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Phylogenetic mixture models for proteins

Si Quang Le, Nicolas Lartillot and Olivier Gascuel*

Méthodes et Algorithmes pour la Bioinformatique, LIRMM, CNRS–Université Montpellier II,

161 rue Ada, 34392 Montpellier Cedex 5, France

Standard protein substitution models use a single amino acid replacement rate matrix that

summarizes the biological, chemical and physical properties of amino acids. However, site evolution

is highly heterogeneous and depends on many factors: genetic code; solvent exposure; secondary and

tertiary structure; protein function; etc. These impact the substitution pattern and, in most cases, a

single replacement matrix is not enough to represent all the complexity of the evolutionary processes.

This paper explores in maximum-likelihood framework phylogenetic mixture models that combine

several amino acid replacementmatrices to better fit protein evolution.We learn thesemixturemodels

from a large alignment database extracted from HSSP, and test the performance using independent

alignments from TREEBASE. We compare unsupervised learning approaches, where the site categories

are unknown, to supervised ones, where in estimations we use the known category of each site, based

on its exposure or its secondary structure. All our models are combined with gamma-distributed rates

across sites. Results show that highly significant likelihood gains are obtained when using mixture

models compared with the best available single replacement matrices. Mixtures of matrices also

improve over mixtures of profiles in the manner of the CATmodel. The unsupervised approach tends

to be better than the supervised one, but it appears difficult to implement and highly sensitive to the

starting values of the parameters, meaning that the supervised approach is still of interest for

initialization and model comparison. Using an unsupervised model involving three matrices, the

average AIC gain per site with TREEBASE test alignments is 0.31, 0.49 and 0.61 compared with LG

(named after Le & Gascuel 2008 Mol. Biol. Evol. 25, 1307–1320), WAG and JTT, respectively. This

three-matrix model is significantly better than LG for 34 alignments (among 57), and significantly

worse for 1 alignment only. Moreover, tree topologies inferred with our mixture models frequently

differ from those obtained with single matrices, indicating that using these mixtures impacts not only

the likelihood value but also the output tree. All our models and a PhyML implementation are

available from http://atgc.lirmm.fr/mixtures.

Keywords: amino acid replacement matrices; JTT, WAG and LG; CAT profile model;

maximum-likelihood estimations; phylogenetic inference

1. INTRODUCTION

Amino acid replacement models are essential in most

methods to infer protein phylogenies. In distance

methods, they are used to estimate the evolutionary

distance (i.e. the expected number of substitutions

per site) between all sequence pairs. In maximum-

likelihood (ML) and Bayesian methods, they are used

to compute probabilities of change along the tree

branches, and thus the likelihood of the data (see

textbooks, e.g. Felsenstein 2003; Yang 2006). Stan-

dard models use a single amino acid replacement

matrix that summarizes the biological, chemical and

physical properties of amino acids. Such 20!20

matrix contains estimates of the instantaneous

substitution rates from any amino acid to another

one. For example, replacements between arginine

(positively charged) and aspartate (negatively

charged) are under strong negative selection and

have low rate, while replacements between isoleucine

and valine (both hydrophobic, aliphatic and very non-

reactive) are frequent and have high rate (see text-

books, e.g. Betts & Russell 2003).

A number of replacement matrices have been

proposed since the seminal work of Dayhoff et al.

(1972), notably JTT (Jones et al. 1992) and WAG

(Whelan & Goldman 2001). Several studies showed

that specific matrices should be used for certain

analyses, e.g. with membrane (Jones et al. 1994) or

mitochondrial (Yang et al. 1998) proteins. However,

general matrices are usually robust and tend to perform

well in many cases, as shown by Keane et al. (2006) for

WAG (and to some extent for JTT). Recently, we

proposed a new general matrix called LG (after the

authors, Le & Gascuel 2008), which significantly

improves over previous general matrices. LG was

learned from a very large alignment database extracted

from Pfam (Bateman et al. 2002), using a ML

estimation method that refines that of Whelan &

Goldman (2001) by incorporating the variability of

evolutionary rates across sites in the matrix estimation.

Site evolution is highly heterogeneous and depends

on many factors: genetic code; solvent exposure;

secondary and tertiary structure; protein function;

etc. All these factors impose different constraints on

the sites. Some sites are highly conserved, while some

others are subject to little pressure and evolve rapidly.

This variability of evolutionary rates among sites is
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well modelled by the use of discrete gamma rate

categories (Yang 1993). However, site heterogeneity

impacts not only the evolutionary rate but also the

substitution pattern. It was shown by several authors

(e.g. Koshi & Goldstein 1995; Thorne et al. 1996;

Goldman et al. 1998) that the substitution pattern

differs depending on solvent exposure and secondary

structure. Moreover, several models were proposed

(e.g. Bruno 1996; Koshi & Goldstein 1998; Lartillot &

Philippe 2004; Crooks & Brenner 2005) to account for

the fact that depending on their position and role in

protein structure and function, sites generally accept

only a specific subset of the 20 amino acids. These

approaches use sets of models in which the equilibrium

frequencies of the 20 amino acids are site-specific.

These models rely on simple multinomial processes

over the 20 amino acids, analogous to the F81

(Felsenstein 1981) model of DNA substitution, and

are entirely characterized by their amino acid equili-

brium distribution or ‘profile’. Recently, we learned a

series of profile sets with various sizes from a large

alignment database extracted from HSSP (Homology-

derived StructureS of Proteins; Schneider et al. 1997).

Our results showed that this empirical profile approach

(called CAT, following Lartillot & Philippe 2004) tends

to outperform standard replacement matrices, at least

with alignments showing a high level of saturation (Le

et al. 2008). However, F81-like models are relatively

poor as they assume uniform probabilities for mutation

from one amino acid to another one, and thus miss a

part of the biological constraints acting on site

evolution. Better results are expected from models

where the mutational processes of each site are

modelled using refined (typically general time revers-

ible) replacement matrices. The purpose of this paper

is to study such matrix-based site-dependent models.

