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Abstract

1 Elimination Game is a well known algorithm that simulates Gaussian

elimination of matrices on graphs, and it computes a triangulation of the

input graph. The number of fill edges in the computed triangulation is

highly dependent on the order in which Elimination Game processes the

vertices, and in general the produced triangulations are neither minimum

nor minimal. In order to obtain a triangulation which is close to minimum,

the Minimum Degree heuristic is widely used in practice, but until now

little was known on the theoretical mechanisms involved.

In this paper we show some interesting properties of Elimination Game;

in particular that it is able to compute a partial minimal triangulation of

the input graph regardless of the order in which the vertices are processed.

This results in a new algorithm to compute minimal triangulations that

are sandwiched between the input graph and the triangulation resulting

from Elimination Game. One of the strengths of the new approach is that

is is easily parallelizable, and thus we are able to present the first parallel

algorithm to compute such sandwiched minimal triangulations. In addi-

tion, the insight that we gain through Elimination Game is used to partly

explain the good behavior of the Minimum Degree algorithm. We also

give a new algorithm for producing minimal triangulations that is able to

use the minimum degree idea to a wider extent.

1 Introduction

For the past forty years, problems arising from applications have given rise
to challenges for graph theorists, and thus also to a wealth of graph-theoretic
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results. One of these is computing a minimum triangulation. Although the
problem originally comes from the field of sparse matrix computations [29], it
has applications in various areas of computer science.

Large sparse symmetric systems of equations arise in many areas of engi-
neering, like the structural analysis of a car body, or the modeling of air flow
around an airplane wing. The physical structure can often be thought of as
covered by a mesh where each point is connected to a few other points, and the
related sparse matrix can simply be regarded as an adjacency matrix of this
mesh. Such systems are solved through standard methods of linear algebra, like
Gaussian elimination, and during this process non-zero entries are inserted into
cells of the matrix that originally held zeros, which increases both the storage
requirement and the time needed to solve the system. It was observed early that
finding a good pivotal ordering of the matrix can reduce the amount of fill thus
introduced: in 1957, Markowitz [22] introduced the idea behind the algorithm
known today as Minimum Degree, choosing a pivot row and column at each
step of the Gaussian elimination to locally minimize the product of the number
of corresponding off-diagonal non-zeros. Tinney and Walker [33] later applied
this idea to symmetric matrices, and Rose [29] developed a graph theoretical
model of it.

As early as 1961, Parter [26] presented an algorithm, known as Elimination
Game (EG), which simulates Gaussian elimination on graphs by repeatedly
choosing a vertex and adding edges to make its neighborhood into a clique be-
fore removing it, thus introducing the connection between sparse matrices and
graphs. In view of the results of [14], the class of graphs produced by EG is
exactly the class of chordal graphs. Thus when the given graph is not chordal,
Gaussian elimination and EG correspond to embedding it into a chordal graph
by adding edges, a process called triangulation. As can be observed on the
example in Figure 1, the number of fill edges in the resulting triangulation is
heavily dependent on the order in which EG processes the vertices. This order-
ing of the graph corresponds to the pivotal ordering of the rows and columns in
Gaussian elimination.

As mentioned above, it is of primary importance to add as few edges as
possible when running EG. The corresponding problem is that of computing
a minimum triangulation, which is NP-hard [35]. It is possible to compute in
polynomial time a triangulation which is minimal, meaning that an inclusion-
minimal set of edges is added [24], [31]. However, such a triangulation can be
far from minimum, as can be seen from the example of Figure 1(b). In fact, it
is easy to see that this example can be extended to a graph with O(n) edges
and an O(n2) size fill, whereas a unique fill edge can be obtained by EG on this
graph.

As a result, researchers have resorted to heuristics, of which one of the most
universally used and studied is Minimum Degree (MD): this runs EG by choosing
at each step a vertex of minimum degree in the transitory elimination graph, as
illustrated by Figure 1(d). This algorithm is widely used in practice, and it is
known to produce low fill triangulations. In addition, MD is also observed [6]
to produce triangulations which are often minimal or close to minimal.

MD has given rise to a large amount of research with respect to improving
the running time of its practical implementations, and the number of papers
written on this subject is in the hundreds [1, 16]. However, very little is proved
about its quality. It has in fact been analyzed theoretically only to a limited
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Figure 1: (a) A graph G, and various triangulations of G by EG through the
given orderings: (b) A minimal triangulation with O(n2) fill edges. (c) A non-
minimal triangulation of G with less fill. (d) A minimum triangulation of G.

extent, which makes it difficult to gain control over this heuristic in order to
improve it yet further, although recent research has been done on algorithms
for low fill minimal triangulations [6, 10, 27].

In this paper, we use recent graph theoretical results on minimal triangula-
tion and minimal separators to explain, at least in part, why MD yields such
good results. In fact, it turns out that one of the reasons why MD works so well
is that the EG algorithm is remarkably robust, in the sense that it is resilient to
error: if at some step of the process an undesirable edge with respect to minimal
triangulation is added, at later steps the chances of adding only desirable edges
remain intact. During EG, and in particular MD, we are able to identify the
fill edges that are safe to add with respect to a minimal triangulation. Thus we
show how to use EG to compute a partial minimal triangulation. We also show
the implementation details of how to compute this partial minimal triangulation
efficiently. An interesting property of this partial minimal triangulation is that
when it is completed in any way to a minimal triangulation the resulting graph
is a minimal triangulation of the input graph and a subgraph of the filled graph
resulting from EG.

One of the strengths of this approach is its parallel nature, and we give
implementation details for both a sequential and a parallel version of it. This
results in the first efficient parallel algorithm for computing minimal triangula-
tions sandwiched between the input graph and the filled graph resulting from
EG.

Furthermore, we use the insight we have gained on the mechanisms which
govern EG, and in particular MD, to propose a new algorithm that improves
the results obtained by MD, giving minimal triangulations with low fill.

The remainder of this paper is organized as follows: Section 2 gives the
graph theoretic background, introduces EG formally, and gives previous results
on minimal separators and minimal triangulation. In Section 3, we show that
EG can be used to compute a partial minimal triangulation, thereby giving some
new invariants for EG. In Section 4, we explain how to implement this efficiently
both sequentially and in parallel. Section 5 proposes new algorithms to compute
minimal triangulations using EG. In particular we show how to extend a partial
minimal triangulation to a minimal triangulation in parallel, thereby solving
the sandwiched minimal triangulation problem in parallel. Section 6 applies
our new results to MD, and uses our new insight to give some explanations as
to the remarkably good behavior of MD.
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2 Preliminaries

Given a graph G = (V, E), we denote n = |V | and m = |E|. For any subset S of
V , G(S) denotes the subgraph of G induced by S. For the sake of simplicity, we
will use informal notations such as H = G+{e}+{x} when H is obtained from
G by adding edge e and vertex x. For any vertex v of G, NG(v) denotes the
neighborhood of v in G, and NG[v] denotes the set NG(v)∪{v}. For a given set
of vertices X ⊂ V , NG(X) = ∪v∈XNG(v) − X, and NG[X] = ∪v∈XNG(v) ∪ X.
We will omit the subscripts when there is no ambiguity.

A vertex is simplicial if its neighborhood is a clique. We will say that we
saturate a set of vertices X when we add to the graph all the edges necessary
to make X into a clique. A graph is chordal, or triangulated, if it contains no
chordless cycle of length ≥ 4. A chordal graph H = (V,E + F ) is called a
triangulation of G = (V, E), where G is an arbitrary graph. The set F of edges
which are added to obtain a triangulation is called a fill. A triangulation H is
minimal if no strict subset of F can be added to G to obtain a triangulation.

A bijective function α : V → {1, 2, ..., n} is called an ordering of the vertices
of G = (V,E), and (G, α) will denote a graph G, the vertices of which are
ordered according to α. We will use α = (v1, v2, ..., vn), where α(vi) = i.

The algorithmic description of Elimination Game (EG) given below defines
the notations we will use in the rest of this paper:

Algorithm Elimination Game (EG)
Input: A graph G = (V, E), and an ordering α of the vertices in G.
Output: A triangulation G+

α of G.
G1

α ← G; G+
α ← G;

for k = 1 to n do

Let F be the set of edges necessary to saturate NGk
α
(vk) in Gk

α;

Gk+1
α ← Gk

α + F − {vk}; G+
α ← G+

α + F ;

We note Gk
α = (V k

α , Ek
α), where V k

α = {vk, ..., vn}. According to the defini-
tion used in [24], we will call Gk

α(V k
α − NGk

α
[vk]) the section graph at step k. A

characterization of the edges of G+
α is given in [31], which easily extends to Gk

α.

Lemma 2.1 ([31]) Let α = (v1, ..., vn) and let i, j be distinct integers in [1, n]
(resp. [k, n]). Then vivj is an edge of G+

α (resp. Gk
α) iff there is a path in

G between vi and vj (possibly reduced to one edge), all intermediate vertices of
which have a number which is strictly smaller than min{i, j} (resp. k) in α.

If no fill edges are produced during EG (i.e, if G+
α = G) then α is called a

perfect elimination ordering (peo) of G. Fulkerson and Gross showed in [14] that
a graph is chordal iff it has a peo. Consequently, since α is a peo of G+

α , EG is an
algorithm for computing triangulations (not necessarily minimal). In [24] it is
shown that any minimal triangulation of G can also be generated by EG. Thus
for each minimal triangulation H of G, there exists an ordering α on G such
that H = G+

α . Such an ordering α is called a minimal elimination ordering. If
a given ordering α is not minimal, we will call a minimal triangulation H of G
that is a subgraph of G+

α , a sandwiched minimal triangulation.
The Minimum Degree (MD) heuristic is based on EG: it takes as input an

unordered graph G, and computes an ordering α along with the corresponding
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triangulation G+
α , by choosing at each step a vertex of minimum degree in Gk

α

and numbering it as vk.
Minimal separators are central to chordal graphs and minimal triangulations.

