
HAL Id: lirmm-00366108
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00366108

Submitted on 5 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maximal Label Search Algorithms to Compute Perfect
and Minimal Elimination Orderings
Anne Berry, Richard Krueger, Geneviève Simonet

To cite this version:
Anne Berry, Richard Krueger, Geneviève Simonet. Maximal Label Search Algorithms to Compute
Perfect and Minimal Elimination Orderings. SIAM Journal on Discrete Mathematics, 2009, 23 (1),
pp.428-446. �10.1137/070684355�. �lirmm-00366108�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00366108
https://hal.archives-ouvertes.fr

Maximal Label Search algorithms to compute

perfect and minimal elimination orderings

A. Berry ∗ R. Krueger † G. Simonet ‡

September 2, 2008

Abstract

Many graph search algorithms use a vertex labeling to compute an
ordering of the vertices. We examine such algorithms which compute a
peo (perfect elimination ordering) of a chordal graph, and correspond-
ing algorithms which compute an meo (minimal elimination ordering)
of a non-chordal graph, an ordering used to compute a minimal trian-
gulation of the input graph.

We express all known peo-computing search algorithms as instances
of a generic algorithm called MLS (Maximal Label Search) and gener-
alize Algorithm MLS into CompMLS, which can compute any peo.

We then extend these algorithms to versions which compute an
meo, and likewise generalize all known meo-computing search algo-
rithms. We show that not all minimal triangulations can be computed
by such a graph search, and, more surprisingly, that all these search al-
gorithms compute the same set of minimal triangulations, even though
the computed meos are different.

Finally, we present a complexity analysis of these algorithms. 1

Keywords: Graph search, peo, meo, minimal triangulation, elimi-

nation scheme, MLS.

1 Introduction

Graph searching plays a fundamental role in many algorithms, particularly
using Breadth-First or Depth-First searches and their many variants. One
important application is to compute special graph orderings related to the
chordality of a graph. When the input graph is chordal, one wants to find
an ordering of the vertices called a peo (perfect elimination ordering), which
repeatedly selects a vertex whose neighborhood is a clique (called a simplicial
vertex), and removes it from the graph. This is a certificate of chordality, as,

∗LIMOS, Ensemble scientifique des Cézeaux, F-63177 Aubière, France, fax 00 33 4 73
40 76 39. berry@isima.fr

†Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
M5S 3G4. krueger@cs.toronto.edu

‡LIRMM, 161, Rue Ada, F-34392 Montpellier, France. simonet@lirmm.fr
1An extended abstract of part of this paper was published in WG 2005 [4]

1

given an ordering of the vertices, one can determine in linear time whether
it is a peo of the graph.

When the input graph fails to be chordal, it is often interesting to embed
it into a chordal graph by adding an inclusion-minimal set of edges, a process
called minimal triangulation. One of the ways of accomplishing this is to
use an ordering of the vertices called an meo (minimal elimination ordering),
and use this to simulate a peo by repeatedly adding any edges whose absence
would violate the simplicial condition.

Though some earlier work had been done on these problems ([14, 13]),
the seminal paper is that of Rose, Tarjan and Lueker [15], which presented
two very efficient algorithms to compute a peo or an meo. They introduced
the concept of lexicographic order (which roughly speaking is a dictionary
order), and used this for graph searches which at each step choose an un-
numbered vertex of maximal label. With this technique, they introduced
Algorithm LEX M, which for a non-chordal graph G = (V,E) computes an
meo in a very efficient O(nm) time, (where n = |V | and m = |E|), and then
streamlined this for use on a chordal graph, introducing what is now called
Algorithm LexBFS, a Breadth-First Search which runs in optimal O(n+m)
time and computes a peo if the input graph is chordal (see a survey on
LexBFS in [8]).

Later work has been done on computing peos. Tarjan and Yannakakis
[17] presented Algorithm MCS (Maximal Cardinality Search) which is sim-
ilar to LexBFS but uses a simplified labeling (a cardinality choice criterion
is used instead of a lexicographic one). M CS also computes in linear time
a peo if the input graph is chordal.

Shier [16] remarks that neither LexBFS nor MCS is capable of computing
all peos. He proposes Algorithms MEC and MCC, which can both compute
any peo of a chordal graph.

Recently, Corneil and Krueger [9] introduced Algorithm LexDFS as a
Depth-First analogue to LexBFS. They also introduced Algorithm MNS
(Maximal Neighborhood Search) which chooses at each step a vertex whose
set of numbered neighbors is inclusion-maximal. They gave characteriza-
tions of the orderings computed by these search algorithms and observed,
from a result of Tarjan and Yannakakis [17] on the property characterizing
MNS orderings, that every MNS ordering yields a peo if the input graph is
chordal. They showed with these characterizations that any ordering com-
puted by LexBFS, MCS or LexDFS can also be computed by MNS.

Berry, Blair, Heggernes and Peyton [1] recently introduced Algorithm
MCS-M, which computes an meo. MCS-M is extended from MCS in the
same fashion LEX M can be extended from LexBFS. The sets of meos defined
by LEX M and by MCS-M are different, but Villanger [20] recently showed
that the same sets of minimal triangulations were obtained.

In this paper, we address natural questions which arise about peos and
meos: how can the existing algorithms be generalized? Do these new algo-
rithms compute all peos of a chordal graph? Can they all be extended to
compute meos? What sets of minimal triangulations are obtained?

Algorithms LexBFS, MCS, LexDFS and MNS clearly process in a similar

2

way: they number the vertices of the input graph by repeatedly numbering
an unnumbered vertex with maximal label and incrementing the labels of
its neighbors. They only differ by their vertex labeling, i.e. the nature of
labels and the way they are compared, initialized and incremented. We
show that they can be described as instances of a generic algorithm called
MLS (Maximal Label Search) having the vertex labeling as a parameter.
We show that every instance of MLS computes a peo of a chordal graph,
but cannot compute every peo of every chordal graph. In order to obtain
all possible peos, we extend MLS to CompMLS, which uses Shier’s idea
of working on the connected components of the subgraph induced by the
unnumbered vertices. We show that every instance of generic CompMLS is
capable of computing any peo of a chordal graph.

We then go on to examine the issues pertaining to meos and minimal
triangulations. We show that MNS, MLS and CompMLS can all be extended
to compute an meo, in the same way that LEX M is extended from LexBFS.
We show the very strong result that all the sets of minimal triangulations
computed are the same, independent of the meo-computing algorithm which
is used, and that not all minimal triangulations can be computed by this
new family of algorithms.

The paper is organized as follows: Section 2 gives some definitions and
notations, in Section 3 we discuss peos, in Section 4 we discuss meos and in
Section 5 we present a complexity analysis of the algorithms defined in the
paper.

2 Preliminaries

All graphs in this work are undirected and finite. A graph is denoted G =
(V,E), with n = |V |, and m = |E|. The neighborhood of a vertex x in G
is denoted NG(x), or simply N(x) if the meaning is clear. An ordering on
V is a one-to-one mapping from {1, 2, ..., n} to V . In every figure in this
paper showing an ordering α on V , α is defined by giving on the figure the
number α−1(x) for every vertex x. Z

+ denotes the set of positive integers
{1, 2, 3, . . . } and for any positive integer i, Z

+

i denotes the set of positive
integers strictly larger than i.