Estimating one model per site is not statistically

feasible (this would involve too many parameters), and

therefore most site-dependent approaches use mixture

models. As the most appropriate replacement matrix (or

profile) for each site is usually unknown, the likelihood

at each site is a weighted average over all alternative

matrices (see textbooks, e.g. Pagel & Meade 2005;

Gascuel & Guindon 2007). When the site category is

known (e.g. secondary structure or solvent exposure) we

can use a partitioning approach that analyses each site

with the appropriate matrix. Moreover, several authors

proposed to refine the mixture approach using hidden

Markov models (e.g. Felsenstein & Churchill 1996;

Thorne et al. 1996; Goldman et al. 1998) that account

for the dependence of site categories (e.g. secondary

structure) along the sequence. Another refinement of

mixtures was proposed by Holmes & Rubin (2002),

where the site category can change along the course

of time in a way similar to the covarion-like model of

Tuffley & Steel (1998).

In this paper, we further explore the use of phy-

logenetic mixture models for proteins in a ML frame-

work, using up-to-date ML matrix estimation

procedures and a very large alignment database,

among those that are currently available. In the

continuation of Koshi & Goldstein (1995), Thorne

et al. (1996) and Goldman et al. (1998), we learn

different matrices for the different structural states

of the sites (exposed, buried, a-helix, beta-sheet and

coil). We also estimate matrix mixtures in an

unsupervised way, i.e. without a priori definition of

site categories, in a way close to that of Holmes &

Rubin (2002). Contrary to these previous works, all

our models incorporate a gamma distribution of site

rates. This rate distribution is not only used to infer

trees, as is now usual, but also in the matrix estima-

tions as described in Le & Gascuel (2008). Results of

these new matrix mixtures are compared to those

of JTT, WAG and our recent LG and CAT models,

using test alignments from TREEBASE (Sanderson

et al. 1994). In the following, we first describe our

data, then the various mixture models and their

estimation procedures, and finally compare all these

approaches with test alignments.

2. ALIGNMENT DATASETS

To estimate our mixture models, we used HSSP

(Schneider et al. 1997). This database comprises app-

roximately 35 000 alignments of protein families, each

usually containing numerous members (approx. 550

on average). Each alignment is obtained by aligning a

protein with known three-dimensional structure in the

Protein Data Bank to all its probable sequence

homologues in SWISS-PROT. The protein with

known structure is named the ‘test protein’ of the

alignment; its secondary structure and accessibility to

solvent are calculated using DSSP (Kabsch & Sander

1983) and assumed to be representative of the structure

of all homologues in the alignment.

HSSP is highly redundant. Typically, a protein may

be the test protein of a given alignment and belongs to

all alignments corresponding to its homologues with

known structure. Moreover, HSSP alignments often

contain a huge number of gaps, mainly due to absent or

unsequenced domains for some proteins. We thus

performed an intensive cleaning of HSSP to extract

independent alignments and, within each of the

alignments, to select sequences and sites corresponding

to well-aligned, non-gapped regions. Moreover, we

only selected globular proteins, thus discarding

membrane proteins that show clearly different patterns

of amino acid replacement (Jones et al. 1994). To

eliminate redundancy, we used the SWISS-PROT

identifiers of proteins; selected alignments do not

share any common identifier and correspond to clearly

distinct protein families. For each of the retained

alignments, we selected sequences and sites to obtain a

sub-alignment based on several criteria: presence of the

test protein in the sequence set; large number of

sequences (R10) and sites (R100); informative

percentage of identities between any sequence pair

(range 40–99%); and low number of gaps, using

GBLOCKS (Castresana 2000) with default options

to achieve a final cleaning.

We obtained 1771 non-redundant sub-alignments

(alignments for short from now), with an average of

approximately 56 sequences and approximately 254

sites per alignment, approximately 27 million amino

acids in total and very few gaps (!0.1%).We randomly

selected 1471 alignments for training, and used the

remaining 300 to compare our various models. Using
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HSSP annotations, each site is classified as extended

(E), a-helix (H) or others (S, T, B, G, I, ‘.’ or ‘?’). We

also classified the sites based on their relative

accessibility to solvent (Shrake & Rupley 1973). We

used the same two-category partition as in Goldman

et al. (1998) and several other studies, with accessibility

threshold equal to 10% and nearly equally weighted

buried and exposed categories (approx. 46% and

approx. 54%, respectively). We also used a three-

category partition: the buried class (accessibility less

than 8%) contains approximately 40% of the sites; the

highly exposed class (accessibility more than 45%)

contains approximately 20% of the sites; and the

intermediate class approximately 40% of the sites.

This three-category partition focuses on the highly

exposed sites that are often saturated and appear to

have a strong impact on the likelihood value.

Additional criteria and details of the selection

procedure are described in Le et al. (2008), and the

database is available on request.

To assess the performance of our models, we used

test alignments fromTREEBASE (Sanderson et al. 1994).

TREEBASE contains alignments that have been pro-

duced especially for phylogenetic analyses, and thus

provide a good benchmark for comparing models

meant for phylogenetic reconstruction. Moreover, the

use of test alignments from a different database should

avoid possible biases induced by some feature specific

to our HSSP training alignments. Most of the

TREEBASE alignments are carefully aligned with rigor-

ously selected taxa and sequences. These alignments

are quite diverse: some are highly cleaned and do not

contain any gaps, while some others contain up to

95% gapped sites; and some alignments are relatively

large, while some others are limited (minimum of 7

and 55 taxa and sites, respectively). All protein

alignments from TREEBASE (May 2007) were selected,

except three of them because the set of taxa differed in

the alignment and in the published tree, and two of

them because the maximum pairwise divergence

seemed excessively large in a phylogenetic inference

context (more than 2.0 substitutions per site, using a

standard WAG distance). Moreover, we removed five

redundant alignments and two very large genomic ones

(for computational reasons, with the CAT model). We

thus obtained 57 test alignments that should be

representative of usual phylogenetic studies, with an

average of approximately 25 sequences and approxi-

mately 550 sites per alignment. These alignments were

also used to test our LG replacement matrix (Le &

Gascuel 2008) and are available from LG website:

http://atgc.lirmm.fr/LG (but removing the two very

large genomic alignments).

3. MIXTURE MODELS, NOTATION AND

BACKGROUND

All matrices that we shall discuss comply with the

general time-reversible (GTR) model (see textbooks,

e.g. Felsenstein 2003; Bryant et al. 2005; Yang 2006).