Given a graph G = (V,E), a vertex set S ⊂ V is a separator if G(V − S) is
disconnected. If G(V −S) has a connected component C such that NG(C) = S
then C is called a full component of S in G. A separator S is a minimal separator
of G if S has at least two full components in G.

Characterization 2.2 (Dirac [13]) A graph is chordal iff all its minimal sep-
arators are cliques.

The idea behind the connection between minimal separators and minimal
triangulations is that forcing a graph into respecting Dirac’s characterization
will result in a minimal triangulation, by repeatedly choosing a not yet processed
minimal separator and saturating it [2, 19, 25]. We will need the definition of
crossing separators, which characterize the separators that disappear when a
saturation step of this process is executed:

Definition 2.3 ([19]) Let S and S′ be two minimal separators of G. S and
S′ are said to be crossing if there exist two connected components C1, C2 of
G(V − S), such that S′ ∩ C1 6= ∅ and S′ ∩ C2 6= ∅ (the crossing relation is
symmetric).

The saturation process described above can be generalized by choosing and
simultaneously saturating a set of pairwise non-crossing minimal separators in-
stead of a single minimal separator at each step, until a chordal graph is ob-
tained. We will refer to this generalized process as the Saturation Algorithm.
Given a set S of minimal separators of G, we will denote GS the graph obtained
from G by saturating all the separators belonging to S .

The following results from the works of Kloks, Kratsch and Spinrad [19] and
Parra and Scheffler [25] provide a proof of this algorithm and will be used in
Sections 3 and 5.

Theorem 2.4 ([19, 25]) A graph H = (V, E + F ) is a minimal triangulation
of G = (V, E) iff there is a maximal set S of pairwise non-crossing minimal
separators of G such that H = GS .

Corollary 2.5 A graph H = (V, E + F ) is a minimal triangulation of G =
(V, E) iff H is chordal and there is a set S of pairwise non-crossing minimal
separators of G such that H = GS .

Lemma 2.6 ([25]) Let G = (V, E) be a graph, let S and S ′ be sets of pairwise
non-crossing minimal separators of G and GS , respectively. Then S ∪S ′ is a
set of pairwise non-crossing minimal separators of G and GS .

Lemma 2.7 ([25]) Let G = (V,E), be a graph and S a set of pairwise non-
crossing minimal separators of G. Then any minimal triangulation of GS is a
minimal triangulation of G.

We will also use the notion of substar, which was introduced by Lekkerkerker
and Boland [20] in connection with their characterization of chordal graphs.
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Definition 2.8 ([20]) Given a graph G = (V,E) and a connected subset X
of V , the substars of X are the neighborhoods of the connected components of
G(V − N [X]). Note that each substar of X is included in N(X).

When X is reduced to a single vertex x, we will say substar of x for substar
of {x}. In fact, although Lekkerkerker and Boland seemed not to be aware of
this, the set of substars of some vertex x is exactly the set of minimal separa-
tors included in the neighborhood of x. Ohtsuki et al. [24] gave the following
characterization of a meo.

Characterization 2.9 [24] An ordering α of V is a meo of a graph G if and
only if for every integer k between 1 and n, every fill edge added at step k of
EG on (G,α) has both endpoints in some common substar of vk in Gk

α.

LB-simpliciality of a vertex was defined in [4] in the following way for more
convenient terminology.

Definition 2.10 A vertex x is LB-simplicial if every substar of x is a clique.

This was implicitly used by [20] to characterize chordal graphs as graphs
in which every vertex is LB-simplicial, but the notion of substar is also very
useful in the context of minimal triangulation, because it provides a fast and
easy way of repeatedly finding sets of pairwise non-crossing minimal separators
when running the Saturation Algorithm. This is fully described in [4], with in
particular the following lemma:

Lemma 2.11 ([4]) The substars of a vertex x in a graph G are pairwise non-
crossing minimal separators of G.

This resulted in the following algorithm for computing minimal triangula-
tions.

Algorithm LB-Triang
Input: A graph G = (V, E), and an ordering α of the vertices in G.
Output: A minimal triangulation GLB

α of G.
GLB,1

α ← G;
for k = 1 to n do

Let F be the set of edges necessary to saturate the substars of vk in GLB,k
α ;

GLB,k+1
α ← GLB,k

α + F ;
GLB

α ← GLB,n+1
α ;

We recall here some properties of Algorithm LB-Triang proved in [4]. Items
a) to e) of Property 2.12 respectively are or immediately follow from Lemma
4.5 and its proof, Invariant 4.7, Lemma 5.2, Theorem 5.6’s proof, Theorem 5.6
and Corollary 5.7 of [4].

Property 2.12 [4] Let G = (V, E) be a graph, α be an ordering of V and k be
an integer between 1 and n.
a) vk has the same neighborhood and substars in GLB,k

α and in GLB
α .

b) For any integer i between 1 and k, vi is LB-simplicial in GLB,k+1
α .

c) Removing LB-simplicial vertices from G does not modify the fill computed by
LB-Triang on (G,α).
d) Any fill edge added at step k of LB-Triang on (G,α) is an edge of Gk+1

α .
e) GLB

α ⊆ G+
α , and α is a meo of G if and only if GLB

α = G+
α .

6



For an efficient implementation of Algorithm LB-Triang, a useful structure
called tree decomposition was used. We will also use it here for the implemen-
tation of our algorithms.

Finally, we will mention a result which will be used to prove some of our
results. Given a chordal graph G and a peo α of G, Rose [28] showed that every
minimal separator of G appears as the neighborhood of a vertex to be processed
at some step of EG with ordering α on G. However, there may be some steps
such that the neighborhood of the processed vertex of that step is not a minimal
separator of G.

Theorem 2.13 ([28]) Let G be a chordal graph and let α = (v1, v2, ..., vn) be
a peo of G. Consider any minimal separator S of G. Then S = NGk

α
(vk) for

some k between 1 and n.

3 EG defines a partial minimal triangulation

We will now examine how EG behaves with respect to the minimal separators
of the graph which is to be triangulated. We will first extend the definition of
a substar of G given in Section 2 to that of a substar of (G,α).

Definition 3.1 Given (G = (V, E), α), we will say that a set S ⊂ V of vertices
is a substar of (G,α) if there is some step k of EG such that S is a substar of
vk in Gk

α, which will be referred to as a substar defined at step k of EG.

Clearly, during the execution of the EG, at each step k, making the currently
processed vertex vk simplicial will saturate these substars, and may also add
some extraneous edges which do not have both endpoints in some common
substar, so that two kinds of edges can be added:

• Edges which have both endpoints in some common substar defined at step
k. We will refer to these edges as substar fill edges.

• Edges which do not have both endpoints in some common substar defined
at step k. We will refer to these as extraneous edges.

In Section 2, we mentioned that in G and for a given vertex v, the substars
of v are the minimal separators included in the neighborhood of v. One of our
most interesting discoveries is that, in fact, all the substars defined by EG are
minimal separators of the input graph, whether or not extraneous edges have
been added at earlier steps. This fact is stated in Theorem 3.3, and its proof
is based on the following theorem, which is interesting in its own right, as it
describes a strong correspondence between the structures of G and Gk

α.

Theorem 3.2 Given (G = (V, E), α) and an integer k ∈ [1, n], let Gk
α =

(V k
α , Ek

α) and S ⊆ V k
α . The connected components of Gk

α(V k
α − S) are the sets

C ∩ V k
α where C is a connected component of G(V − S) such that C ∩ V k

α 6= ∅,
with the same neighborhoods, i.e. NGk

α
(C ∩ V k

α ) = NG(C).

Proof. Let CG(S) denote the set of connected components of G(V − S). Let
S ⊆ V k

α . We have to prove that CGk
α
(S) = {C ∩ V k

α , C ∈ CG(S) | C ∩ V k
α 6= ∅}

and ∀C ∈ CG(S) such that C∩V k
α 6= ∅, NGk

α
(C∩V k

α ) = NG(C). Let C ∈ CG(S)
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such that C ∩ V k
α 6= ∅ and let C ′ = C ∩ V k

α . Let us show that C ′ ∈ CGk
α
(S)

and NGk
α
(C ′) = NG(C). Gk

α(C ′) is connected because for any vertices x and y
in C ′, there is a path P in G(C) between x and y, and by Lemma 2.1, the sub-
sequence of P containing only the vertices belonging to V k

α is a path in Gk
α(C ′)

between x and y. Let us show that NGk
α
(C ′) ⊆ NG(C). Let x ∈ NGk

α
(C ′)

and y ∈ C ′ such that xy ∈ Ek
α. By Lemma 2.1, there is a path in G between

x and y, all intermediate vertices of which belong to V − V k
α , and therefore

belong to V − S and consequently belong to C, so x ∈ NG(C). Let us show
that NG(C) ⊆ NGk

α
(C ′). Let x ∈ NG(C) and y ∈ C such that xy ∈ E. As

C ′ 6= ∅, we may choose z ∈ C ′. Let P be a path in G(C) between y and z and
let z′ be the first vertex of P from y belonging to V k

α . Vertex z′ ∈ C ′, and by
Lemma 2.1 xz′ ∈ Ek

α, so x ∈ NGk
α
(C ′). Thus NGk

α
(C ′) = NG(C). As C ′ 6= ∅,

C ′ ⊆ V k
α − S, Gk

α(C ′) is connected and NGk
α
(C ′) = NG(C) ⊆ S, it follows that

C ′ ∈ CGk
α
(S). Therefore, {C ∩ V k

α , C ∈ CG(S) | C ∩ V k
α 6= ∅} ⊆ CGk

α
(S).As

∪C∈CG(S)(C ∩ V k
α ) = V k

α − S, the reverse inclusion holds too.