A chordal (or triangulated) graph is a graph with no chordless cycle
of length greater or equal to 4. To recognize chordal graphs efficiently,
Fulkerson and Gross [12] used a greedy elimination structure on simplicial
vertices: “A graph is chordal iff one can repeatedly find a simplicial vertex
and delete it from the graph, until no vertex is left” (a vertex is simplicial if
its neighborhood is a clique). This defines an ordering on the vertices which
is called a perfect elimination ordering (peo) of the graph.

When a graph G fails to be chordal, any ordering α on the vertices can
be used to embed G into a chordal graph (called a triangulation of G) by
repeatedly choosing the next vertex x, adding any edges necessary to make
it simplicial, and removing x. If F is the set of added edges, the graph
obtained is chordal and is denoted H = (V,E + F) = G+

α .

3

If H = (V,E + F) is a triangulation of G = (V,E), and if for every
proper subset F ′ ⊂ F , graph (V,E + F ′) fails to be chordal, H is called a
minimal triangulation of G. If moreover α is an ordering such that H = G+

α ,
α is called a minimal elimination ordering (meo) of G.

In [15], two very important characterizations are given:

Path Lemma

For any graph G = (V,E), any ordering α on V and any x, y in V such that
α−1(y) < α−1(x), xy is an edge of G+

α iff there is a path µ in G from x to y
such that ∀t ∈ µ \ {x, y}, α−1(t) < α−1(y).

Unique Chord Property

For any graph G = (V,E) and any triangulation H = (V,E + F) of G, H
is a minimal triangulation of G iff each edge in F is the unique chord of a
4-cycle of H.

3 Computing peos

Everyone of Algorithms LexBFS, MCS, LexDFS and MNS works in the
following fashion: start with a graph where all vertices are unnumbered and
have the same label. Repeatedly choose an unnumbered vertex x whose
label is maximal (with respect to a given partial order on labels), give x
the following number i (in increasing or decreasing order according to the
algorithm), and increment the label of each as yet unnumbered neighbor
of x into a new value depending.on its current value and i. Algorithms
LexBFS and MCS, as defined in [15] and [17], number vertices from n down
to 1 whereas LexDFS and MNS, as defined in [9], number vertices from 1
to n, so that they actually compute the reverse of a peo of every chordal
graph. In this paper, our algorithms compute peos and meos directly, and
thus number vertices from n down to 1: thus vertex number 1 of a peo-
computing algorithm will be a simplicial vertex of the graph.

In order to define a generic peo-computing algorithm, we first define a
labeling structure:

Definition 3.1 A labeling structure is a structure (L,�, l0, Inc), where:

• L is a set (the set of labels),

• � is a partial order on L (which may be total or not, with ≺ denoting
the corresponding strict order), which will be used to choose a vertex
of maximal label,

• l0 is an element of L, which will be used to initialize the labels,

• Inc is a mapping from L×Z
+ to L, which will be used to increment a

label, and such that the following condition IC (Inclusion Condition)
holds:

4

IC : for any subsets I and I ′ of Z
+
2
, if I ⊂ I ′ then labS(I) ≺ labS(I ′),

where labS(I) = Inc(...(Inc(Inc(l0, i1), i2), ...), ik),
where I = {i1, i2, ..., ik} with i1 > i2 > ... > ik.

It will sometimes be useful to use the number n of vertices of the graph
to be labeled in the definition of Inc(l, i). It will be the case for instance for
the labeling structure S3 associated with Algorithm LexDFS. In that case,
Inc can be seen as a family of mappings Incn from L × Z

+ to L for each
positive integer n.

The corresponding algorithm, which we introduce as MLS (Maximal
Label Search), is given by Figure 1. MLS iteratively selects a vertex to
add to the ordering and increments the labels of its unselected neighbors.
We will refer to the iteration of the loop that defines α(i) as Step i of the
algorithm.

Algorithm MLS (Maximal Label Search)
input : A graph G = (V,E) and a labeling structure (L,�, l0, Inc).
output: An ordering α on V .
Initialize all labels as l0; G′ ← G;
for i = n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i)← x;
foreach y in NG′(x) do

label(y)← Inc(label(y), i);

Remove x from G′;

Figure 1: Algorithm MLS.

LexBFS, MCS, LexDFS and MNS are all special cases of MLS, with the
following labeling structures (L,�, l0, Inc); in each case, we also give the
value of labS(I) for any subset I of Z

+.
LexBFS (Structure S1): L is the set of lists of elements of Z

+, � is the
lexicographic order (a total order), l0 is the empty list, Inc(l, i) is obtained
from l by adding i to the end of the list, labS1

(I) is the string of the integers
in I in decreasing order.

MCS (Structure S2): L = Z
+ ∪ {0}, � is ≤ (a total order), l0 = 0,

Inc(l, i) = l + 1, labS2
(I) = |I|.

LexDFS (Structure S3): L is the set of lists of elements of Z
+, � is the

lexicographic order (a total order), l0 is the empty list, Inc(l, i) is obtained
from l by adding n + 1− i to the beginning of the list, labS3

(I) is the string
of the complements to n + 1 of the integers in I in decreasing order.

MNS (Structure S4): L is the power set of Z
+, � is ⊆ (not a total order),

l0 = ∅, Inc(l, i) = l ∪ {i}, labS4
(I) = I.

In our proofs, we will use the following notations.

Notations 3.2 For any graph G = (V,E), any execution of our algorithms
on G computing some ordering α on V , and any integer i between 1 and n,

5

- Vi is the set of still unnumbered vertices at the beginning of Step i, i.e.
the set {α(j), 1 ≤ j ≤ i},

- G′
i is graph G′ at the beginning of Step i, i.e. the subgraph of G induced

by Vi,
and, for each y ∈ Vi,

- labeli(y) is the value of label(y) at the beginning of Step i and
- Numi(y) = {j ∈ {i + 1, i + 2, ..., n} | label(y) has been incremented at

Step j}.

The following Lemma is clear from Algorithm MLS:

Lemma 3.3 For any graph G = (V,E), any labeling structure S, any ex-
ecution of MLS on G and S computing some ordering α on V , any inte-
ger i between 1 and n and any y ∈ Vi, labeli(y) = labS(Numi(y)), and
Numi(y) = Numα

G,i(y), where Numα
G,i(y) denotes the set of integers j > i

such that α(j) is adjacent to y in G.

Thus the label of y at the beginning of Step i is equal to labS(Numα
G,i(y)),

where Numα
G,i(y) is defined from the ordering α computed so far on num-

bered vertices, independently from the labeling structure involved. This
property will allow us to characterize the orderings computed by MLS, and
to compare the sets of orderings computed with different labeling structures
(Characterization 3.4 and Lemma 3.5).

We can view MLS as a generic algorithm with parameter S. For every
labeling structure S, we denote by S-MLS the instance of generic Algorithm
MLS using this particular labeling structure S and by “S-MLS ordering of a
graph G” any ordering that can be computed by S-MLS on input graph G.
Thus, LexBFS is S1-MLS, MCS is S2-MLS, LexDFS is S3-MLS, and MNS
is S4-MLS.

The set of S-MLS orderings of a given graph depends on S. An MLS
ordering of a graph G is an ordering that can be computed by MLS on G, i.e.
by S-MLS for some labeling structure S. Thus, the set of MLS orderings of
G is the union of the sets of S-MLS orderings of G for all labeling structures
S.