Such a matrix contains estimates of the instantaneous

substitution rates from any amino acid to another one,

and is denoted as QZ(qxy), where qxy is the rate of

replacement from x to y (xsy). Q can be decomposed

into three independent components using

qxyZ rpyrx4y; xsy;

qxxZK
X

ysx

qxy;

9

>

=

>

;

ð3:1Þ

where r is the global rate of Q, equal to the expected

number of substitutions per time unit; PZ ðpxÞ is the
vector of amino acid equilibrium frequencies; and

RZ ðrx4yÞ is the (symmetric) exchangeability matrix

that represents the general propensity of exchanges

between amino acids, independently of the amino acid

frequencies within the studied sequences (represented

byP). In the following, we assume thatR is normalized

(i.e. K
P

pxqxxZr), and thus Q contains 1(r)C

19(P)C189(R)Z209 free parameters to be estimated

from the data. When a single replacement matrix is

used (e.g. WAG), it is normalized (i.e. rZ1) to obtain a

simple branch length interpretation in terms of number

of expected substitutions per site. When several

matrices are used, they are no longer normalized (e.g.

exposed sites evolve about thrice as fast as buried sites)

and the model requires a specific global normalization

that is discussed below.

Amino acid changes over the course of time are

represented by the matrix P(t)Z( pxy(t)), where pxy(t) is

the probability of observing a change from x to y when

the elapsed time is t. The probability pxy(dt) of

changing from x to y (xsy) in infinitesimal time dt is

equal to qxydt. This implies the following basic

relationship between the substitution rates and prob-

abilities of change:

PðtÞZ eQt
; ð3:2Þ

where the right-hand side term denotes the matrix

exponential.

Assuming a single replacement matrix Q and no

variability of rates among sites, the likelihood of the

data (denoted D) for a given tree T (including branch

lengths) is

LðT ;Q;DÞZ
Y

i

LðT ;Q;DiÞ; ð3:3Þ

where the product runs over all the sites (independence

assumption) and where LðT ;Q;DiÞ is the likelihood of

the data at site i (denotedDi) given TandQ. L(T,Q;Di)

is computed by applying equation (3.2) to each tree

branch (t is the branch length) and using the pruning

algorithm (Felsenstein 1981).

However, it is acknowledged that sites do not evolve

at the same rate due to various evolutionary pressures.

In the ML framework, practical implementations rely

on a simple mixture model with discrete categories of

rates. Each site belongs to a category c2 1;2;.;Cf g
with rate rc. Yang’s (1993) approach involves categories

with identical probabilities (equal to 1/C ) and rc rates

being defined by the parameter a of a gamma

distribution that is usually fitted to the analysed

dataset. The likelihood of the data for tree T,

replacement matrix Q and gamma-distributed rate

categories is

LðT ;Q;a;DÞZ
Y

i

X

1%c%C

1

C
LðT ; rcQ;DiÞ: ð3:4Þ
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In the mixture defined by equation (3.4), we have C

replacement matrices that only differ by their global

rates. In this paper, we consider the more general

setting where site categories (e.g. buried/exposed)

correspond to different substitution patterns, each

modelled using a different replacement matrix. Let Q

denote the set of substitution pattern categories, q be a

pattern category of Q, Qq the replacement matrix

corresponding to q, pq the a priori probability of q and

rq the global rate of Qq. In the partition approach, the

category of each site i is known and each site is analysed

with the proper replacement matrix (e.g. Gascuel &

Guindon 2007). However, site categories are not

always known or may be known with a large uncertainty

(e.g. secondary-structure states are somewhat arbitrary

and non-fully conserved among homologous proteins).

Moreover, we will discuss models where site categories

do not have any obvious interpretation and are learned

empirically from the data (the unsupervised way).

Mixture models are used to cope with such cases. For

each site, we sum over all possible categories, and the

likelihood of the data is expressed as

LðT ;Q;a;DÞZ
Y

i

X

1%q%jQj

pq

X

1%c%C

1

C
LðT ; rcQq;DiÞ

" #

;

ð3:5Þ

Equation (3.5) defines a mixture with jQj (number of

patterns)!C (number of rates) categories, each with

probability pq/C and replacement matrix rcQq. All

mixture models discussed in this paper comply with

equation (3.5). The differences come from the number

of pattern categories, the properties of the Qq matrices

(GTR or F81), and the way these models were learned

from the data. The gamma distribution of rates is

assumed to be the same among pattern categories, as

we did not observe any significant improvement when

using several rate distributions.

In all models (except CAT, see below), the

proportions pq of pattern categories are fitted to the

analysed dataset. This is an important feature as

proteins are highly heterogeneous. For example, some

proteins contain alpha-helices and no beta-sheets,

while others contain beta-sheets only, and finally

some contain both. Analysing all proteins with fixed

proportions of alpha-helices and beta-sheets would

poorly fit this biological reality and result in a loss of

likelihood value. Mixtures defined by equation (3.5)

thus require jQjK1 additional free parameters

compared to Yang’s model in equation (3.4). More-

over, we have to normalize the mixture to ensure

branch-length interpretation. In practice, since the pq

proportions vary from one dataset to another one, we

do not normalize the mixture but rescale the inferred

tree. This (equivalent) post-processing involves multi-

plying every branch length by the expected rate of the

mixture (i.e.
P

pqrq), after all parameters (pq,

topology, branch-lengths, etc.) have been estimated

from the data.

The CAT model (Lartillot & Philippe 2004; Le

et al. 2008) uses simplified F81-like replacement

matrices (all exchangeabilities rx4y; xsy; are equal).

Each matrix is thus defined by an amino acid profile

(19 free parameters) corresponding to the equilibrium

distribution of the substitution process, and a number

of profiles (up to 60 in our experiments) are used to

accurately model amino acid substitutions. This model

is intended to fit the common observation that sites

only contain a few amino acids corresponding to

precise biochemical constraints, even in the case of

saturation. Thus, the CAT profiles contain a few amino

acids with significant probability, while the other amino

acids have nearly zero probability. In Le et al. (2008), it

was not clear whether adjusting the profile proportions

(the pq parameters) results in an increase in likelihood

sufficient to compensate for the high number of

additional parameters (59 with 60 profiles). We thus

preferred to use fixed profile proportions, and the same

holds in this paper.