Theorem 3.3 Every substar of (G, α) is a minimal separator of G.

Proof. Let S be a substar defined at step k. S is a minimal separator of Gk
α,

and by Theorem 3.2, there are at least as many full components of S in G as in
Gk

α. So S is also a minimal separator of G.

Theorem 3.4 The set of substars of (G,α) forms a set of pairwise non-crossing
minimal separators of G.

Proof. Let S and S′ be two substars of (G,α) defined at steps k and k′

respectively, with k ≤ k′. By Theorem 3.3, they are both minimal separators of
G. Let us show that they are non-crossing in G. If k = k′ then they are non-
crossing in Gk

α by Lemma 2.11, so they are non-crossing in G by Theorem 3.2.
We suppose now that k < k′. S is a clique of Gk+1

α and S′ ⊆ V k+1
α , so there

is a connected component C of Gk+1
α (V k+1

α − S′) such that S ⊆ S′ ∪ C. By
Theorem 3.2, there is a connected component C ′ of G(V −S′) containing C, so
S ⊆ S′ ∪ C ′. Hence S and S′ are non-crossing in G.

Note that this theorem does not guarantee that the set of substars defines a
set of pairwise non-crossing minimal separators which is maximal. For instance,
for any non complete graph G, if v1 is a universal vertex of G, then there is no
substar of (G,α), whereas G has at least one minimal separator. A less trivial
counterexample is given in Figure 2(b) of Example 3.5.

Example 3.5 Figure 2 shows two executions of EG on graph G. A graph G
and an ordering α are given in (a). The minimal separators of G are: {1, 3},
{3, 5}, {3, 7}, {1, 4, 6}, {1, 4, 7}, {1, 4, 8}, {3, 5, 7}, {4, 5, 7}, {4, 5, 8}, {4, 6, 8},
{3, 4, 6}. We now demonstrate the execution of EG on (G,α) resulting in the
graph shown in (b).Step 1: N(1) = {2, 3, 5}, C1 = {4, 6, 7, 8}, N(C1) = {3, 5};
substar fill edge 35 and extraneous edge 25 are added. Step 2: N(2) = {3, 5};
C2 = {4, 6, 7, 8}, N(C2) = {3, 5}; 2 is simplicial, so no edge is added. Step 3:
N(3) = {4, 5, 8}, C3 = {6, 7}, N(C3) = {4, 5, 8}; substar fill edges 48 and 58 are
added. Step 4: N(4) = {5, 6, 7, 8}; 4 is universal, so no component is defined;
extraneous edges 57 and 68 are added; the remaining graph becomes a clique;
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Figure 2: Two executions of EG on the same graph G with (b) an arbitrary
ordering, and (c) an MD ordering. (b) is a triangulation of G which is not
minimal, (c) is in this case a minimum triangulation of G.

no further edge is added. The set of substars of (G,α) is thus {{3, 5}, {4, 5, 8}},
which is a set of pairwise non-crossing minimal separators of G, but not a max-
imal one as {{3, 5}, {4, 5, 8}, {4, 5, 7}} and {{3, 5}, {4, 5, 8}, {4, 6, 8}} are also
sets of pairwise non-crossing minimal separators of G. If only substar fill edges
are preserved, a chordless cycle 5678 remains in the graph thus obtained. In
order to saturate a maximal set of pairwise non-crossing minimal separators of
G, {4, 5, 7} or {4, 6, 8} should also be saturated. On the same graph, MD yields
a minimal (and even minimum) triangulation, as shown in (c).

Thus by Theorem 3.4 and Lemma 2.7, a minimal triangulation of a given
graph G can be computed as follows. Run EG on (G, α) where α is an ordering
of V , then remove from G+

α all fill edges that do not appear within substars
(i.e., the extraneous fill edges). As Example 3.5 shows, the resulting graph is
not necessarily chordal, but any minimal triangulation of it will be a minimal
triangulation of G. Furthermore, this minimal triangulation will be a subgraph
of G+

α , as we will show in Section 5. In Section 4, we will show how to com-
pute this partial minimal triangulation both in O(nm) sequential time and in
O(log2 n) parallel time on O(nm) processors, and in Section 5 we will show how
to complete it to a minimal triangulation of G in O(log3 n) parallel time on
O(nm) processors.

We would like to end this subsection with a discussion on the robustness
of EG regarding the process of defining non-crossing minimal separators of G.
If, during the EG process, no extraneous edge is added, then the triangulation
which is computed is minimal. However, due to Theorem 3.4, even when extra-
neous edges have been added, all substar fill edges added later belong to a set
of pairwise non-crossing minimal separators of G, and therefore to a minimal
triangulation of G. Thus if only a few extraneous edges are added during EG
process, they will not destroy the property that all the substar fill edges are
“useful” edges and that these few extraneous edges are the only “unnecessary”
edges introduced. This makes EG a fault-tolerant procedure.

3.1 Using G+
α

to compute the substars of (G,α).

In this subsection, we will show that it is not necessary to compute the substars
during the course of EG on (G,α). We can indeed compute the substars from
only G and the filled graph G+

α . This is interesting since given (G, α), the filled
graph G+

α can be computed in linear time in the size of G+
α as described by
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Tarjan and Yannakakis in [32], whereas EG requires O(n3) time. We will look
at the minimal separators of G+

α , and show how to split these into the desired
substars of (G,α). The results of this subsection are needed for the O(nm) time
implementation that will be given in the next section.
In the following, we suppose that a graph G = (V,E) and an ordering α =
(v1, v2, ..., vn) of V are given.

Lemma 3.6 Let S be a minimal separator of G+
α . Then there are an integer k

between 1 and n and a full component C0 of S in G such that S = NGk
α
(vk) and

C0 ∩ V k
α = {vk}.

Proof. As α is a peo of G+
α , by Theorem 2.13 there is an integer k between

1 and n such that S = N(G+
α )k

α
(vk), and (G+

α )k
α = G+

α (V k
α ). Since we also have

NG
+
α (V k

α )(vk) = NGk
α
(vk), we get S = NGk

α
(vk). As {vk} is a full component

of S in Gk
α, by Theorem 3.2 there is a full component C0 of S in G such that

C0 ∩ V k
α = {vk}.

Definition 3.7 A subset S of V is a split-minsep of (G,α) if there is a minimal
separator S′ of G+

α and a full component C0 of S′ in G such that S is a substar
of C0 in G (S is said to be derived from S′).

It follows from Lemma 3.6 that every minimal separator of G+
α can be split

into split-minseps of (G,α).

Remark 3.8 In the definition of a split-minsep of (G,α), we can moreover
assume that there is an integer k between 1 and n such that S′ = NGk

α
(vk) and

C0 ∩ V k
α = {vk}.

Proof. Let S be a split-minsep of (G,α). Let S′ be a minimal separator of G+
α

and C ′

0 be a full component of S′ in G such that S is a substar of C ′

0 in G. Let
C be a component of G(V −NG[C ′

0]) defining S, i.e. such that S = NG(C). By
Lemma 3.6 there is an integer k between 1 and n and a full component C0 of
S′ in G such that S′ = NGk

α
(vk) and C0 ∩ V k

α = {vk}. Then S is also a substar
of C0 in G: it is evident if C 6= C0, otherwise S is the substar of C0 defined by
C ′

0, as S = NG(C) = NG(C0) = S′ = NG(C ′

0), with C0 = C 6= C ′

0.

Lemma 3.9 Let C0 be a non-empty subset of V such that G(C0) is connected.
Then the substars of C0 in G are exactly the minimal separators of G included
in NG(C0).

Proof. Let S be a substar of C0 in G. Then S is the neighborhood of some
connected component C of G(V − N [C0]). So S ⊆ N(C0), and as C and the
component of G(V − S) containing C0 are two distinct full components of S in
G, S is a minimal separator of G.
Conversely let S be a minimal separator of G included in N(C0). Then there is a
component C ′

0 of G(V −S) containing N [C0]−S. Let C ′ be a full component of
S in G different from C ′

0. As C ′ ⊆ V −N [C0], C ′ is a subset of some component
C of G(V − N [C0]). But as C ⊆ V − N [C0] ⊆ V − S, C is a subset of some
component of G(V −S). Hence C = C ′, S = N(C ′) = N(C) and S is a substar
of C0 in G.
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Lemma 3.10 A subset S of V is a split-minsep of (G,α) if and only if it is a
minimal separator of G included in some minimal separator of G+

α .

Proof. By Lemma 3.6 every minimal separator S of G+
α is in the form NG(C0),

where C0 is a non-empty subset of V such that G(C0) is connected. We conclude
with Lemma 3.9.

Lemma 3.11 Let k be an integer between 1 and n, let S ⊆ V k
α and let C0 be

a full component of S in G such that C0 ∩ V k
α = {vk}. Then C0 is also a full

component of S in G+
α .