The following theorem shows that MNS can compute every S-MLS or-
dering of a given graph for every labeling structure S. This theorem can be
proved using the MNS characterization presented in [9]. We will prove it by
using the following more general results.

Characterization 3.4 For any graph G, any labeling structure S, and any
ordering α of V , α is an S-MLS ordering of G if and only if for any integers
i, j such that 1 ≤ j < i ≤ n, labS(Numα

G,i(α(i))) 6≺ labS(Numα
G,i(α(j))).

Proof: α is an S-MLS ordering of G if and only if for any integer i between
1 and n, the label of α(i) at the beginning of Step i is maximal among the
labels of vertices α(j), i ≤ j ≤ n. We conclude with Lemma 3.3. 2

6

Lemma 3.5 Let S and S′ be labeling structures with partial orders �S and
�S′ resp. such that for any subsets I and I ′ of Z

+
2
, if labS′(I) ≺S′ labS′(I ′)

then labS(I) ≺S labS(I ′).
Then every S-MLS ordering of G is also an S′-MLS ordering of G for every
graph G.

Proof: Let G be a graph and α be an S-MLS ordering of G. By Charac-
terization 3.4, for any integers i, j such that:
1 ≤ i < j ≤ n, labS(Numα

G,i(α(i))) 6≺S labS(Numα
G,i(α(j))),

where Numα
G,i(α(i)) and Numα

G,i(α(j)) are subsets of Z
+
2

since i > 1,
so labS′(Numα

G,i(α(i))) 6≺S′ labS′(Numα
G,i(α(j))). By Characterization 3.4

again α is an S′-MLS ordering of G. 2

Theorem 3.6 For any graph G = (V,E) and any labeling structure S, any
S-MLS ordering of G is an MNS ordering of G.

Proof: This follows immediately from Lemma 3.5 and condition IC, since
MNS = S4-MLS with labS4

(I) = I and ≺S4
=⊂. 2

A corollary of Theorem 3.6 is that any instance of MLS computes a peo
of a chordal graph, since this is true for MNS [9].

Another consequence is that any LexBFS, MCS or LexDFS ordering of
a graph is also an MNS ordering, which already follows from the characteri-
zations given in [9]. However, for arbitrary labeling structures S and S′, an
ordering computed by S-MLS need not be computable by S′-MLS. For in-
stance, Figure 2(a) shows a LexBFS ordering which is not an MCS ordering,
while Figure 2(b) shows an MCS ordering which is not a LexBFS ordering.
There also exist graphs with MNS orderings that are neither LexBFS nor
MCS orderings.

(a)
4

1 3

5

2

2 3

1

5
(b)

4

Figure 2: A chordal graph with different (a) LexBFS and (b) MCS orderings.

As the set of MLS orderings of a graph G is the union of the sets of S-MLS
orderings of G for all labeling structures S and as MNS is equal to S4-MLS,
it follows from Theorem 3.6 that every graph has the same MLS and MNS
orderings. However, be careful that MLS and MNS are different algorithms
since MLS has a graph and a labelling structure as input whereas MNS
only has a graph (or, if MLS is seen as a generic algorithm with a labeling
structure as a parameter, MNS is only an instance of MLS). Figure 3 gives
two different relations on peo-computing algorithms. Figure 3 (a) shows

7

some instances of generic Algorithm MLS, each arrow from MLS to one
of its instances being labeled with the corresponding value of parameter S.
Figure 3 (b) shows the inclusion order on the sets of orderings computable by
these algorithms on a given graph. In this figure, S is an arbitrary labeling
structure.

Lex BFS MCS MNS S−MLSLex DFS Lex BFS MCS Lex DFS S−MLS

MLS MLS / MNS

S1 S2 S3 S4 S

a) b)

Figure 3: (a) Instances of MLS and (b) Inclusion order on the sets of com-
putable orderings.

It is interesting to remark that even though MLS, or equivalently MNS,
is more general (in the sense that it can compute more peos) than LexBFS
and MCS, it still is not powerful enough to compute every possible peo
of a given chordal graph. This is shown by the simple counterexample in
Figure 4: no MLS execution on this graph will find the ordering indicated,
although it is clearly a peo.

1

4

2

3

Figure 4: α is a CompMNS ordering of G but not an MNS one.

In order to make it possible to find any peo, we further generalize MLS
using Shier’s idea [16] of using the connected components of the subgraph
G′ induced by the unnumbered vertices. We thus introduce Algorithm
CompMLS, defined from Algorithm MLS by replacing:
“Choose a vertex x of G′ of maximal label;”
with
“Choose a connected component C of G′;
Choose a vertex x of C of maximal label in C;”.

This generalizes the entire family of peo-computing algorithms discussed
in this paper: for any X in {LexBFS, MCS, LexDFS, MNS, MLS}, Algo-
rithm CompX is a generalization of X, and we will show that it computes
a peo if the graph is chordal. Algorithms MEC and MCC defined by Shier
[16] are instances of generic Algorithm CompMLS: MEC is CompMNS, i.e.
S4- CompMLS, and MCC is CompMCS, i.e. S2- CompMLS. Algorithm
CompMNS can compute the peo of Figure 4. In fact, Shier proved in [16]
that CompMNS and even CompMCS compute all peos of a chordal graph.
We show that this holds for every instance of Algorithm CompMLS, using

8

some results from Section 4.

Theorem 3.7 For any chordal graph G and any labeling structure S, the
S-CompMLS orderings of G are exactly its peos.

Proof: Let G be a chordal graph and S be a labeling structure. By [16] the
CompMNS orderings of G are exactly its peos, and by Theorem 4.15 from
Section 4, G has the same S-CompMLSM and CompMNSM orderings, which
are also its S-CompMLS and CompMNS orderings since G is chordal (by the
extension of Property 4.7 from Section 4 to CompMLS and CompMLSM).
2

We consider here that a labeling structure is defined without the condi-
tion IC, and we discuss the choice of the condition IC in view of obtaining
an algorithm computing peos of chordal graphs. By Theorem 3.6 IC is a
sufficient condition on a labeling structure S for S-MLS to compute only
peos of every chordal graph. It turns out that it is also a necessary one, so
that IC is exactly the condition required on a labeling structure for MLS to
compute only peos of every chordal graph.

Theorem 3.8 The condition IC imposed on a labeling structure S is a nec-
essary and sufficient condition for S-MLS to compute only peos of every
chordal graph.