In tree inference, all models simply use equation

(3.5) to compute the tree likelihood and optimize the

topology, branch lengths and model parameters. The

computational cost depends greatly on the number of

mixture categories. In standard implementations, both

the memory requirement and the computing time are

nearly proportional to the number of categories (see

textbook, e.g. Bryant et al. 2005). For example, using a

three-matrix mixture model with four gamma

categories should be 3 times slower than using a single

matrix and 12 times slower than using a single matrix

without rates across sites. Moreover, the same holds for

memory requirement that may be problematic for large

datasets. The problem with CAT (up to 60!4

categories) is partly alleviated using implementation

refinements (Lartillot & Philippe 2004). Assume that a

profile corresponds to the aliphatic amino acids; to

analyse the data with this profile, we only need a 4!4

matrix corresponding to I, L, V and other amino acids.

This appreciably reduces the computing time and

memory requirement, but in our current implemen-

tation CAT is still slow (e.g. CAT with 60 profiles is

approx. eight times slower than a three-matrix

mixture). Moreover, mixtures often require more

iterations to optimize the parameters than single

matrices (e.g. running a three-matrix mixture is

approx. four times slower than a single matrix as

WAG or JTT).

In matrix estimation, we shall see that to accelerate

the computation equation (3.5) can be simplified

without loss of accuracy. Moreover, a specific EM

algorithm was designed to learn CAT profiles (see

Le et al. 2008).

4. THE SUPERVISED APPROACH: ESTIMATION

PROCEDURE AND MODELS

The supervised approach involves using available

knowledge to guide the learning procedure. Here, we

know (e.g. Koshi & Goldstein 1995; Goldman et al.

1998) that the replacement process differs depending

on secondary structure and solvent exposure. We thus

estimated different replacement matrices for several

site partitions, based on the information available in

HSSP. Three models were learned

— EX2 is a two-matrix model corresponding to

exposed/buried sites (see above).
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—EX3 is a three-matrix model corresponding to highly

exposed/intermediate/buried sites.

—EHO is a three-matrix model corresponding to

extended/helix/other sites.

The same estimation procedure was used for these

three models. This procedure is closely related to that

used to estimate our LG matrix (Le & Gascuel 2008)

and is summarized below with EX2.

(i) For every alignment Da in the training database,

estimate a phylogenetic tree T
a using PhyML

(Guindon & Gascuel 2003) with LG and four

gamma categories (G4 option).

(ii) For every site i in D
a, classify i into the rate

category with maximum a posteriori probability

(MAP); let r(i ) denote the corresponding rate.

(iii) Using HSSP annotations divide the training

database into exposed/buried sites and separ-

ately estimate a matrix for each category using

XRATE (Klosterman et al. 2006) and the

inferred T
a trees. Just as with LG, do not use

standard site likelihood (3.4) summing over all

rate categories, but simply use the MAP rate

category, that is

L T
a
;Q;a

a
;D

a
i

� �

ZL T
a
; rðiÞQ;D

a
i

� �

: ð4:1Þ

In this equation, T a and r(i ) are fixed and only

the replacement matrix Q has to be estimated

from the data. All parameters of Q (r,P and R,

see equation (3.1)) are estimated by ML using

XRATE.

(iv) For each site category, compute the expected

a priori rate by averaging the r(i ) values, and

multiply the global rate found by XRATE by

this average rate. This operation rescales the two

matrices so that their global rates are com-

parable and they can be applied to the same

trees. Moreover, to help interpretability, nor-

malize the mixture using the constraint
P

rqpqZ1, where q is exposed/buried and pq

is the global proportion of exposed/buried sites

in the training set.

(v) Go to (i) and iterate this estimation procedure,

but use the exposed and buried matrices and a

site partition in place of LG. Steps (ii), (iii) and

(iv) remain identical, and the procedure is

repeated until convergence. However, the T
a

trees are inferred only once using the partition

model (during the second iteration), since this

part of the computation is very heavy. Further

iterations use the nearly optimal trees thus

obtained, which are sufficient to obtain accurate

matrix estimates (Whelan & Goldman 2001;

Le & Gascuel 2008). Three iterations were

enough for all models.

XRATE is able to deal with the standard mixture

equation (3.4), instead of MAP equation (4.1), at least

when a unique discrete rate distribution is chosen for all

training alignments. But we observed that using (4.1) is

much faster, less affected by local optima and tends to

provide better results (Le &Gascuel 2008). This is why

we adopted the same strategy here, which is close to

Viterbi’s approximation that provides very good results

when estimating HMMs (Durbin et al. 1998). Running

times of this supervised scheme are relatively high, due

to the size of the training dataset, but acceptable, e.g.

approximately 2 days of computation were needed to

estimate the EX3 model using our cluster (16!

2.33 GHz biprocessors with 8 Gb RAM).

The main features of the matrices thus estimated are

summarized in table 1. We see that

—The global rate is quite different for the exposed and

buried categories: with EX3 the buried category is

about twice as slow as the intermediate category,

while the highly exposed category is almost twice as

fast. This contrast is higher than that observed by

Goldman et al. (1998) using a counting estimation

procedure. They found a ratio of approximately 2.08

between exposed and buried rates (EX2 site

partition) compared with 2.45 here, probably due

to the fact that counting tends to underestimate the

number of hidden substitutions compared with ML

estimations. We also find a slightly higher contrast

than found by Goldman et al. with secondary-

structure categories (e.g. 1.36 versus 1.28 for helix/

extended), but our results confirm their main

conclusion that the global substitution rate does

not change much among secondary-structure

categories.

—The correlations between the amino acid frequen-

cies and exchangeabilities of the various matrices

and those from LG indicate clear differences in the

substitution patterns (see also matrices and graphics

on http://atgc.lirmm.fr/mixtures). Mainly, we see

Table 1. Replacement matrices for solvent-exposure and secondary-structure site categories. (pq, proportion of q in the training

set; rq, global rate of q;Pq=LG, correlation of q amino acid frequencies compared to LG frequencies;Rq=LG, correlation of q and

LG exchangeabilities using log values (exchangeabilities are highly contrasted with some very small values);Qq=LG, correlation

of q and LG rates using log values; Hexposed, highly exposed sites.)