Proof. As G is a subgraph of G+
α , C0 is a non-empty connected subset of

vertices in G+
α with S ⊆ NG

+
α
(C0). It remains to show that NG

+
α
(C0) ⊆ S. By

Theorem 3.2 every fill edge having one of its endpoints in C0 inserted before or
at step k of EG has its other endpoint in NG[C0], and no fill edge having one of
its endpoints in C0 can be inserted after step k since C0 is eliminated. Hence
NG

+
α
(C0) ⊆ S.

Lemma 3.12 Let k be an integer between 1 and n, let S ⊆ V k
α and let C0 be a

full component of S in G such that C0 ∩ V k
α = {vk}. Then any substar of C0 in

G is a split-minsep of (G,α).

Proof. Let S1 be a substar of C0 in G defined by a component C of G(V −
NG[C0]). By Lemma 3.11 C0 is also a full component of S in G+

α . Let S′

1 be the
substar of C0 in G+

α defined by the component of G+
α (V − NG[C0]) containing

C. S1 ⊆ S′

1, and by Lemma 3.9 S1 and S′

1 are minimal separators of G and G+
α

respectively. We conclude with Lemma 3.10.

Theorem 3.13 The set of all split-minseps of (G, α) is exactly the set of all
substars of (G,α).

Proof. Let S be a split-minsep of (G,α). Let S′ be a minimal separator of G+
α

and C0 be a full component of S′ in G such that S is a substar of C0 in G. Let
C be a component of G(V − NG[C0]) such that S = NG(C). By Remark 3.8
we can moreover assume that there is an integer k between 1 and n such that
S′ = NGk

α
(vk) and C0 ∩ V k

α = {vk}.

First case : C ∩ V k
α 6= ∅.

By Theorem 3.2, S is the substar of (G,α) defined at step k by C ∩ V k
α .

Second case : C ∩ V k
α = ∅.

Let k′ = max{α(v), v ∈ C}. k′ < k, so S ⊆ V k′

α and C0 ∩ V k′

α 6= ∅. By
Theorem 3.2 S = NGk′

α
(vk′) and S is the substar of (G, α) defined at step k′ by

the component of Gk′

α (V k′

α − S) containing C0 ∩ V k′

α .
Conversely, let S be a substar of (G, α) defined at step k, and let Sk = NGk

α
(vk).

By Theorem 3.2 there is a full component C0 of Sk in G such that C0∩V k
α = {vk}

and such that S is a substar of C0 in G. By Lemma 3.12 S is a split-minsep of
(G,α).

Thus, by Theorem 3.13 we do not need to execute EG to compute the set of
substars of (G,α). It is sufficient to compute the split-minseps derived from all
minimal separators of G+

α .
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3.2 Relationships between EG and LB-Triang

LB-Triang resembles EG as it processes the vertices in a given ordering α and
adds fill edges in their neighborhood. Furthermore, the processed vertices can
be removed from the graph just like in EG [4]. However, whereas EG saturates
the whole neighborhood of vertex vk at step k, LB-Triang saturates only the
substars of vk in the current graph. As LB-Triang always computes a minimal
triangulation, it is interesting to compare the substars computed during LB-
Triang to the substars of (G,α).
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Figure 3: (a) Graph G with ordering α, (b) graph GS , where S is the set of
substars of (G,α) and (c) graph GLB

α . (b) is a partial minimal triangulation of
G, (c) is a minimal triangulation of G.

Example 3.14 Consider graph G and the ordering α of Figure 2. The graph
GS obtained from G by saturating the substars of (G,α) and the graph GLB

α are
shown in Figure 3. The substars of (G,α) are: {3, 5}, defined for the first time
at Step 1 (and redefined at Step 2) and {4, 5, 8}, defined at Step 3. They are
also substars defined by LB-Triang process: {3, 5} is also defined for the first
time at Step 1 (and redefined at Step 4) and {4, 5, 8} is also defined for the first
time at Step 3 (and redefined at step 6). Note that LB-Triang also defines the
substars {1, 3}, {4, 6, 8} (adding the fill edge 68 at Step 5) and {3, 4, 5} that are
not substars of (G,α).

We have the following result.

Theorem 3.15 Let S be a substar of (G, α) defined for the first time at step k.
Then S is a substar of vk defined by LB-Triang process on (G,α) for the first
time at step k.

Proof. Let G = (V, E) be a graph, and let α = (v1, ..., vn) be an ordering
of V . For any k between 1 and n + 1, let Hk = GLB,k

α . We will use the
following Lemmas. Lemma 3.16 is a well-known property of chordal graphs,
and Lemma 3.17 easily follows from the definition of an LB-simplicial vertex
and immediately follows from Lemma 5.1 of [4].

Lemma 3.16 Let C0 be a non-empty subset of V . If G is chordal, G(C0) is
connected and N(C0) is a clique of G then there is a vertex v of C0 such that
N(C0) ⊆ N(v).

Lemma 3.17 A vertex v of G is LB-simplicial in G if and only if v belongs to
no chordless cycle in G of length at least 4.

12



Let S be a substar of (G,α) defined for the first time at step k by a com-
ponent C of Gk

α(V k
α − Sk), where Sk = NGk

α
(vk). By Theorem 3.2 there is a

full component C0 of Sk in G such that C0 ∩ V k
α = {vk} and there is another

component C ′ of G(V − Sk) such that C ′ ∩ V k
α = C and NG(C ′) = S. For any

i between 1 and k + 1, C0 and C ′ are also components of Hi(V − Sk) with the
same neighborhoods, i.e. NHi

(C0) = Sk and NHi
(C ′) = S. We prove this for

C0 (the argument is similar for C ′). Hi(C0) is connected and Sk ⊆ NHi
(C0)

because G ⊆ Hi, and NHi
(C0) ⊆ Sk because every edge of Hi having one of its

endpoints in C0 is an edge of Gj
α for some j ≤ i by Property 2.12 d), and there-

fore has its other endpoint in NG[C0] = C0 ∪ Sk by Theorem 3.2. In particular,
for any i between 1 and k, S is a substar of C0 in Hi and of C0 ∩ V i

α in Gi
α, so

by Lemma 3.9 S is a minimal separator of both Hi and Gi
α.

Let us show that S is a clique of Hk+1. We suppose for contradiction that
it is not the case. Let y, z be non-adjacent vertices of S in Hk+1, let P1 and
P2 be chordless paths in Hk+1 between y and z whose internal vertices are in
C0 and C ′ respectively, and let Q be the cycle formed by P1 and P2. Q is a
chordless cycle in Hk+1 of length at least 4 containing some vertex v of C0. As
C0 ∩ V k

α = {vk}, v = vi for some i ≤ k. By Property 2.12 b), v is LB-simplicial
in Hk+1, and by Lemma 3.17 v belongs to no chordless cycle in Hk+1 of length
at least 4, a contradiction.
Now consider the graph H = Hk+1(C0 ∪ S). C0 is non-empty, H(C0) is con-
nected, NH(C0) = S is a clique of H and H is chordal since by the preceding
argument no vertex of C0 belongs to a chordless cycle in Hk+1, and therefore
in H, of length at least 4, and S is a clique of H. So by Lemma 3.16 there
is a vertex v of C0 such that S ⊆ NH(v), and therefore there is some i ≤ k
such that S ⊆ NH(vi). Let i be the smallest such integer, and let us show that
i = k. By Property 2.12 d) no fill edge containing vi can be added after step i
of LB-Triang, so S ⊆ NH(vi) ⊆ NHk+1

(vi) = NHi
(vi), and by Property 2.12 d)

again S ⊆ NHi
(vi) ∩ V i

α ⊆ NGi
α
(vi). As S is minimal separator of Gi

α included
in NGi

α
(vi), by Lemma 3.9 S is a substar of (G,α) defined at step i, and since

S is defined for the first time at step k, i = k. As S is minimal separator of Hk

included in NHk
(vk), by Lemma 3.9 S is a substar of vk defined by LB-Triang

process at step k, and it is defined for the first time at step k since for any i < k,
S 6⊆ NH(vi) and therefore S 6⊆ NHi

(vi).

Theorem 3.18 Let S be the set of substars of (G, α). GS ⊆ GLB
α ⊆ G+

α and
if α is a meo of G then GS = GLB

α = G+
α .

Proof. By Theorem 3.15 GS ⊆ GLB
α , by Property 2.12 e) GLB

α ⊆ G+
α , and

if α is a meo of G then by Characterization 2.9 every fill edge in G+
α . has

both endpoints in some common substar of (G,α), so G+
α ⊆ GS , and therefore

GS = GLB
α = G+

α .

Note that if α is not a meo of G then by Property 2.12 e) GLB
α ⊂ G+

α , but
GS may be equal to GLB

α . In particular, if G is chordal and α is not a peo of
G then G = GS = GLB

α ⊂ G+
α
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4 Computing the partial minimal triangulation

efficiently

In this section we will give the implementation details of how to compute and
saturate the substars efficiently. More formally, given (G,α), we want to com-
pute GS , where S is the set of substars of (G,α). We give both a sequential
and a parallel implementation of this process. In both implementations, we will
use the definition of a substar of (G,α) as a split-minsep of (G,α) described in
Subsection 3.1.

4.1 Partial minimal triangulation in sequential O(nm) time

In this subsection, we will show that the set S of all substars of (G,α) and the
graph GS can be computed in O(nm) time. For this second result, we will use a
data structure introduced in [4] to implement LB-Triang and we will prove more
generally that for any given set S of pairwise non-crossing minimal separators
of G, the graph GS can be computed in O(nm) time.

Theorem 4.1 Given (G,α), the set S of all substars of (G,α) can be computed
in O(nm) time.