Proof: IC is a sufficient condition since by Theorem 3.6, S-MLS only
computes MNS orderings, and therefore peos, of every chordal graph.
Conversely, suppose there are some subsets I and I ′ of Z

+
2

such that I ⊂ I ′

and labS(I) 6≺ labS(I ′), and let us show that there is a chordal graph G and
an S-MLS ordering of G that is not a peo of G. Let q = max(I ′). We choose
two subset I and I ′ of Z

+
2

such that I ⊂ I ′, labS(I) 6≺ labS(I ′), max(I ′) = q
and min(I ′) is the largest possible with these conditions. Let p = min(I ′).
p > 2 since I ′ is a subset of of Z

+
2
. Let G = (V,E) with V = {z1, z2, ..., zq}

and E = {zizj, p ≤ i < j ≤ q}∪{zizp−1, i ∈ I ′}∪{zizp−2, i ∈ I}∪{zp−1zp−2}.
G is chordal since (z1, z2, ..., zq) is a peo of G. By the choice of I and I ′

there is an execution of S-MLS on G choosing zq, zq−1, ... zp first, and then
choosing zp−2 before zp−1. The resulting S-MLS ordering of G is not a peo
of G because the set of neighbors of zp−1 with higher numbers than zp−1 in
this ordering is not a clique, since zp−2 is not adjacent to the vertices of the
form zi, i ∈ I ′ \ I. 2

The condition imposed on a labeling structure was defined in a different
way in [4]. Instead of satisfying IC, the mapping Inc had to satisfy the
following condition: for any integer n in Z

+, any integer i between 1 and n
and any labels l and l′ in Ln

i , the following properties hold:
(ls1) l ≺ Inc(l, i)
(ls2) if l ≺ l′ then Inc(l, i) ≺ Inc(l′, i)

where Ln
i is the subset of L defined by induction on i by:

Ln
n = {l0}, and

9

Ln
i−1 = Ln

i ∪ {l = Inc(l′, i) | l′ ∈ Ln
i }, for any i from n down to 2.

It is easy to show that this condition implies IC, but the converse is not
true. For instance, let S be the labeling structure obtained from S4 (the
structure used for MNS) by replacing the inclusion order �S4

by the partial
order � on L defined by: for any l, l′ ∈ L, l � l′ iff (l ⊆ l′ or (l = {4}
and 5 ∈ l′)) (checking that � is a partial order on L is left to the reader).
IC holds since the inclusion order is a suborder of �, but not (ls2) since
{4} ≺ {5} but Inc({4}, 3) = {4, 3} 6≺ {5, 3} = Inc({5}, 3). Thus IC is more
appropriate than the conjunction of (ls1) and (ls2) in the context of peo-
computing algorithms, though a labeling structure satisfying IC necessarily
satisfies (ls1) and often satisfies (ls2) in practice.

Let us conclude this section by some remarks on running the MLS family
of algorithms on non-chordal graphs. LexBFS has been used on AT-free
graphs [10] and has been shown to have very interesting invariants even on
an arbitrary graph ([2, 3]). Likewise, MCS has also been used on various
graph classes ([11, 6, 7]).

Unlike a chordal graph, a non-chordal graph does not necessarily have the
same CompLexBFS, CompMCS, CompLexDFS, and CompMNS orderings.
Figure 5(a) shows a CompLexBFS ordering which is not a CompMCS one,
while Figure 5(b) shows a CompMCS ordering which is not a CompLexBFS
one.

(a)

3 3

4

1

5

2

2

4

(b)
5

1

Figure 5: A non-chordal graph with different (a) CompLexBFS and (b)
CompMCS orderings.

4 Computing meos

We will now introduce the extensions of Algorithms MNS, MLS and
CompMLS into their meo-computing counterparts.

To extend LexBFS into LEX M, at each step choosing a vertex x of
maximum label label(x), an edge is added between x and any unnumbered
vertex y whenever there is a path from x to y in the subgraph induced by the
unnumbered vertices such that all internal vertices on the path have a label
strictly smaller than the label of y. This approach has been used recently in
[1] to extend MCS into meo-computing Algorithm MCS-M; here, we extend
MLS into MLSM, as given by Figure 6. Thus LEX M is S1-MLSM, MCS-
M is S2-MLSM, LexDFS-M is defined as S3-MLSM, and MNSM is defined
as S4-MLSM. We will see that Algorithm MNSM is in fact as general as
MLSM: every MLSM ordering of a graph is an MNSM ordering.

10

Algorithm MLSM (Maximal Label Search for Meo)

input : A graph G = (V,E) and a labeling structure (L,�, l0, Inc).
output: An meo α on V and a minimal triangulation H = G+

α of G.

Initialize all labels as l0; E′ ← ∅; G′ ← G;
for i =n downto 1 do

Choose a vertex x of G′ of maximal label;
α(i)← x;
foreach vertex y of G′ different from x do

if there is a path from x to y in G′ such that every internal
vertex on the path has a label strictly smaller than label(y)
then

E′ ← E′ ∪ {xy};

foreach y in V such that xy ∈ E′ do

label(y)← Inc(label(y), i);

Remove x from G′;

H ← (V,E′);

Figure 6: Algorithm MLSM.

For any labeling structure S, we call S-MLSM the instance of Algorithm
MLSM using S, and S-MLSM ordering an ordering computed by S-MLSM.

Clearly, the relation between labeli(y) and Numi(y) in an execution of
MLS still holds in an execution of MLSM.

Lemma 4.1 For any graph G = (V,E), any labeling structure S, any exe-
cution of MLSM on G and S, any integer i between 1 and n and any y ∈ Vi,

labeli(y) = labS(Numi(y)).

We will show that as for MLS, Numi(y) can be defined from the or-
dering α computed so far on numbered vertices, independently from the
labeling structure involved, with similar consequences in terms of charac-
terizing MLSM orderings and comparing the sets of orderings computed by
MLSM with different labeling structures.

4.1 The MLSM family of algorithms

Theorem 4.2 For any execution of MLSM, H = G+
α , and α is a meo of

G.

To prove this, we will need several technical lemmas. Lemma 4.3 is clear
from algorithm MLSM, Lemma 4.4 immediately follows from Lemma 4.1
and condition IC. The proof of Lemma 4.5 is long and technical, and so for
reasons of readability is given in the Appendix.

Lemma 4.3 For any graph G = (V,E), any execution of MLSM on G
computing ordering α and graph H, any integers i, j such that 1 ≤ i < j ≤ n
and any y in Vi, the following propositions are equivalent:

11

1. j ∈ Numi(y),

2. α(j)y is an edge of H,

3. there is a path µ in G′
j from α(j) to y such that ∀t ∈ µ \ {α(j), y},

labelj(t) ≺ labelj(y).

Lemma 4.4 For any graph G = (V,E), any execution of MLS or MLSM
on G, any integer i between 1 and n and any x, y in Vi,
(i) if Numi(x) = Numi(y) then labeli(x) = labeli(y), and
(ii) if Numi(x) ⊂ Numi(y) then labeli(x) ≺ labeli(y).

Lemma 4.5 For any graph G, any execution of MLSM on G computing
ordering α, any integer i between 1 and n and any path µ in G′

i ending in
some vertex y,

a) ∀t ∈ µ\{y}, labeli(t) ≺ labeli(y) iff ∀t ∈ µ\{y}, Numi(t) ⊂ Numi(y),

b) if ∀t ∈ µ\{y}, labeli(t) ≺ labeli(y) then ∀t ∈ µ\{y}, α−1(t) < α−1(y),

c) if ∀t ∈ µ \ {y}, α−1(t) < α−1(y) then ∀t ∈ µ \ {y}, Numi(t) ⊆
Numi(y).