EX2 EX3 EHO

q exposed buried Hexposed intermediate buried extended helix other

pq 0.552 0.448 0.196 0.389 0.415 0.208 0.360 0.432

rq 1.360 0.557 1.897 1.046 0.534 0.857 1.163 0.932

Pq=LG 0.619 0.673 0.468 0.832 0.659 0.729 0.777 0.625

Rq=LG 0.927 0.934 0.856 0.942 0.925 0.964 0.935 0.958

Qq=LG 0.940 0.915 0.877 0.955 0.904 0.959 0.946 0.961
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that the amino acid equilibrium frequencies are

quite different among site categories. For example,

as expected the buried category mostly contains

hydrophobic amino acids, while the helix category

contains a large proportion of alanines but very few

glycines. The correlations between exchangeabilities

are much higher and above 0.9, except with highly

exposed sites, which represent a clearly distinct site

category. This high correlation level is explained by

the fact that exchangeabilities represent the general

propensities of amino acids that are relatively

invariant among categories (notably secondary-

structure ones), while amino acid frequencies largely

account for the local constraints acting on sites.

However, we shall see that the impact on tree

likelihood of these moderate differences in exchan-

geabilities across categories is similar to that of the

large differences in amino acid frequencies. Indeed,

we see from table 1 that the correlations between the

whole Q matrices mostly depend on exchangeabil-

ities rather than on amino acid frequencies.

5. THE UNSUPERVISED APPROACH:

ESTIMATION PROCEDURE AND MODELS

In the unsupervised approach, we ignore available

knowledge and try to directly infer new site partitions

from the data, along with the corresponding replace-

ment matrices. In principle, this should lead to better

models than the supervised approach, as we have

more degrees of freedom and can still recover the

known site partitions. But the unsupervised approach

involves complex numerical optimizationwith a number

of local optima. An intermediate way is thus to use a

semi-supervised procedure, where the starting solution

is obtained using a known site partition and the

procedure described above, and then to refine this

model in an unsupervised way. We performed several

experiments along these lines to estimate two-

category and three-category models that we call

UL2 and UL3 (unsupervised learning), respectively.

We implemented two basic estimation strategies, both

close to above supervised scheme. The first strategy

(calledmixed strategy) uses the ability ofXRATE todeal

with mixtures, in combination with our Viterbi-like

approximation (4.1). It uses the same five steps as the

supervised procedure, and we only detail the differences

(i) Infer the T
a trees using PhyML, as in the

supervised procedure.

(ii) Classify every site in theMAP rate category, as in

the supervised procedure.

(iii) Use an appropriate phylogrammar in XRATE to

define a mixture of jQj matrices (Qq) with

proportions (pq) estimated from the data but

identical for all training alignments (XRATE

does not allow for different category proportions

among alignments). Then, run XRATEwith site

likelihood:

L T
a
;Q;a

a
;D

a
i

� �

Z

X

q

pqL T
a
; rðiÞQq;D

a
i

� �

;

ð5:1Þ

which is similar to (4.1) in that we do not sum

over rate categories but use the MAP rate.

However, we sum over pattern categories, and

the estimation procedure is slow, even with UL2

(approx. 2 days of computation on our cluster,

for each XRATE run).

(iv) Normalize the mixture using the constraint
P

pqrqZ1.

(v) Go to (i) and iterate the learning procedure until

convergence (three iterations were enough in all

experiments), but use the estimated mixture to

infer the trees in place of LG and initialize

XRATE in step (iii). Other steps remain

identical.

For the first iteration, we need starting matrices in

step (iii). Several starting points were used in our

experiments. For UL2, we started from EX2 and two

matrices with uniformly randomly drawn exchange-

abilities and amino acid frequencies; best results

were obtained with EX2. For UL3, we started from

EX3 and three random matrices; best results were

obtained with the random matrices. The fit of the

various solutions was compared with TREEBASE test

alignments (table 2).

The second strategy (called MAP strategy) is even

closer to the supervised scheme and does not use any

mixture within XRATE. However, it requires starting

from an initial mixture of Qq matrices.

(i) Infer the T a trees using PhyML with G4 option

and the mixture of Qq matrices; the pq

proportions are optimized for each alignment

separately (in this respect, the MAP strategy is

more flexible than the mixed strategy).

(ii) For every site i, classify i in the MAP rate and

pattern categories.

(iii) One matrix is learned for each pattern category

separately, as in the supervised procedure.

(iv) Normalize the matrices, as in the supervised

procedure.

(v) Go to (i) and iterate until convergence (three

iterations were enough in all experiments).

We tested two starting mixtures. For UL2 (UL3), we

used EX2 (EX3) and the two-category (three-

category) mixture obtained by the mixed strategy.

In both cases, the best results were obtained by

Table 2. Comparison of unsupervised learning strategies.

( The model fit is measured with 57 TREEBASE test

alignments, using the AIC per site gain compared with LG

(see §6 for details). The higher the gain, the better is the

model. MIXED, mixed strategy; MAP, MAP strategy; EX

START, EX2 or EX3 models are used as starting points;

RANDOM START, starting matrices are randomly drawn;

MIXED START, use as starting point the best model

obtained by the mixed strategy.)

MIXED

EX

START

MIXED

RANDOM

START

MAP

EX START

MAP

MIXED

START

UL2 0.145 0.135 0.156 0.180

UL3 0.250 0.282 0.223 0.306
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combining the two strategies. The mixed strategy

provided an initial mixture, which was significantly

improved using the MAP-strategy, probably due to its

greater flexibility. Results with TREEBASE are displayed

in table 2, and the same method ordering was

obtained with HSSP test alignments (not shown),

meaning that our model choice is not biased in favour

of TREEBASE. We see large differences between the

two strategies and the various starting points. This

suggests that other combinations could be tested,

which would probably improve our current models.

However, running any of these approaches requires

important computational resources, e.g. approximately

12 days of computation on our cluster were needed to

estimate the UL3 model with the mixed strategy and a

random starting point.

