠ  0.527 0.677 0.545 0.454 0.688 

LGθR  0.824 0.891 0.788 0.827 0.836 

SUPθΠ  0.984 e 

0.854 O 

0.969 b

0.842 E 

0.935 e 

0.886 H 

0.273 e 

0.709 O 

0.926 b 

0.873 E 

SUPθR  0.955 e 

0.919 O 

0.932 b

0.915 E 

0.897 e 

0.854 O 

0.809 e 

0.837 O 

0.852 b 

0.845 E 

 

 

Table 3: Unsupervised mixture model matrices 

 

Note: SUPθΠ : best correlation value of amino-acid frequencies between given matrix and 

supervised matrices from EX2 (first line, small letters) and EHO (second line, capital letters). For 

example, with M2, “0.969 b 0.842 E” means that amino-acid frequencies of M2 have correlations of 

0.969 and 0.842 with those of buried sites and extended sites, respectively; moreover, correlations 

with other site categories are lower than these values. SUPθR : same as SUPθΠ  but using the log 

values of exchangeabilities. See note to Table 1 for other symbols. 
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 JTT WAG EHO EX2 EX3 CAT20 CAT60 UL2 UL3 

tree length 0.98 0.90 1.04 1.13 1.03 1.10 1.14 1.04 1.08 

α 0.99 1.17 1.07 1.19 1.17 0.94 0.97 1.12 1.21 

#diff 35 (29) 40 (29) 34 (16) 36 (22) 35 (19) 49 (17) 48 (20) 37 (16) 38 (22)

R&F 0.17 0.20 0.13 0.13 0.14 0.26 0.26 0.14 0.15 

 

Table 4: Model comparison, regarding tree length,  

gamma shape parameter and topology 

 

Note: These results are obtained with the 57 TreeBase test alignments. The tree length is the sum of 

branch lengths, α denotes the gamma shape parameter, and the Robinson and Foulds (1981) 

topological distance corresponds to the number of clades that belongs to one tree but not the other. 

This distance is normalized and ranges between 0 (both trees are identical) and 1 (they do not share 

any clade in common). Symbols are as follows: tree length: average of the ratios between given 

model and LG tree lengths; α: average of the ratios between given model and LG α values; #diff: 

numbers of alignments where given model and LG topologies differ (numbers between parentheses 

count the significant differences using the KH test with p<0.01); R&F: average of the Robinson and 

Foulds distance between given model and LG topologies.  
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Figure 1: AIC/site gain compared to LG 

 

Note: All models are compared to LG. Negative gains (JTT and WAG) mean that the models are 

worse than LG, while positive gains correspond to (mixture) models that improve LG. The gains are 

provided for all 57 TreeBase test alignments, and for the 8 alignments with saturation index per site 

larger than 2. 
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Figure 2: number of alignments with better/worse likelihood values than LG 
 

Note: Number of alignments (among the 57 TreeBase test alignments) where each model provides a 

better (positive side) and a worse (negative side) likelihood value than LG. The grey bars correspond 

to the numbers of significant differences using the Kishino-Hasegawa test with p<0.01. 