Proof: [of Theorem 4.2] We first show that for any execution of MLSM,
H = G+

α . Let x, y ∈ V such that α−1(y) < α−1(x) = i. Let us show that xy
is an edge of H iff it is an edge of G+

α .
If xy is an edge of H then, by Lemma 4.3, there is a path µ in G′

i from
x to y such that ∀t ∈ µ \ {x, y}, labeli(t) ≺ labeli(y). By Lemma 4.5 b),
∀t ∈ µ \ {x, y}, α−1(t) < α−1(y) and, by the Path Lemma, xy is an edge of
G+

α .
Conversely, let xy be an edge of G+

α . Let us show that xy is an edge of
H. By the Path Lemma, there is a path µ in G from x to y such that
∀t ∈ µ \ {x, y}, α−1(t) < α−1(y) < i, so µ \ {x} ⊆ Vi−1. By Lemma 4.5
c), ∀t ∈ µ \ {x, y}, Numi−1(t) ⊆ Numi−1(y). Let t1 be the neighbor of
x in µ. xt1 is an edge of H, so, by Lemma 4.3, i ∈ Numi−1(t1), hence
i ∈ Numi−1(y), and by Lemma 4.3 xy is an edge of H.

We now show that G+
α is a minimal triangulation of G. Let H = G+

α =
(V,E + F). As G+

α is a triangulation of G, by the Unique Chord Property,
it is sufficient to show that each edge in F is the unique chord of a cycle in
H of length 4. Let xy be an edge in F with α−1(y) < α−1(x) = i. xy is an
edge of H so by Lemma 4.3 there is a path µ in G′

i from x to y such that
∀t ∈ µ\{x, y}, labeli(t) ≺ labeli(y), and also α−1(t) < α−1(y) by Lemma 4.5
b). µ \ {x, y} 6= ∅ since xy is not an edge in G. Let t1 be the vertex in
µ \ {x, y} such that α−1(t1) is maximum. By the Path Lemma, xt1 and t1y
are edges of G+

α and therefore of H. As labeli(t1) ≺ labeli(y), by Lemma 4.4
Numi(y) 6⊆ Numi(t1). Let j ∈ Numi(y) \ Numi(t1), and z = α(j). j > i
and by Lemma 4.3 yz is an edge of H (and therefore of G+

α) but t1z is not.
Since yx and yz are edges of G+

α with α−1(y) < α−1(x) = i < j = α−1(z),
by definition of G+

α xz is an edge of G+
α , and therefore of H. Hence xy is

the unique chord of cycle (x, t1, y, z, x) in H of length 4. 2

12

Thus MLSM (and also LEX M, MCS-M, LexDFS-M and MNSM) com-
putes an meo and a minimal triangulation of the input graph. An execution
of MLSM has the same behaviour (same labeling and numbering) on the
input graph G as an execution of MLS on the output minimal triangulation
G+

α , breaking ties in the same way. If moreover G is chordal then G is equal
to its minimal triangulation G+

α , so that MLS and MLSM have the same
behaviour on G. We immediately obtain the following two properties:

Property 4.6 For any graph G and any labeling structure S, any S-MLSM
ordering α of G is an S-MLS ordering of G+

α .

Property 4.7 For any chordal graph G and any labeling structure S, G has
the same S-MLS and S-MLSM orderings.

It follows from Property 4.7 and Theorems 3.8 and 4.2 that IC is exactly
the condition required on a labeling structure S for S-MLSM to compute
only meos of every graph.

Corollary 4.8 Condition IC imposed on a labeling structure S is a neces-
sary and sufficient condition for S-MLSM to compute only meos of every
graph.

Proof: IC is a sufficient condition by Theorem 4.2.
Conversely, if S-MLSM computes only meos of every graph, then it computes
only peos of every chordal graph, and so does S-MLS by Property 4.7. It
follows by Theorem 3.8 that S satisfies IC. 2

Let us remark that for two given structures S and S′, the sets of orderings
computed by S-MLSM and S′-MLSM may be different, as is the case for
S-MLS and S′-MLS. LEX M and MCS-M for example compute different
orderings, as shown in Figure 2 (since MLS and MLSM compute the same
orderings on a chordal graph). In the same way that MNS is as general as
MLS, it turns out that MNSM is as general as MLSM, thus every graph
has the same MLSM and MNSM orderings. The proof goes as for MLS and
MNS since by Lemma 4.5 a) Numi(y) can be defined from the ordering α
computed on numbered vertices, independently from the labeling structure
used.

Lemma 4.9 For any graph G = (V,E), any execution of MLSM on G
computing some ordering α on V , any integer i between 1 and n and any
y ∈ Vi,

Numi(y)) = NumMα
G,i(y)),

where NumMα
G,i is defined on Vi by induction on i from n down to 1 by:

NumMα
G,n(y) = ∅, and for any i from n down to 2,

NumMα
G,i−1

(y) = NumMα
G,i(y)∪{i} if there is a path µ in G′

i from α(i)
to y such that ∀t ∈ µ \ {α(i), y}, NumMα

G,i(t) ⊂ NumMα
G,i(y), otherwise

NumMα
G,i−1

(y) = NumMα
G,i(y).

13

Characterization 4.10 For any graph G, any labeling structure S, and
any ordering α of V , α is an S-MLSM ordering of G if and only if for any
integers i, j such that:
1 ≤ j < i ≤ n, labS(NumMα

G,i(α(i))) 6≺ labS(NumMα
G,i(α(j))).

Lemma 4.11 Let S and S′ be labeling structures with partial orders �S and
�S′ resp. such that for any subsets I and I ′ of Z

+
2
, if labS′(I) ≺S′ labS′(I ′)

then labS(I) ≺S labS(I ′).
Then every S-MLSM ordering of G is also an S′-MLSM ordering of G for
every graph G.

Theorem 4.12 For any graph G = (V,E) and any labeling structure S,
any S-MLSM ordering of G is an MNSM ordering of G.

4.2 The CompMLSM family of algorithms

We define CompMLSM from MLSM in the same way we defined CompMLS
from MLS. Properties extend readily from an MLSM algorithm to its
CompMLSM version: at Step i, our proofs only compare the label of α(i) to
labels of vertices along paths in the graph G′

i, so α(i) needs only be maximal
within the connected component of G′

i containing it.
We thus have similar results:

Theorem 4.13 For any input graph G and any X in {LEX M, MCS-M,
LexDFS-M, MNSM, MLSM}, CompX computes a meo α of G and the as-
sociated minimal triangulation G+

α of G.

We also easily extend results such as Properties 4.6 and 4.7 and Char-
acterization 4.10.

An important difference between MLSM and CompMLSM is that the set
of orderings CompMLSM can find is independent of the labeling structure
used, and is a superset of the set of orderings obtainable by any algorithm
of the MLSM family.

Lemma 4.14 For any execution of MLSM or CompMLSM on a graph G,
any integer i between 1 and n and any vertex y of the connected component
of G′

i containing α(i),
Numi(y) ⊆ Numi(α(i)).

Proof: Let µ be a path in G′
i between α(i) and y. ∀t ∈ µ\{α(i)}, α−1(t) <

i, so by Lemma 4.5 c) Numi(y) ⊆ Numi(α(i)). 2

Theorem 4.15 Any graph has the same S-CompMLSM orderings for all
labeling structures S.