The main features of our best UL2 and UL3 models

(obtained by combining the mixed andMAP strategies)

are displayed in table 3 (see also http://atgc.lirmm.fr/

mixtures). UL2 matrices are denoted as M1 and

M2, while UL3 ones are denoted Q1, Q2 and Q3.

We see that

—Unsupervised models are more distant from LG

than supervised ones; for example, all exchange-

ability correlations are below 0.9, while all super-

vised ones (but one) are above 0.9. LG represents

the average model, and thus unsupervised models

are more varied than supervised ones. This can be

explained by two factors: (i) the supervised

categories are somewhat imprecise and not fully

reliable, meaning that they contain ‘average’ sites

that could be classified in other categories as well

and (ii) the unsupervised scheme tends to exacerbate

the differences between the mixture categories.

—UL2 is strongly correlated with EX2: M1 is quite

close to the exposed matrix (proportion, global rate,

frequencies and exchangeabilities), and the same

holds with M2 and the buried matrix. UL2 is

obtained starting from EX2 and combining the two

estimation strategies, but this high correlation still

holds when starting from random matrices (not

shown), and similar results have been found by

Holmes & Rubin (2002) using a different unsuper-

vised approach. This means that the main factor in

amino acid substitution is accessibility to solvent,

which corresponds to a known, well-documented

fact. This affects the global substitution rate (rq), but

also the substitution process (Rq) and (obviously)

the amino acid equilibrium frequencies (Pq), which

tend to be hydrophobic/hydrophilic depending on

site exposure. As expected, M1 is close to the ‘other’

secondary-structure category (containing the turns

and coils that are typically exposed), while M2 is

close to ‘extended’ sites (the most buried secondary-

structure category).

—UL3 is more difficult to interpret than UL2. Q1 is

relatively close to the exposed (or even highly

exposed) matrix, Q3 is relatively close to the

buried matrix, while Q2 does not correlate with

exposure-based matrices but is (relatively) close to

the other secondary-structure matrix. A similar

interpretation of Q2 is found with HSSP align-

ments when looking at the true structural

categories of the sites; when Q2 is the mixture

category with the highest posterior probability,

about half of the sites are buried and half exposed,

while approximately 60% of the sites are in the

other secondary-structure category (versus

approx. 43% in average). Most notably, Q2

amino acid frequencies show a very high pro-

portion of glycines and prolines (approx. 30%

versus approx. 10% in average), which are unique

amino acids in that they influence the confor-

mation of the polypeptide and are often found in

turns. Moreover, Q2 is well conserved with a low

global rate, though it is closer to the exposed

model than to the buried one. This site category

was not found by Holmes & Rubin (2002) when

testing their model with three (and four)

categories; they observed a third ‘tiny’ category

favouring alanine, glycine and serine (all of which

have very small side chains), in addition to the

exposed and buried categories. Thus, UL3 seems

to combine exposure and secondary-structure

information (in an efficient way, as we shall see

in §6). Further investigations would deserve to be

conducted to better understand the evolutionary

and biochemical properties of UL3 site categories

and replacement matrices.

Table 3. Unsupervised mixture model matrices (Pq=SUP, best correlation value of amino acid frequencies between given matrix

and supervised matrices from EX2 (first line, small letters) and EHO (second line, capital letters). For example, withM2, ‘0.969

b 0.842 E’ means that amino acid frequencies of M2 have correlations of 0.969 and 0.842 with those of buried sites and

extended sites, respectively; moreover, correlations with other site categories are lower than these values. Rq=SUP, same as

Pq=SUP but using the log values of exchangeabilities. See note to table 1 for other symbols.)

UL2 UL3

q M1 M2 Q1 Q2 Q3

pq 0.498 0.502 0.320 0.282 0.398

rq 1.27 0.735 1.647 0.702 0.690

Pq=LG 0.527 0.677 0.545 0.454 0.688

Rq=LG 0.824 0.891 0.788 0.827 0.836

Pq=SUP 0.984 e 0.969 b 0.935 e 0.273 e 0.926 b

0.854 O 0.842 E 0.886 H 0.709 O 0.873 E

Rq=SUP 0.955 e 0.932 b 0.897 e 0.809 e 0.852 b

0.919 O 0.915 E 0.854 O 0.837 O 0.845 E

Phylogenetic mixture models for proteins S. Q. Le et al. 3971

Phil. Trans. R. Soc. B (2008)

http://atgc.lirmm.fr/mixtures
http://atgc.lirmm.fr/mixtures


6. RESULTS WITH TEST ALIGNMENTS

We used the 57 TREEBASE test alignments to compare

supervised (EHO, EX2 and EX3) and unsupervised

(UL2 and UL3) matrix mixture models, to single

matrices ( JTT, WAG and LG) and profile mixtures

(CAT20 and CAT60 with 20 and 60 profiles,

respectively; see Le et al. (2008) for details).

Note that the supervised models, which were learned

using HSSP-based site partitions, are used here as

mixtures, as we do not have structural information in

TREEBASE (and in a number of phylogenetic datasets).

All models were run with PhyML using four gamma

rate categories (G4), BioNJ (Gascuel 1997) starting

tree and SPR-based tree topology search (Hordijk &

Gascuel 2005). This imposed some adaptations of

standard PhyML. In the current implementation, an

initial ML tree is first inferred with LGCG4 in the

usual way, and then the mixture is used to refine this

first tree, with the model parameters (mixture pro-

portions and gamma shape parameter) being adjusted

along the way.

For all models, we measured the AIC criterion

(Akaike 1974) on each of the test alignments:

AICðM;D
aÞZ 2LLðM;T

a
;D

aÞK2 #parametersðMÞ;

where LL(M,T a;Da) is the log likelihood of align-

ment D
a given model M and inferred tree T

a;

#parametersðMÞ is the number of parameters of model

M. Single matrix and CAT models involve the same

number of parameters (number of branches plus one

corresponding to the gamma shape parameter), UL2

and EX2 require one additional parameter (mixture

proportion), while EHO, EX3 and UL3 require two

additional parameters (two mixture proportions). We

computed the average AIC per site of model M for all

test alignments, which is simply

AIC=siteðMÞZ
X

a

AIC M;D
a

� �

.