Proof. By Theorem 3.13 it is sufficient to compute the set of split-minseps
of (G, α). Computing G+

α can be done in time O(n + m′), where m′ is the
number of edges of G+

α , as described in [32]. Since it is a chordal graph, it has
at most n minimal separators (by Theorem 2.13) which can be computed in a
global O(n + m′) time [7]. For any minimal separator S′ of G+

α , the connected
components of G(V −S′) and their neighborhoods can be computed in O(n+m)
time. The split-minseps derived from S′ are these neighborhoods, except S′ itself
if it has only one full component in G. We use a Search/Insert data structure
similar to that used in [4] to eliminate duplicates with no extra time cost, and
we obtain a global O(nm) time bound.

It is less easy to prove that saturating the substars of (G,α) can also be
done in O(nm) time. With a straightforward implementation, saturating a
substar takes O(m′) time, where m′ is the number of edges of GS . As the
number of substars of (G,α) is bounded by n (by Lemma 4.2 below) saturating
all substars takes O(nm′) time. To achieve O(nm) time, we will use the tree
decomposition data structure used in [4] to compute GLB

α and will extend it
to the more general problem of computing GS for any set S of pairwise non-
crossing minimal separators of G.

Lemma 4.2 For any set S of pairwise non-crossing minimal separators of G,
|S | ≤ n.

Proof. Let S ′ be a maximal set of pairwise non-crossing minimal separators
of G containing S . GS ′ is chordal by Theorem 2.4, and by Lemma 2.6 S ′ is
also a set of minimal separators of GS ′ . As by Theorem 2.13 chordal graph
GS ′ has at most n minimal separators, we obtain |S | ≤ |S ′| ≤ n.

Theorem 4.3 Given a graph G and a set S of pairwise non-crossing minimal
separators of G, the partial minimal triangulation GS of G can be computed in
O(nm) time.
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Proof. We generalize the implementation of LB-Triang described in [4] using
a data structure called tree decomposition by minimal separators. We recall the
definition of this structure.
A tree structure on G is a structure TS = (T, (Xu)u∈UT

, (Suv)uv∈ET
), where

T = (UT , ET ) is a tree, Xu is a subset of V for each u in UT and Suv is a subset
of V for each uv in ET .
We note:
- ∀x ∈ V , Ux = {u ∈ UT | x ∈ Xu} and Tx = T (Ux) = (Ux, Ex),
- ∀C ⊆ V , TC = (∪x∈CUx,∪x∈CEx) = (UC , EC),
- ∀uv ∈ ET , Tuv and Tvu are the two connected components of T ′ = (UT , ET \
{uv}) respectively containing u and v.
A tree decomposition of G is a tree structure TS on G such that:
a) ∪u∈UT

Xu = V ,
b) ∀xy ∈ E, ∃u ∈ UT | x, y ∈ Xu (i.e. Ux ∩ Uy 6= ∅),
c) ∀x ∈ V, Tx is a subtree of T ,
d) ∀uv ∈ ET , Suv = Xu ∩ Xv.
If TS is a tree decomposition of G, and C is a connected subset of V then TC

is a subtree of T [4].
A tree decomposition of G by minimal separators is a tree decomposition TS of
G verifying the extra property:
e) ∀uv ∈ ET , ∃C1, C2 full components of Suv in G | TC1

⊆ Tuv and TC2
⊆ Tvu.

The graph GS can be computed as follows. First a tree decomposition of G by
minimal separators TS is computed, where the edges of T contain the elements
of S (or more accurately, the elements of a subset S ′ of S such that every
separator in S is a subset of a separator in S ′, so that GS = GS ′). Then, using
Algorithm Neighbors described in [4], we compute the closed neighborhood in
GS ′ , and therefore in GS , of every vertex of G. The whole process is described
in the following variant NonCrossing-Treedecomp of Algorithm LB-Treedecomp
presented in [4]. We refer the reader to [4] for the implementations of Algorithms
Neighbors, InitVariables and UpdateVariables. For every vertex x of G, variable
u(x) contains an arbitrary node of Tx.

Algorithm Neighbors
Input: A graph G = (V, E), a vertex x of G, and a tree decomposition
TS = (T = (UT , ET ), (Xu)u∈UT

, (Suv)uv∈ET
) of G.

Output: the set NG′ [x], where G′ is the graph obtained from G by saturating
the elements of the sets Suv for each uv in ET .

Algorithm NonCrossing-Treedecomp
Input: A graph G = (V, E),
and a set S of pairwise non-crossing minimal separators of G.
Output: the graph GS .
T ← ({u0}, ∅); Xu0

← V ;
InitVariables();
foreach S ∈ S do

Compute two distinct full components C1 and C2 of S in G;
Pick any vertex c1 in C1 and any vertex c2 in C2;
Compute the path P = (u(c1) = u0, u1, ..., up = u(c2))

in T between u(c1) and u(c2);
i ← 0:
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foreach s ∈ S do

while s 6∈ Xui
do i ← i + 1;

w ← ui;
if Xw ∩ C2 6= ∅ then

Split w into w1 and w2;
Xw1

← Xw ∩ (C1 ∪ S); Xw2
← Xw \ C1;

Replace each edge wv by w1v with Sw1v = Swv if Swv ⊆ C1 ∪ S
and by w2v with Sw2v = Swv otherwise;
Add edge w1w2; Sw1w2

← S;
UpdateVariables();

GS ← (V, ∅) ;
foreach x ∈ V do

NGS
[x] ← Neighbors(G, x, TS);

The main difference between Algorithms LB-Treedecomp and NonCrossing-
Treedecomp is the way in which the node w to be split is searched for in T . We
first prove the following Lemma, which generalizes Lemmas 7.17 to 7.20 from
[4].

Lemma 4.4 Let S ∈ S . We suppose that TS is a tree decomposition of G just
before processing S in an execution of NonCrossing-Treedecomp. Then when
processing S a node w = ui of T is computed, with S ⊆ Xw, Xw ∩ C1 6= ∅ and
if Xw ∩ C2 = ∅ then S ⊆ Suiui+1

.

Proof. (of Lemma 4.4) Just before processing S, as TS is a tree decomposition
of G, TC1

and TC2
are subtrees of T . Moreover |UC1

∩ UC2
| ≤ 1 (otherwise

TC1
and TC2

would have a common edge uv with Suv ∈ S , Suv ∩ C1 6= ∅
and Suv ∩ C2 6= ∅, so Suv and S would be crossing elements of S ). Let Q be
the path between TC1

and TC2
in T . Q is in the form (ui1 , ui1+1, ..., ui2) with

0 ≤ i1 ≤ i2 ≤ p. For any s ∈ S, s ∈ NG(C1) ∩ NG(C2), so Us ∩ UC1
6= ∅ and

Us ∩UC2
6= ∅, and therefore the set of integers j in [0, p] such that s ∈ Xuj

is an
interval containing i1 and i2. It follows that the execution of the loop ’foreach

s ∈ S do’ will terminate with 0 ≤ i ≤ i1 and S ⊆ Xi. So S ⊆ Xw and as
0 ≤ i ≤ i1, ui is a node of TC1

and therefore Xw ∩C1 6= ∅. If Xw ∩C2 = ∅ then
i < i2 and therefore S ⊆ Xui

∩ Xui+1
= Suiui+1

.

By Lemma 4.4, if TS is a tree decomposition of G just before processing S
then either Xw ∩C2 6= ∅ and then w is split into w1 and w2 and the edge w1w2

with Sw1w2
= S is created, or S is a subset of an already processed minimal

separator in S . Thus the set S ′ of minimal separators contained in the edges
of the final tree T is a subset of S such that GS = GS ′ , and Algorithm
Neighbors correctly computes the closed neighborhood of every vertex of G in
GS , provided that TS is a tree decomposition of G at every step. We prove
that TS is a tree decomposition of G by minimal separators at every step of
the algorithm in the same way as in [4] (Invariant 7.21) since this proof only
uses the facts that S is a set of pairwise non-crossing minimal separators of
G and that if the node w computed when processing S is split then S ⊆ Xw,
Xw ∩C1 6= ∅ and Xw ∩C2 6= ∅, which holds by Lemma 4.4. This completes the
proof of correctness of NonCrossing-Treedecomp.
Let us prove O(nm) time bound. We know from [4] that InitVariables requires
O(n) time, that splitting a node w, UpdateVariables and Neighbors take O(m)
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time (using the fact that TS is a tree decomposition of G by minimal separators),
and that the data structure used to implement the sets Xu allows to test whether
a vertex of G belongs to a set Xu or not in O(1) time. Computing C1 and C2

requires O(n + m) time, computing P takes O(n) time (since by Lemma 4.2
|ET | ≤ |S | ≤ n), as well as computing w and testing Xw ∩ C2 6= ∅. Thus each
iteration of each one of the two main foreach-loops requires O(n + m) = O(m)
time, and since |S | ≤ n we obtain a global O(nm) time bound.

Corollary 4.5 Given (G,α), the partial minimal triangulation GS of G can
be computed in O(nm) time, where S is the set of all substars of (G,α).

Proof. By Theorem 4.1 S can be computed in O(nm) time. By Theorem 3.4
S is a set of pairwise non-crossing minimal separators of G, so we conclude
with Theorem 4.3.

Note that the algorithm described by Dahlhaus in [10] as the Tree Splitting
Procedure can also be used to compute the set S of substars of (G,α) and the
graph GS in O(nm) time. This algorithm computes what is called in [10] a
quasi-minimal tree representation of G. It can be proved that the computed
tree is a tree decomposition of G by minimal separators whose edges exactly
contain the substars of (G,α). This tree is initialized with a clique tree of G+

α

and at each step of the algorithm, an edge containing a minimal separator S′ of
G+

α is split into edges containing some split-minseps of (G,α) derived from S′.
The graph GS can be computed from that tree, using Algorithm Neighbors in
the same way as in NonCrossing-Treedecomp.