Proof: Let G be a graph and S, S′ be labeling structures. Let α be an S-
CompMLSM ordering of G, let us show that α is a S′-CompMLSM ordering

14

of G. By the extension of Characterization 4.10 to CompMLSM, it is suffi-
cient to show that for any integers i, j such that 1 ≤ j < i ≤ n and α(i) and
α(j) are in the same connected component of the subgraph of G induced by
{α(k), 1 ≤ k < i}, labS′(NumMα

G,i(α(i))) 6≺ labS′(NumMα
G,i(α(j))). Let

i, j be such integers. By Lemma 4.14 Numi(α(j)) ⊆ Numi(α(i)) in an exe-
cution of S-CompMLSM computing α, so by Lemma 4.9 NumMα

G,i(α(j)) ⊆
NumMα

G,i(α(i)). It follows by condition IC that labS′(NumMα
G,i(α(j))) �

labS′(NumMα
G,i(α(i))), and therefore:

labS′(NumMα
G,i(α(i))) 6≺ labS′(NumMα

G,i(α(j))). 2

Every chordal graph G has the same S-CompMLSM and S-CompMLS
orderings, which are exactly its peos (Theorem 3.7, whose proof uses Theo-
rem 4.15).

Computing all peos does not extend to meos for the MLSM family of
algorithms: Figure 7 shows an meo which CompMLSM is not capable of
computing.

(a)

3

6 4

(b)

3

6 4

55

2

1

2

1

Figure 7: (a) Graph G and an meo α of G. (b) The corresponding minimal
triangulation G+

α of G. No version of CompMLSM or MLSM can compute
this meo, and the corresponding minimal triangulation is not obtainable by
any of these algorithms.

This raises the question of which minimal triangulations can be obtained
by various algorithms of this family. Villanger in [20] proved the surprising
result that the sets of minimal triangulations obtainable by LEX M and
MCS-M are the same. Upon investigation, it turns out that, given one
of these algorithms, using its Comp version does not enlarge the set of
computable triangulations, although the set of computable meos may be
larger.

Theorem 4.16 For any graph G and any given labeling structure S, G has
the same sets of S-MLSM and of S-CompMLSM minimal triangulations.

Proof: Let G = (V,E) be a graph and let S be a labeling structure.
Clearly, any S-MLSM minimal triangulation of G is an S-CompMLSM one.

Conversely, let H be an S-CompMLSM minimal triangulation of G and
let us show that it is an S-MLSM one. Let α be the ordering on V computed
by some execution of S-CompMLSM computing H, and, for any i from 1
to n, let Ci be the connected component of G′

i chosen at step i of this ex-
ecution. Let α′ be the ordering on V and H ′ be the minimal triangulation

15

of G computed by an execution of S-MLSM, choosing, for any i from 1 to
n, α′(i) at step i in the following way (every variable v is denoted v in the
execution of CompMLSM and v′ in that of MLSM):
1) Choose a connected component C ′

i of G′′
i containing a vertex of maximal

label in G′′
i .

2) If there is some j from 1 to n such that C ′
i = Cj and label′i(α(j)) is

maximuM in C ′
i then choose α′(i) = α(j), otherwise choose α′(i) equal to

any vertex of C ′
i of maximal label in G′′

i .
Note that there is at most one integer j such that C ′

i = Cj since for any
j, k such that j < k, Cj 6= Ck since α(k) ∈ Ck \ Cj . Let us show that
H ′ = H. For any subset J of {1, 2, ..., n}, let α(J) denote the set of vertices
{α(j) | j ∈ J}, and, for any i from 1 to n, let P (i) be the following property.
P (i) : if there is some j from 1 to n such that C ′

i = Cj and ∀y ∈ C ′
i,

α′(Num′
i(y)) = α(Numj(y)) then the edges of H ′ produced when processing

the vertices of C ′
i (in the execution of MLSM) are exactly those of H pro-

duced when processing the vertices of Cj (in the execution of CompMLSM).
Let us show P (i) by induction on i from 1 to n. P (1) holds since C ′

1

contains a single vertex and processing this vertex produces no edge of
H (or H ′). We suppose P (i − 1) for some i, 1 < i ≤ n. Let us show
P (i). We suppose that there is some j from 1 to n such that C ′

i = Cj

and ∀y ∈ C ′
i, α′(Num′

i(y)) = α(Numj(y)). By Lemma 4.14 ∀y ∈ Cj ,
Numj(y) ⊆ Numj(α(j)), so ∀y ∈ C ′

i, α′(Num′
i(y)) = α(Numj(y)) ⊆

α(Numj(α(j))) = α′(Num′
i(α(j))) and therefore Num′

i(y) ⊆ Num′
i(α(j)).

It follows by Lemma 4.4 that label′i(α(j)) is maximum in C ′
i. By defini-

tion of α′, α′(i) = α(j). The edges of H ′ produced when processing α′(i)
are exactly those of H produced when processing α(j) by Lemma 4.5 a)
and the fact that ∀y ∈ C ′

i, α′(Num′
i(y)) = α(Numj(y)), and the con-

nected components of G′′
i−1

obtained from C ′
i by removing α′(i) are exactly

those of G′
j−1

obtained from Cj by removing α(j) with ∀y ∈ C ′
i \ {α

′(i)},
α′(Num′

i−1
(y)) = α(Numj−1(y)). For each such connected component C,

there is some k < i and some l < j such that C = C ′
k = Cl and ∀y ∈ C ′

k,
α′(Num′

k(y)) = α′(Num′
i−1

(y)) = α(Numj−1(y)) = α(Numl(y)), so by in-
duction hypothesis, the edges of H ′ produced when processing the vertices
of C are exactly those of H produced when processing the vertices of C.
Hence the edges of H ′ produced when processing the vertices of C ′

i are ex-
actly those of H produced when processing the vertices of Cj. So P (i) holds,
which completes the induction on i. Now, for each connected component
C of G there are some i and j from 1 to n such that C = C ′

i = Cj and
∀y ∈ C, Num′

i(y) = Numj(y) = ∅, so by P (i) the edges of H ′ produced
when processing the vertices of C are exactly those of H produced when
processing the vertices of C. Hence H ′ = H. 2

Theorem 4.16, together with Theorem 4.15, yields the following inter-
esting result:

Theorem 4.17 For any graph G, whichever meo-computing algorithm of
the MLSM and CompMLSM families is used (e.g., LEX M, MCS-M, LexDFS-

16

M, MNSM, or their Comp extensions), the set of computable minimal tri-
angulations is the same.

These minimal triangulations fail to cover all possible minimal triangu-
lations: Figure 7(b) shows a minimal triangulation which is obtainable by
none of our graph search meo-computing algorithms.

5 Complexity of MLS and MLSM

We now consider the question of implementing Algorithms MLS and MLSM.
In the following, we use the word ”implementation” in an algorithmic sense
and not in a programming one. We will give a detailed version of each
algorithm studied in this paper and precise the data structures used in order
to compute its time and space complexity, but we will not give any real
implementation in a programming language. We will also explore variants
Test-MLS and Test-MLSM: Algorithm Test-MLS takes as input a graph
G = (V,E), a labeling structure S and an ordering α of V and returns
YES if α is an S-MLS ordering of G and NO otherwise. It is obtained from
Algorithm MLS by replacing the instructions

Choose a vertex x of G′ of maximal label;
α(i)← x

by
if the label of α(i) is not maximal in G′ then return NO
x← α(i)

and by adding the instruction
return YES

at the end of the algorithm.
Test-MLSM is defined from MLSM in the same way, and we denote by

Test-S-MLS, Test-S-MLSM,Test-LexBFS etc the corresponding variants of
S-MLS, S-MLSM, LexBFS etc.