X

a

s
a
; ð6:1Þ

where s
a is the number of sites in D

a. All models were

compared to LG using criterion (6.1). To complete this

global average result, we also counted the number of

alignments where AIC(M,Da) is better/worse than

AIC LG;Dað Þ. Moreover, to assess the statistical signi-

ficance of the observed difference between M and LG,

we used a Kishino & Hasegawa (KH; 1989) test with

p!0.01.

For each of the inferred trees, we measured the tree

length (sum of branch lengths) and the gamma shape

parameter, as best models tend to produce longer trees

capturing more hidden substitutions (see Pagel &

Meade 2005, for a discussion on tree length and

likelihood value). We also compared the topology of

inferred trees. The true tree is not known with real data

(as opposed to simulated data), and our aim was to

measure the impact of the various models in terms of

topology, i.e. whether we frequently infer a different

tree topology when improving the substitution model.

Indeed, it is commonly believed that the tree topologies

inferred with usual models ( JTT,WAG, etc.) tend to be

identical, which would mean that any efforts to refine

these models are somewhat useless. When different

topologies are found, we should prefer the one with

best likelihood value. However, the difference may be

slight and non-significant, so we cannot reject the

topology with the lower likelihood value. Thus, we

counted the number of alignments where the tree built

using any given model M is not the same as the tree

inferred with LG, and the significance of these

topological differences was assessed using a KH test

( p!0.01).

Average AIC results are displayed in figure 1, and

figure 2 provides the number of alignments where

each model is (significantly) better/worse than LG. We

see that

—LG clearly outperforms JTTand WAG (as shown by

Le & Gascuel 2008) but is outperformed by the

mixture models. While LG is often significantly

better (and rarely worse) than JTT and WAG, we

1.0

0.8

0.6

0.4

0.2

0

–0.2

–0.4

–0.6

–0.8

JTT WAG EHO EX2 EX3 CAT20 CAT60 UL2

unsupervised

matrices

unsupervised

profiles

supervised matricessingle matrix

UL3

Figure 1. AIC/site gain compared to LG. Note. All models are compared to LG. Negative gains ( JTTand WAG) mean that the

models are worse than LG, while positive gains correspond to (mixture) models that improve LG. The gains are provided for all

57 TREEBASE test alignments (white bars) and the 8 alignments with saturation index per site larger than 2 (black bars).
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observe the converse with mixtures (but CAT) that

are often significantly better than LG and rarely

worse. For example, compared with UL3 (the best

mixture), LG is significantly better with 1 alignment

only, while UL3 is significantly better than LG with

34 alignments (among 57). Moreover, the AIC gain

of matrix mixtures is largely due to the different

exchangeabilities among sites categories, and not

only to the differences in amino acid composition.

For example, we ran a two-category mixture with

EX2 frequencies (highly contrasted between

exposed and buried sites), but LG exchangeabi-

lities for both categories; the AIC gain of this

model is 0.074 compared with 0.151 with the full

EX2 model.

—CAT results are a bit disappointing, as the average

performance of CAT20 is only slightly better than

that of LG, and as both CAT20 and CAT60 are

often worse than LG, and even significantly worse

(with 10 and 5 alignments, respectively). However,

CAT was designed for saturated datasets, and we

showed that it performs well with such data (Le et al.

2008). To this purpose, we used the saturation index

defined by Lartillot et al. (2007), which corresponds

to the parsimony-based number of convergences and

reversions.When looking (figure 1) at the alignments

with saturation index per site larger than two, we see

that CAT20 has nearly the same performance as the

two-matrix models (EX2 and UL2). This makes

sense as all these models involve about the same

number of numerical values (approx. 400 rates and

probabilities) and thus similar amount of knowledge.

Moreover, CAT60 is nearly as good as UL3 (1199

and 630 numerical values, respectively). Above all,

we see that with such saturated data the contrast

between all models is much increased, e.g. the

difference between UL3 (best model) and JTT

(worse model) is approximately 1.7 AIC point per

site, meaning that with 300 sites the difference is

as large as approximately 500 AIC points, which

is considerable.

— Supervised models show similar performance. When

all alignments are considered, exposure-based

models (EX2 and EX3) slightly improve secondary-

structure-based model (EHO), while EX2 and

EX3 are close. Thus, EX2 should be preferred for

most studies as it requires less computing time

and memory.

—UL2 is also quite close to EX2, as expected since

both are strongly correlated. As EX2 is based on

known properties of proteins, and thus is easily

interpretable, we believe that it should be preferred

over UL2 in most cases. However, the unsupervised

approach demonstrates its advantage with three-

matrix models, since UL3 clearly outperforms EHO

and EX3. It also improves CAT60, despite the fact

that it contains fewer numerical values, run faster

(approx. 8 times) and requires less memory.

Unsupervised mixtures of matrices thus seem to be

an efficient and accurate way to encode the main

features of amino acid replacements.

Table 4 provides the main features of the trees inferred

using the various models. We see that

—Though LG trees are longer than JTT and WAG

trees, mixture trees are even longer. This is a clear

tendency for all mixtures, indicating that these

models tend to infer more hidden substitutions

than LG (and JTT and WAG). The G shape

parameter has a different behaviour. The variability

of rates among sites tends to be lower (a is higher)

with WAG than with LG (JTT and LG are nearly

identical), and the converse is observed with CAT

models, which is consistent with our observations

with tree length, as evolutionary distances and

branch lengths are increased when the a value

decreases. With matrix mixtures, the a value is

higher than with LG, but this cannot be interpreted

as a lower variability of rates, because part of this

variability is accounted for by the variable global

rates of the matrices defining the mixtures.