4.2 Parallel partial minimal triangulation

In this subsection, we give a parallel algorithm for computing the substars of
(G,α).

Algorithm Parallel Substar Computation (PSC)
Input: A graph G = (V, E) and an ordering α = (v1, v2, ..., vn) of G.
Output: The set of substars of (G,α).
1. Compute the connected components C of G({v1, v2, ..., vi})
for all i ∈ [1, n − 1];
2. Compute NG[C] for all connected components C computed at Step 1;
3. Compute the connected components K of G(V − NG[C]) for all

closed neighborhoods NG[C] computed at step 2;
4. Compute NG(K) for all connected components K computed at step 3;
5. Eliminate duplicates from the sets NG(K) of Step 4 by sorting them;
6. Output the remaining sets from Step 5 as the substars of (G,α);

Lemma 4.6 Algorithm PSC computes the set of all substars of (G,α).

Proof. By Theorem 3.13 it is sufficient to show that PSC computes the set of
all split-minseps of (G,α).
Let S be a set computed by PSC. Let i ∈ [1, n − 1], let C0 be a component
of G({v1, v2, ..., vi}) and K be a component of G(V − NG[C0]) such that S =
NG(K). Let k be the maximum value of α(v) for v ∈ C0 and let S0 = NG(C0).
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S0 ⊆ V i+1
α ⊆ V k

α , C0 is a full component of S0 in G such that C0 ∩ V k
α = {vk}

and S is a substar of C0 in G, so by Lemma 3.12 S is a split-minsep of (G, α).
Conversely let S be a split-minsep of (G, α). By Remark 3.8 there is a minimal
separator S′ of G+

α , a full component C0 of S′ in G and an integer k between 1
and n such that S is a substar of C0 in G, S′ ⊆ V k+1

α and C0 ∩ V k
α = {vk}. It

follows that C0 is a component of G({v1, v2, ..., vk}), so S is computed by PSC.

Lemma 4.7 Algorithm PSC runs in O(log2 n) parallel time with O(nm) pro-
cessors on a CREW PRAM.

Proof. The first step of the algorithm can be done as follows. We give any
edge vivj the distance d(vi, vj) = max(i, j). Let Ei be the set of edges vw of
G with d(v, w) ≤ i. We call the connected components of Ei the i-clusters. By
[11], for all i simultaneously, the i-clusters can be determined in O(log2 n) time
with O(n + m) processors. Observe that the i-clusters are just the connected
components of G({v1, ..., vi}). The second step can be done in O(log n) time on
O(nm) processors, since for each C separately it can be done in logarithmic time
with a linear number of processors and the number of C is bounded by n. The
third step can be done in O(log2 n) time on O(nm) processors, since it can be
done in O(log2 n) time with O(n + m) processors, for each C separately, using
the algorithm of Shiloach and Vishkin [30] and the number of C is bounded
by n. The fourth step is analogous to the second step, it requires the same
bounds for each C separately, and therefore the same global bounds. The fifth
step needs O(log n) time and O(n) processors if we assume that one comparison
needs constant time and a linear number of processors [9]. Here one comparison
needs O(n) processors and O(log n) time on a CREW-PRAM. Therefore the
fifth step needs O(n2) processors and O(log2 n) time on a CREW-PRAM.

Theorem 4.8 Given (G,α), the partial minimal triangulation GS of G can be
computed in parallel O(log2 n) time with O(nm) processors on a CREW PRAM,
where S is the set of all substars of (G,α).

Proof. By Lemmas 4.6 and 4.7, we know how to compute the substars S

of (G,α) in parallel O(log2 n) on O(nm) processors. The substar edges can
be added to G in parallel O(log n) time on O(nm) processors, and the result
follows.

5 Completing the partial minimal triangulation

into a minimal triangulation

Theorem 5.1 Let S be the set of substars of (G, α). Then any minimal tri-
angulation H of GS is a minimal triangulation of G which is a subgraph of
G+

α .

Proof. Let H be a minimal triangulation of GS . By Theorem 3.4 and
Lemma 2.7, H is a minimal triangulation of G. Let us show that H is a sub-
graph of G+

α . By Theorem 2.4 there is a set S ′ of pairwise non-crossing minimal
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separators of GS such that H = (GS )S ′ . As GS is a subgraph of G+
α , it is

sufficient to show that any element of S ′ is a clique of G+
α . Let T ∈ S ′, let u

and v be two vertices of T with α(u) < α(v) and let k = α(u) (i.e. u = vk).
Let us show that uv is an edge of G+

α , i.e. v ∈ NGk
α
(vk). We assume by contra-

diction that v 6∈ NGk
α
(vk). Let S be the substar of (G,α) defined at step k by

the component containing v. S is a minimal separator of Gk
α separating vk and

v. By Theorem 3.2, S is also a minimal separator of G separating the vertices
vk and v of T . So S and T are crossing in G. But as S ∈ S and T ∈ S ′, by
Lemma 2.6 S and T are non crossing in G, a contradiction.

As a consequence of Theorem 5.1, we can use any minimal triangulation
algorithm that we like to compute a minimal triangulation of GS , which will
also be a minimal triangulation of G that is a subgraph of G+

α .
Since there are several minimal triangulation algorithms with an O(nm) time

bound, as LEX M [31], MCSM [3], and LB-Triang [4], the overall time for com-
puting a minimal triangulation through this method is O(nm′) where m′ is the
number of edges of GS . This gives a new algorithm for solving the sandwiched
minimal triangulation problem. Meanwhile, note that the LB-Triang algorithm
of [4] already solves this problem directly in O(nm) time. However, there is
no efficient parallel algorithm for solving the sandwiched minimal triangulation
problem, and our approach results in such a parallel algorithm.

5.1 A parallel algorithm to compute sandwiched minimal

triangulations

In 1994, Dahlhaus and Karpinski [12] described a parallel algorithm that com-
putes a minimal triangulation of a given graph in O(log3 n) parallel time using
O(nm) processors on a CREW PRAM. This algorithm does not solve the sand-
wiched minimal triangulation problem. However, by Theorem 5.1, a parallel
algorithm for solving this problem is the following: given (G,α), compute and
fill the substars of (G,α) by the parallel algorithm given in Section 4. On the
resulting graph, run the parallel algorithm of [12].

Now, we want to show that the total time requirement for this process is
O(log3 n) using O(nm) processors on a CREW PRAM. There is one point we
need to handle carefully. The input graph G has n vertices and m edges, but
GS has more edges. Thus, if we simply compute GS and pass it on to the
algorithm of [12], then the O(nm) bound on the number of processors does not
necessarily hold. However, if instead of using the algorithm of [12] as a black
box, we do the necessary calculations on G and S so that we can go directly
into the appropriate intermediate step of [12], we can keep the bounds related
to the parameters of G instead of the parameters of GS .

Theorem 5.2 Given (G,α), a minimal triangulation of G that is a subgraph
of G+

α can be computed in parallel O(log3 n) time with O(nm) processors on a
CREW PRAM.

Proof. Let the substars S of (G,α) be computed by the parallel algorithm
described in Section 4 in time O(log2 n) using O(nm) processors on a CREW
PRAM.

We first define a partial ordering on vertex subsets of G given S . Let S be a
substar in S . We say that a vertex x < S if x is in a full component C of S in G
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such that C is not the unique largest (in the number of vertices) full component
of S in G. We define the closest substar of x to be a substar S with x < S such
that the connected component of G(V − S) containing x is the smallest in size
compared to the full components containing x of all other substars > x. We
claim that given a vertex x there is a unique substar satisfying this condition,
provided that there is at least one substar > x. Let S1 be a closest substar of x;
let C be the full component of S1 containing x; then any other substar is either
a subset of C ∪ S1 or does not intersect C. Let S2 be another closest substar
of x; first we assume that S2 does not intersect C: if S1 is a subset of S2 then
C is a component of G(V − S2), but not a full component of S2. If S1 is not a
subset of S2, then C ∪ (S1 −S2) is a subset of a component of G(V −S2). This
component is larger than C, contradicting the assumption that S2 is a closest
substar. Finally we have to consider the case that S2 is a subset of C ∪S1: then
S2 cannot be a subset of S1 because C and the vertices in S1 −S2 would belong
to the full component of S2 containing x, contradicting the assumption that S2

is a closest substar. For symmetry reasons, S1 cannot be a subset of S2. Let C2

be any full component of S2 not containing x; since S2 is not a subset of S1, any
vertex of C2 can be joined by a path in G with x, avoiding S1. Therefore C2 is
a subset of C. Note that there is another full component D of S1 that is at least
as large as C. For the same reasons that C2 is a subset of C, D is a subset of
the full component of S2 containing x. Since C2 is any full component of S2 not
containing x, there is no full component of S2 not containing x that is at least
as large as D, contradicting the assumption that S2 is a substar with x < S2,
and therefore contradicting the assumption that S2 is a closest separator.