An implementation of S-MLS is required to compute only S-MLS order-
ings, but not to be able to compute every S-MLS ordering of a graph. For
instance, as any MCS ordering is a MNS ordering, any implementation of
MCS is also an implementation of MNS. However, an implementation find-
ing out if a given ordering is a MCS ordering or not will not be able to find
out if this ordering is a MNS ordering or not. An implementation of Test-
S-MLS (resp. Test-S-MLSM) will in general have to keep closer to S than
S-MLS (resp. S-MLSM). By Lemmas 3.5 and 4.11 we have the following
property.

Property 5.1 Let S and S′ be labeling structures with partial orders �S and
�S′ resp. such that for any subsets I and I ′ of Z

+
2
, if labS′(I) ≺S′ labS′(I ′)

then labS(I) ≺S labS(I ′).
Then any implementation of S-MLS (resp. S-MLSM) is also an implemen-
tation of S′-MLS (resp. S′-MLSM).

In particular, S-MLS (resp. S-MLSM) can be implemented by replacing
the partial order on labels by anyone of its linear extensions.

17

5.1 Complexity of MLS and Test-MLS

We will first study the main instances of MLS, namely LexBFS, MCS,
LexDFS and MNS, then we will give an implementation of S-MLS with
a stratified tree, which is a data structure designed to manipulate priority
queues, for any labeling structure S such that labels are positive integers
ordered by ≤.

An implementation of LexBFS is given by Rose, Tarjan and Lueker [15],
and an implementation of MCS is given by Tarjan and Yannakakis [17] with
the following complexity results.

Theorem 5.2 [15, 17] LexBFS and MCS can be implemented in O(n + m)
time and space.

It is easy to check that the data structures used in [15] for LexBFS and in
[17] for MCS can be used without extra cost for Test-LexBFS and Test-MCS
respectively. Moreover, as by Theorem 3.6 any LexBFS or MCS ordering is
an MNS one, we have the following Corollary of Theorem 5.2.

Corollary 5.3 Test-LexBFS, Test-MCS and MNS can be implemented in
O(n + m) time and space.

We can derive from the implementation of LexBFS given in [15] an im-
plementation of LexDFS.

Implementation of LexDFS and Test-LexDFS with a list of lists.

As in the implementation of LexBFS, the current state of labels is repre-
sented by a list L of non-empty lists l. Each list l contains the unnumbered
vertices bearing a given label, and the list L is ordered in decreasing order
on the labels associated with the lists l (see [15] for a full description of
the data structure). It is initialized with a unique list l containing all the
vertices of the graph. At Step i, α(i) is chosen in the first list in L and
removed from this list, and for each list l in L, the neighbors of α(i) in l are
removed from l and put into a new list l1 which is placed just before l in
L. This corresponds to the new decreasing LexBFS order in an execution
of LexBFS. To obtain an implementation of LexDFS, it is sufficient to add
the following instruction at the end of each Step i: scan the list L to extract
the lists l1 and form a list L1 with these lists l1 in the same order, then con-
catenate L1 with the remaining list L to obtain the new list L in decreasing
LexDFS order.
For Test-LexDFS, we test at iteration i whether α(i) is in the first list of L
or not.

Theorem 5.4 LexDFS and Test-LexDFS can be implemented in O(n2) time
and O(n + m) space.

Proof: The time complexity of LexDFS is obtained from the time com-
plexity of LexBFS by adding the cost of scanning the list L to form the list

18

L1 at each step. As there are n scans and each scan requires O(n) time, we
obtain an O(n2) time complexity for LexDFS. The space complexity is the
same as that of LexBFS, i.e. O(n + m). These complexity bounds also hold
for Test-LexDFS. 2

We will now discuss implementing Test-MNS. We remark that for any
vertices v and w of G′

i, the Boolean value of labeli−1(v) � labeli−1(w) only
depends on the value of labeli(v) � labeli(w) and on whether v and w are
neighbors of α(i) or not. Thus we can implement Test-MNS by storing these
Boolean values instead of storing and comparing explicit labels.

Implementation of Test-MNS.

We use a Boolean matrix Preceq such that at the beginning of Step i,
for any vertices v and w of G′

i, Preceq(v,w) = True iff labeli(v) � labeli(w).
Preceq is initialized with True. Testing the maximality of the label of α(i)
in G′ is implemented by testing the absence of a vertex v of G′ such that
Preceq(α(i), v) and not Preceq(v, α(i)). Labels are updated at Step i by
the following procedure, where x = α(i):

foreach neighbor v of x in G′ do

foreach non-neighbor w of x in G′ do

Preceq(v,w)← False
It is easy to check that this procedure correctly updates matrix Preceq with
respect to its desired meaning, so that this implementation of Test-MNS is
correct.

Theorem 5.5 Test-MNS can be implemented in O(n(n + m)) time and
O(n2) space.

Proof: Initialization requires O(n2) time and at each step i, testing the
maximality of the label of α(i) in G′ requires O(n) time and updating matrix
Preceq requires O(n|N(α(i))|) time, which makes a global O(n(n+m)) time
bound. Matrix Preceq requires O(n2) space, which is the space bound of
the algorithm. 2

Note that we can derive from this implementation of Test-MNS an im-
plementation of MNS which is able to compute every MNS ordering of the
input graph with the same time and space bounds. In addition to matrix
Preceq, we use an array containing for each vertex v of G′ the number of
vertices w of G′ having a larger label than v (i.e. such that Preceq(v,w)
and not Preceq(w, v)). This array allows to choose at each step a vertex of
maximal label in G′ in O(n) time.

5.1.1 Using a stratified tree

For any labeling structure S such that labels are positive integers ordered
by ≤, S-MLS can be implemented with the data structure of a stratified
tree defined by Van Emde Boas [18, 19] to manipulate priority queues. This

19

data structure is used to implement a subset C of an interval of integers in
the form [1, n] ordered by ≤, which here will be the set of current labels,
i.e. the set of labels assigned to unnumbered vertices at some point of the
execution of S-MLS. The stratified tree can be initialized in O(n log log n)
time. Inserting or removing an element, or finding the maximum element
in C requires O(log log n) time. The structure requires O(n) space. These
bounds are computed in the model of the unit-cost RAM.

Implementation of S-MLS and Test-S-MLS with a stratified tree.

We suppose that labels are positive integers in some interval I ordered
by ≤. The set C of current labels is stored in a stratified tree. With each
current label is associated the non-empty list of unnumbered vertices having
this label. These lists can be stored in an array indexed by the integers in
I. At the initialization step, the unique element l0 of C is associated with
the list of all vertices of the graph. To choose an unnumbered vertex with
maximal label at Step i, we find the maximum element lmax of C, remove
a vertex from the list associated with lmax and remove lmax from C if this
list has become empty. For Test-S-MLS, it is tested whether σ(i) has label
lmax or not. To update the label of a vertex v from l to l′, we transfer v
from the list associated with l to the list associated with l′, with a possible
removal of l from C and a possible insertion of l′ into C.

Proposition 5.6 Let S be a labeling structure such that for any integer
n ≥ 1, set Ln = {labS(I), I ⊆ [1, n]} is a subset of an interval [1, r(n)] of
integers ordered by ≤, with r(n) in O(n).
Then S-MLS and Test-S- MLS can be implemented in O((n+m) log log n+
m tInc(n)) time and O(n + m) space, where tInc(n)) is the time required to
increment a label of Ln.