—All models often infer topologies that differ from LG

topology, and the topological differences frequently

correspond to significant likelihood gains (mixture

models), or losses (JTT and WAG), compared with

LG.Moreover, the topological distance between trees

60

40

20

–20

–40

–60
JTT WAG EHO EX2 EX3 CAT20 CAT60 UL2 UL3

single matrix supervised matrices unsupervised

profiles

unsupervised

matrices

0

Figure 2. Number of alignments with better/worse likelihood values than LG. Note. Number of alignments (among the 57

TREEBASE test alignments) where each model provides a better (positive side) and a worse (negative side) likelihood value than

LG. The black bars correspond to the numbers of significant differences using the Kishino–Hasegawa test with p!0.01. White

bars correspond to non-significant differences.
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is also high, especially with CAT. In fact, CAToften

(approx. 85% of alignments) infers trees that clearly

(approx. 25% of clades) differ from LG trees. The

exact reasons for these marked differences between

CATand LG remain to be investigated. A possibility

is that it corresponds to more accurate inferences. In

this direction, we showed (Le et al. 2008) in some

well-documented case studies that CAT has a good

resistance to long-branch attraction artefacts. Alter-

natively, the use of F81 processes could cause a loss of

accuracy of CAT. All together, our results show that

protein substitution modelling impacts the topology

of inferred trees. Although it is not clear whether

the resulting topologies are closer to the true

topologies, they are different from the topologies

inferred using standard models (JTT, WAG), with

higher likelihood values in most cases, and thus

these alternative topologies should be of great interest

for phylogeneticists.

7. DISCUSSION

Our results with test alignments show that highly

significant likelihood gains are obtained using mixture

models compared with single replacement matrices

( JTT, WAG and LG). Unsupervised models tend to

outperform supervised ones, but only slightly so with

two matrices, as the main factor in amino acid

replacement seems to be the accessibility to solvent.

With three matrices, our unsupervised model (UL3)

combines exposure and secondary-structure aspects

and is clearly the best model we tested; the average AIC

gain per site with TREEBASE test alignments is 0.31,

0.49 and 0.61 compared with LG, WAG and JTT,

respectively. Moreover, UL3 is significantly better than

LG for 34 alignments (among 57), and significantly

worse with 1 alignment only. CAT performs well with

saturated alignments (with 60 profiles, CAT60 is nearly

as good as UL3), but is slow in an ML context due to

the number of site categories (profiles). However, this

limitation is alleviated in the Bayesian framework

(thanks to data augmentation) where CAT60 should

be quite relevant.

As said in the Introduction, the work presented here

is a continuation of previous researches, mainly by

Thorne et al. (1996) and Goldman et al. (1998) for the

supervised scheme and Holmes & Rubin (2002) for

the unsupervised one. Moreover, Koshi & Goldstein

(e.g. 1995, 1998) explored similar questions and

models using Bayesian approaches. The main

differences with these previous works are

—The size of our training database that matters to

estimate such large number of parameters; for

example, we showed in Le & Gascuel (2008) that

about half of the gain of LG compared with WAG

was induced by the training alignments.

—The use of up-to-date ML programs (XRATE for

matrices and PhyML for trees), while Thorne,

Goldman and colleagues used NJ (Saitou & Nei

1987) and counting-based matrix estimations (and

an EM algorithm to estimate their HMM model),

and Holmes and Rubin inferred the phylogenies

using NJ. Moreover, we iterated the learning

procedure, i.e. repeatedly inferred the trees using

the mixture and estimated the mixture parameters

using these trees. The gain was appreciable with LG

(Le & Gascuel 2008) but is higher with mixtures,

e.g. with UL3, the mixture obtained after the first

iteration of the mixed strategy has an AIC gain per

site with TREEBASE of 0.25 compared with LG, while

the final UL3 model has 0.31.

—The fact that all our models include a gamma

distribution of rates, which is accounted for in

model estimation. This feature explains the second

half of LG’s gain compared with WAG (Le &

Gascuel 2008). Moreover, modelling rates across

sites in tree inference is of first importance, even with

pattern-based site categories with variable global

rates (e.g. buried/exposed). Preliminary experiments

show that our models clearly outperform PASSML

(Lio et al. 1998), which implements Thorne and

Goldman’s structural models, but does not explicitly

incorporate rates across sites as in our equation (3.5).

—The use of mixtures with category proportions that

are adjusted to the analysed alignment. This is a

simple approach (simpler than HMM and Markov-

modulated Markov models used in some of these

previous researches), but it fits important features of

proteins which are highly heterogeneous.

All of these (very large database, full ML approach,

refined models) have been possible thanks to today’s

computers and the recent algorithmic developments

on ML estimation of phylogenetic models (trees

and replacement matrices). All together, we obtained

Table 4. Model comparison, regarding tree length, gamma shape parameter and topology. (These results are obtained with the

57 TREEBASE test alignments. The tree length is the sum of branch lengths, a denotes the gamma shape parameter, and the

Robinson & Foulds (1979) topological distance corresponds to the number of clades that belongs to one tree but not the other.

This distance is normalized and ranges between 0 (both trees are identical) and 1 (they do not share any clade in common).

Symbols are as follows: tree length, average of the ratios between given model and LG tree lengths; a, average of the ratios

between given model and LG a values; #diff, numbers of alignments where given model and LG topologies differ (numbers

between parentheses count the significant differences using the KH test with p!0.01); R&F, average of the Robinson and Foulds

distance between given model and LG topologies.)

JTT WAG EHO EX2 EX3 CAT20 CAT60 UL2 UL3

tree length 0.98 0.90 1.04 1.13 1.03 1.10 1.14 1.04 1.08

a 0.99 1.17 1.07 1.19 1.17 0.94 0.97 1.12 1.21

#diff 35 (29) 40 (29) 34 (16) 36 (22) 35 (19) 49 (17) 48 (20) 37 (16) 38 (22)

R&F 0.17 0.20 0.13 0.13 0.14 0.26 0.26 0.14 0.15
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simple, robust and ready-to-use models. A PhyML

implementation is available from http://atgc.lirmm.fr/

mixtures/.

Further investigations should include: refinements

of these models, e.g. using more site categories or non-

parametric rate distributions; assessment of these

models in a Bayesian framework; comparison with

partition models, when the structure of the studied

protein is known; algorithmic refinements of the

unsupervised estimation procedure to cope with the

multiple local optima that we observed; and estimation

of mixture models specific to certain protein groups

(e.g. mitochondrial or membrane proteins) or life

domains (e.g. viruses or apicomplexa).

Sincere thanks to Nick Goldman, Stéphane Guindon, Ian
Holmes, Simon Whelan, Ziheng Yang, Avril Coghlan and
two anonymous reviewers for their help, suggestions and
comments. This work was supported by ANR BIOSYS
(MitoSys project).
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