Now we define a partition of V into vertex subsets called cells which we will
arrange in an order. A cell contains all the vertices having the same closest
substar S and belonging to the same connected component of G(V − S). The
closest substar of a cell is the common closest substar of its elements. A special
cell (without closest substar) contains all vertices having no closest substar. We
now order the cells as follows: a cell is smaller than any cell intersecting its
closest substar. We must show that this defines a partial order among the cells,
i.e. that it has no cycles. Suppose x < S1, y ∈ S1, and y < S2. Let C1 be
the connected component of G(V − S1) containing x and C2 be the connected
component of G(V − S2) containing y. We claim that C1 is a proper subset
of C2. To prove the claim, it is sufficient to show that S2 does not intersect
C1 (in that case, C1 and y are in one connected component of G(V − S2)).
Assume now that S2 intersects C1. Let D1 be a largest connected component of
G(V − S1) (D1 is different from C1) and D2 be a largest connected component
of G(V −S2) (D2 is different from C2). Since the minimal separators S1 and S2

do not cross, C1 is the only connected component of G(V − S1) that intersects
S2. It follows that D1 and y are in one connected component of G(V − S2), so
|D1| < |D2|. In the same way, C2 is the only connected component of G(V −S2)
that intersects S1, D2 and S2∩C1 are in one connected component of G(V −S1),
so |D2| < |D1|. This is a contradiction.

Now any extension of this partial ordering among the cells to a total ordering
is an approximate minimal elimination ordering of GS , in the sense that there
exists a minimal elimination ordering of GS in which the vertices of the smallest
cell appear first, the vertices of the next smallest cell appear thereafter, etc.
Let K be a cell. The full component of the closest substar containing K is
called the full component of K. To determine the cells we sort the vertices
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lexicographically by their closest separators and by the full components of the
separators containing them. Then one can easily observe that vertices of the
same cell appear consecutively. This can be done in O(log2(n)) time using O(n2)
processors because the comparison of two separators and two components can
be done in O(log(n)) time with O(n) processors and sorting can be done in
O(log(n)) time with O(n) processors if we assume that comparison can be done
in constant time [9]. To get a total ordering of the cells that is an extension
of the partial order on the cells as mentioned before, we sort the cells by the
cardinalities of their full components. This can be done in logarithmic time
using O(n) processors.

This approximate minimal elimination ordering can be extended to a min-
imal elimination ordering by deciding the local order of the vertices in each of
the cells. This is done in [12] as follows: for any cell K we determine a min-
imal elimination ordering of GS . Secondly, for each cell K, we transform the
minimal elimination ordering of K into a minimal elimination ordering with the
same fill such that the second ordering concatenated with any ordering of its
closest substar S is a minimal elimination ordering of GS restricted to K ∪ S.
By [12], this can be done in O(log3(n)) time using O(nm) processors for all cells
simultaneously.

The substar edges do not play a role regarding the limits of time and number
of processors, and we can run the algorithm of [12] within the desired limits for
time and number of processors. We conclude that the total time requirement of
this parallel algorithm solving the sandwiched minimal triangulation problem is
O(log3 n) using O(nm) processors.

5.2 A new minimal triangulation algorithm: MEG

In this subsection we introduce a new algorithm that completes a given partial
minimal triangulation resulting from the process described in Section 3 to a min-
imal triangulation directly without using another existing minimal triangulation
algorithm. We will repeat the process of saturating in the partially triangulated
graph G′ obtained so far the substars of (G′, β) for some ordering β, until a
chordal graph is obtained. However, at the beginning of each iteration, we will
remove all LB-simplicial vertices, according to the following result:

Lemma 5.3 Let G = (V,E) be a graph, X the set of LB-simplicial vertices
of G, and G′ = G(V − X) = (V ′, E′). For any minimal triangulation H ′ =
(V ′, E′ + F ′) of G′, the graph H = (V,E + F ′) is a a minimal triangulation of
G.

To prove Lemma 5.3 we use the following result which generalizes Prop-
erty 2.12 a) and b).

Lemma 5.4 Let G be a graph, v be a LB-simplicial vertex of G, G′ be an
induced subgraph of G and S be a set of minimal separators of G′. Then v has
the same neighborhood and substars in G and in GS , and it is LB-simplicial in
GS .

Proof. Suppose for contradiction that v has not the same neighborhood or
not the same substars in G and in GS . Then there is some S ∈ S , some
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vertices y, z ∈ S and some component C of G(V − NG[v]) such that y ∈ C and
z 6∈ NG[C]. Let C1 and C2 be distinct full components of S in G′ and let P1

and P2 be paths in G′ between y and z whose internal vertices are in C1 and
C2 respectively. As y ∈ C and z 6∈ NG[C], there is an internal vertex v1 of P1

(resp. v2 of P2) in NG(C). As v is LB-simplicial in G, NG(C) is a clique of G,
so v1 and v2 are equal or adjacent in G′, which is impossible since v1 ∈ C1 and
v2 ∈ C2. So v has the same neighborhood and substars in G and in GS , and
therefore it is LB-simplicial in GS since it is LB-simplicial in G.

Proof. (of Lemma 5.3) H is chordal because for any cycle C in H of length ≥
4, either C is in H ′ and then C has at least one chord, or C contains a vertex x
of X and then C has at least one chord by Lemma 3.17 since x is LB-simplicial
in H by Lemma 5.4 (H = GS for some set S of minimal separators of G′ by
Theorem 2.4). So H is a triangulation of G. It is a minimal one because for any
chordal graph H1 = (V, E + F ′

1) with F ′

1 ⊆ F ′, the graph H ′

1 = (V ′, E′ + F ′

1) is
chordal too, so that F ′

1 = F ′.

Thus the LB-simplicial vertices can only cause EG to add extraneous edges,
as well as unnecessarily increasing some vertex degrees if MD orderings are used,
which justifies our systematically eliminating them from the graph at each step.
Note that saturating the substars of (G′, β) tends to create LB-simplicial vertices
(at least β(1) is LB-simplicial in G′

S
as proved below), so removing these can

make a significant difference regarding the quality of the fill obtained when MD
orderings are used. We now present the new algorithm.

Algorithm Minimal Elimination Game (MEG)
Input: A graph G = (V, E) and an ordering α on G.
Output: A sandwiched minimal triangulation H of G.
Compute the set of substars S of (G,α);
G′ ← GS ; H ← GS ;
while G′ is not chordal do

Remove all LB-simplicial vertices from G′;
Choose an arbitrary ordering β and compute the set of substars S of (G′, β);
G′ ← G′

S
; H ← HS ;

Theorem 5.5 Given a graph G and an ordering α on its vertices, MEG com-
putes a minimal triangulation of G which is a subgraph of G+

α .

Proof. MEG terminates, because at least one vertex is removed at each step
since β(1) is LB-simplicial in G′

S
, where S is the set of substars of (G′, β):

β(1) is LB-simplicial in G′

S1
, where S1 is the set of substars of (G′, β) defined

at step 1, and β(1) is still LB-simplicial in G′

S
by Lemma 5.4 with G′ and G

equal to G′

S1
and Theorem 3.3 since S is also the set of substars of (G′

S1
, β).

Let us now prove MEG correctness. Let H be the output graph, let S0 be
the set of substars computed at the beginning of the algorithm and S ′ be the
union of those computed in the while-loop. Thus H = (GS0

)S ′ , GS0
being

the input graph of the while-loop. By Theorem 5.1 it is sufficient to show
that H is a minimal triangulation of GS0

, or more generally that for any input
graph G′ of the while-loop, the graph G′

S ′ , where S ′ is the union of the
sets of substars computed in the while-loop, is a minimal triangulation of G′.
Let us prove this property by induction on the number p of iterations of the
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while-loop before G′ becomes chordal. It trivially holds for p = 0, as in that
case G′ is chordal and S ′ is the empty set. We suppose that it holds when
the number of iterations of the while-loop before G′ gets chordal is p. Let us
show that it holds when this number is p + 1. Let G′

1 be the graph obtained
from G′ by removing all its LB-simplicial vertices, let S ′

1 be the set of substars
computed at the first iteration of the while-loop and S ′′ be the union of those
computed at the following iterations, and let G′′ be the graph obtained at the
end of the first iteration. Thus G′′ = (G′

1)S ′

1
and S ′ = S ′

1 ∪ S ′′. By the
induction hypothesis, G′′

S ′′ is a minimal triangulation of G′′, so by Theorem 3.4
and Lemma 2.7, it is also a minimal triangulation of G′

1. G′′

S ′′ = ((G′

1)S ′

1
)S ′′ =

(G′

1)S ′

1
∪S ′′ = (G′

1)S ′ . Thus the graphs G′

S ′ and G′′

S ′′ are obtained from G′

and G′

1 respectively by adding the same set F ′ of edges, so by Lemma 5.3, G′

S ′

is a minimal triangulation of G′, which completes the proof by induction and
therefore the proof of MEG correctness.

Thus MEG solves the sandwiched minimal triangulation problem directly,
given (G,α).

We will remark that the orderings β used at the successive steps of MEG
are not necessarily sub-orderings of α. However, when only sub-orderings of α
are used, the following result is obtained.

Property 5.6 If at each step, the ordering β is the restriction of α to the
vertices of G′ then MEG yields the minimal triangulation GLB

α computed by
LB-Triang.

We first prove the following Lemma.

Lemma 5.7 If G ⊆ G′ ⊆ GLB
α then (G′)LB

α = GLB
α .

Proof. For any k between 1 and n+1, let Hk = GLB,k
α and H ′

k = (G′)LB,k
α . Let

us show by induction on k that for any k from 1 to n + 1, Hk ⊆ H ′

k ⊆ GLB
α . It

holds for k = 1 since H1 = G and H ′

1 = G′. We suppose that Hk ⊆ H ′

k ⊆ GLB
α .

By Property 2.12 a) vk has the same neighborhood and substars in Hk and in
GLB

α , so vk also has these same neighborhood and substars in H ′

k. As Hk+1 and
H ′

k+1 are obtained from Hk and H ′

k respectively by saturating these substars

which are cliques of GLB
α , Hk+1 ⊆ H ′

k+1 ⊆ GLB
α which completes the proof

by induction. Hence Hn+1 ⊆ H ′

n+1 ⊆ GLB
α , i.e. GLB

α ⊆ (G′)LB
α ⊆ GLB

α , so
(G′)LB

α = GLB
α .

Proof. (of Property 5.6) Let us show that the following property (P ) holds at
every step (i.e. at the beginning of every iteration of the while-loop) of MEG,
where V ′ is the vertex set of G′:
(P ) G′ = H(V ′), every vertex of V −V ′ is LB-simplicial in H and G ⊆ H ⊆ GLB

α .
(P ) holds at the first step since G′ = H = GS and by Theorem 3.18 GS ⊆ GLB

α .
We suppose that (P ) holds at some step of MEG. Let us show that it still holds
at the next step. Let G′

1 be the graph obtained from G′ by removing its LB-
simplicial vertices, S be the set of substars of (G′

1, α
′) where α′ is the restriction

of α to the vertices of G′

1, G′′ = (G′

1)S , H ′ = HS and V ′′ be the vertex set of
G′′. Clearly G′′ = H ′(V ′′) and G ⊆ H ′. Let v be a vertex of V −V ′′, and let us
show that v is LB-simplicial in H ′. By Lemma 5.4, it is sufficient to show that v
is LB-simplicial in H. We suppose by contradiction that v is not LB-simplicial in
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H. By (P ) v 6∈ V −V ′. It follows that v ∈ V ′−V ′′ and therefore is LB-simplicial
in G′. By Lemma 3.17, as v is not LB-simplicial in H and every vertex of V −V ′

is LB-simplicial in H, v belongs to a chordless cycle in H(V ′), i.e. G′, of length
at least 4, and therefore v is not LB-simplicial in G′, a contradiction. It remains
to show that H ′ ⊆ GLB

α . By Theorem 3.18 (G′

1)S ⊆ (G′

1)
LB
α′ . G′

1 = H(V ′′),
every vertex of V − V ′′ is LB-simplicial in H and by Property 2.12 c), first
removing the LB-simplicial vertices of V − V ′′ from H does not modify the
fill computed by LB-Triang on (H, α). Thus LB-Triang computes the same
fill on (G′

1, α
′) and on (H,α), so we also have HS ⊆ HLB

α . Now, as by (P )
G ⊆ H ⊆ GLB

α , by Lemma 5.7 HLB
α = GLB

α , so H ′ = HS ⊆ HLB
α = GLB

α ,
which completes the proof that (P ) still holds at the next step.
It follows that the graph H computed by MEG is chordal and satisfies G ⊆ H ⊆
GLB

α , and therefore H = GLB
α since GLB

α is a minimal triangulation of G.

It follows from Property 5.6 that to do ”better” than LB-Triang in the sense
of producing less fill, MEG has to take advantage of the possibility given by the
algorithm of choosing an appropriate ordering β at each iteration of the while-
loop instead of the given ordering α. For instance, ordering β can be chosen
as an MD ordering of the transitory graph (we call MMD this variant of MEG
using MD heuristic). However, this potential gain on the quality of the fill has a
cost in terms of computational time, at least theoretically, as shown by the rapid
following investigation of MEG time complexity. By Corollary 4.5 computing
a partial minimal triangulation of the transitory graph at each iteration of the
while-loop requires O(nm′) time, where m′ is the number of edges of the result-
ing minimal triangulation of G. If a straightforward algorithm in O(nm′) is used
to determine whether a given vertex is LB-simplicial in the transitory graph,
we obtain O(n2m′) for each iteration of the while-loop and O(n3m′) time com-
plexity for MEG, whereas LB-Triang can be implemented in O(nm) time [4].
As in practice (with a MD approach) the number of iterations of the while-loop
is rarely more than 2 (see Section 6), one may wonder whether there is a better
bound than O(n) for the number of iterations in an execution of MEG. The
following example shows that the answer is negative. Consider for any integer
k ≥ 1 the graph Gk with n = 3k +1 vertices consisting of a chain of k chordless
4-cycles in the form (3i+1, 3i+2, 3i+4, 3i+3) for i from 0 to k−1 (two consec-
utive cycles have a common vertex since 3i + 4 = 3(i + 1) + 1) such that vertex
3i + 2 of each cycle is adjacent to every vertex of the subsequent cycles (graph
G3 is shown in Figure 4). With α = (1, 2, ..., n) and β = (3i + 1, 3i + 2, ..., n)

1

2

3

4

5

6

7

8

9

10

Figure 4: An example of execution of MEG with O(n) iterations.

at iteration i for i from 0 to k − 1, the number of iterations is k = (n − 1)/3
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(the 3 iterations on G3 are represented by dashed lines in Figure 4). Note that
with MMD there is only one iteration, so the problem of the best bound of the
number of iterations remains open in the case of MMD. Thus even if the time
complexity of removing LB-simplicial vertices is reduced, MEG time complexity
remains in at least O(n2m′), though it is much better in practice when appro-
priate orderings β are chosen. Beyond the fact that MEG may produce less fill
than LB-Triang on some graphs (we leave it to the reader to test it on the kind
of graphs used in his or her research domain), MEG presents a new approach
of EG and the sandwich problem which may lead to further properties and al-
gorithms. In particular, it can be combined with some heuristics that cannot
be used in the framework of the parallel algorithm presented in Section 5.1 be-
cause they are inherently sequential, as is the case for MD heuristic leading to
algorithm MMD.

6 Applications to MD and experimental results

As mentioned earlier, though EG does not necessarily compute a minimal trian-
gulation, MD is observed in practice to often produce orderings that are minimal
or close to minimal, in addition to low fill. We will now give an explanation of
this good behavior of MD through Lemma 6.1.

Lemma 6.1 Let vk be a vertex of minimum degree in Gk
α such that the union

of all substars defined at step k is equal to a substar S defined at step k. Then
only substar fill edges are added at step k.

Proof. Assume by contradiction that there is an extraneous edge yz added at
step k. Then y or z, say y, is not in S. NGk

α
(y) ⊆ NGk

α
[vk] − {y, z}, so that

|NGk
α
(y)| < |NGk

α
(vk)|, which contradicts the fact that vk is a vertex of minimum

degree in Gk
α.

This result shows in particular that when the section graph is connected at
some step of MD, then fill edges are added at that step only within the single
substar defined. As is clear from the proof of this lemma, this is not the case in
general for EG. Moreover, in most practical applications [23], the input graph
is sparse; although no statistical result has been established on this, intuitively,
a vertex x of minimum degree quite often defines only one substar, which usu-
ally corresponds to a connected section graph. MD run on sparse graphs thus
stands a significantly higher chance of generating minimal triangulations than
an arbitrary EG.

It should be noted that graphs can be constructed such that no execution of
MD can produce a minimal triangulation. Such an example is a graph consisting
of two large cliques, connected by a single path of length ≥ 2. The graph is
chordal, but vertices on the path will be chosen by MD at first steps, introducing
unnecessary fill. MEG run with an MD approach (introduced above as MMD)
will not encounter any problem with that kind of graph, since the only minimal
triangulation of a chordal graph is the graph itself.

With practical tests, we have compared MMD against MD with respect to
the number of edges in the resulting triangulation. We have done a simple and
straightforward implementation of MMD in Matlab, and we have run the tests
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both on randomly generated graphs of varying density, and on graphs from Ma-
trix Market [23]. On each graph G, we first generated an MD ordering α. Then
we compared the number of fill edges in G+

α to the number of fill edges pro-
duced by MMD. As expected by Theorem 5.5, the number of fill edges resulting
from MMD was always less than or equal to the number of fill edges resulting
from MD. An interesting point is that on most graphs, MMD required only two
iterations of the while-loop. The reduction in the number of fill edges achieved
by MMD was not very large, because of MD’s remarkably good performances.
However, this improved algorithm may both give significant results on very large
graphs and help researchers gain a better evaluation of how close MD gets to
an optimal solution. Finally, we would like to mention that existing MD codes
in use are very fast although the theoretical running time of these implemen-
tations is not good [17]. In addition, other iterative procedures for computing
minimal triangulations have been implemented to run fast in practice[27]. Thus
we believe that, with some effort, MMD can be implemented to run efficiently
in practice.

It would be interesting to compare the fill produced by MMD with the
fill produced by the variant of LB-Triang (called Dynamic LB-Triang in [4]), in
which ordering α is defined dynamically by choosing at each step an unprocessed
vertex with minimum degree in the transitory graph. Once more, we leave it
to the reader to test this on the graphs used in his or her research domain, as
the results may depend on the properties of these graphs (sparse or dense for
example), and to imagine combinations or variants of these algorithms to solve
the sandwich or other problems.

7 Conclusion

We have conducted a theoretical investigation of Elimination Game, and covered
new aspects with regard to minimal triangulation.

We showed that Elimination Game is remarkably robust. Though unneces-
sary edges may be added at some steps, the chances remain intact at further
steps to add only useful edges. We use this property to define a partial minimal
triangulation of the input graph, any minimal triangulation of which solves the
sandwich problem. Based on this, we present several algorithms which compute
a minimal triangulation solving the sandwich problem, including an efficient
parallel approach.

All these processes improve Minimum Degree heuristics. Furthermore our
results explain at least partially the good behavior of this heuristic.
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