Proof: Implementing the set C of current labels with a stratified tree re-
quires O(n log log n) initialization time, O(log log n) time per operation and
O(n) space [18, 19]. As choosing a vertex with maximal label and updating
the label of a vertex require at most a constant number of operations on the
stratified tree, we obtain the announced bounds. 2

As for CompMLS, for any labeling structure S, S-CompMLS can be
implemented by any implementation of S-MLS since any S–MLS ordering
is an S-CompMLS one. Moreover, by Theorem 3.7 S-CompMLS restricted
to chordal graphs can be implemented by an implementation of LexBFS or
MCS. Test-S-CompMLS restricted to chordal graphs only has to determine
if the given ordering is a peo of the graph or not, which can be implemented
in linear time and space [15].

5.2 Complexity of MLSM and Test-MLSM

MLSM is more complex than MLS since graph G′ must additionally be
searched at each Step i to determine the vertices whose label has to be

20

incremented, i.e. the neighbors of α(i) in the minimal triangulation H of
G. We will show that this search can be performed using another labeling
structure than the input labeling structure S, which will allow us to deduce
an implementation and complexity bounds of S-MLSM from those of LEX
M and S-MLS.

An implementation of LEX M is given by Rose, Tarjan and Lueker [15]
with the following complexity results, where m′ denotes the number of edges
of the computed minimal triangulation H of G.

Theorem 5.7 [15] LEX M can be implemented in O(n(n + m)) time and
O(n + m′) space.

Note that the implementation of LEX M given in [15] only requires
O(n+m) space because it only computes an meo α of G and not its minimal
triangulation H = G+

α . We will show that this implementation of LEX M
can be used to implement S-MLS for any labeling structure S. We first
extend Lemma 4.5 a) to the following lemma:

Lemma 5.8 For any graph G, any labeling structures S and S′ with partial
orders �S and �S′ resp., any execution of MLSM on G and S, any integer
i between 1 and n and any path µ in G′

i ending in some vertex y,
∀t ∈ µ \ {y}, labeli(t) ≺S labeli(y) iff ∀t ∈ µ \ {y}, labS′(Numi(t)) ≺S′

labS′(Numi(y)).

Proof: By Lemma 4.5 a) it is sufficient to show that:
∀t ∈ µ\{y}, labS′(Numi(t)) ≺S′ labS′(Numi(y)) iff ∀t ∈ µ\{y}, Numi(t) ⊂
Numi(y). The proof of this last equivalence is similar to that of Lemma 4.5
a), replacing the references to Lemma 4.4 with references to condition IC.
2

We distinguish in an execution of MLSM the specific MLSM part which
is the search in G′ at each Step i from α(i) to determine the vertices whose
label has to be incremented, from the MLS part which corresponds to an
execution of MLS on the output graph G+

α . We suppose in the following
result that the MLS part of MLSM on G can be implemented with the same
time and space complexity as MLS on G+

α . In other words, we assume that
the fact that G+

α is only partially known at each step of an execution of
MLSM does not affect the complexity of MLS, which seems reasonable since
the unknown edges of G+

α are between unnumbered edges and therefore play
no role in the algorithm.

Theorem 5.9 For any labeling structure S, if S-MLS (resp. Test-S-MLS)
can be implemented in O(f(n,m)) time and O(g(n,m)) space then S-MLSM
(resp. Test-S-MLSM) can be implemented in O(n(n + m) + f(n,m′)) time
and O(g(n,m′)) space.

Proof: We implement the specific MLSM part of Algorithm S-MLSM or
Test-S-MLSM with the part of the implementation of LEX M given in [15]

21

corresponding to the specific MLSM part and the updating of the integer
labels l(v) at each Step. As the order on these labels l(v) at the beginning of
Step i is the same as the lexicographic order on the labS1

(Numi(v)) with S1-
MLSM = LEX M [15], Lemma 5.8 ensures that this correctly implements the
specific MLSM part of the algorithm. By our assumption, the MLS part of
S-MLSM (resp. Test-S-MLSM) can be implemented by an implementation
of S-MLS (resp. Test-S-MLS) with the same complexity as this algorithm
on G+

α . The result follows from Theorem 5.7. 2

Corollary 5.10 MCS-M, LexDFS-M, MNSM, Test-LEX M, Test-MCS-M
and Test-LexDFS-M can be implemented in O(n(n+m)) time and O(n+m′)
space.
Test-MNSM can be implemented in O(n(n + m′)) time and O(n2) space.

For some labeling structures S, we can directly derive from the imple-
mentation of LEX M given in [15] an implementation of S-MLSM by just
modifying the way labels l(v) are updated to make them correspond to the
labels obtained with the labeling structure S. For instance, we obtain an
implementation of LexDFS-M by replacing the instruction l(z) := l(z)+1/2
by l(z) := l(z)+n, and we obtain an implementation of MCS-M by replacing
this instruction by l(z) := l(z) + 1 and by replacing the procedure sort by:
set k to the maximum value of l(v) for unnumbered vertices v. This im-
plementation of MCS-M is a little simpler than the implementation of LEX
M (with the same complexity bounds) since it avoids renaming all labels
in the procedure sort. It can be used in the implementation of S-MLSM
and Test-S-MLSM instead of the implementation of LEX M, and is itself
an implementation of MNSM by Theorem 4.12. In the same way, we can
define direct implementations of Test-LexDFS-M and Test-MCS-M, but not
of Test-MNSM. If labels are positive integers ordered by ≤, we can imple-
ment the MLS part with a stratified tree, and deduce complexity bounds
from Proposition 5.6 and Theorem 5.9. By Theorem 4.15, for any labeling
structure S, S-CompMLSM can be implemented by an implementation of
LEX M or MCS-M.

6 Conclusion

We have extended Algorithm LexBFS into Algorithm MLS by defining a gen-
eral labeling structure, and shown how to extend this further to CompMLS
to enable any possible peo to be computed. We have also extended all these
algorithms to meo-computing versions. Our work yields alternate (and often
simpler) proofs for the results of several papers, as [1, 15, 16, 17, 20].

However, we have shown that these new meo-computing algorithms fail
to enhance the possibility for finding a wider range of minimal triangulations.
LEX M has been studied experimentally, and shown to be very restrictive
([5]), yielding triangulations which for example are far from edge-number

22

minimum. This problem remains with the enlarged family of new meo-
computing algorithms we present here, and appears to be a fundamental
limitation of graph search.

We presented time and space complexity bounds of some algorithms of
the MLS and MLSM families. These results mostly derive from the known
complexity bounds of LexBFS, MCS and LEX M. An interesting fact is that
the search in G′ at each step of an execution of MLSM can be performed
using any other labeling structure than the input labeling structure S, which
allows to implement S-MLSM by combining implementations of LEX M and
S-MLS.

As mentioned in the Introduction, LexBFS and MCS, though designed
for chordal graphs, have been used for graph classes other than chordal
graphs. The more general peo-finding algorithms discussed in this paper
could also prove useful on non-chordal graphs, on a wider variety of graph
classes and problems.

References

[1] A. Berry, J. Blair, P. Heggernes and B. Peyton. Maximum Cardinality
Search for computing minimal triangulations of graphs. Algorithmica,
39(4):287–298, 2004.

[2] A. Berry and J.-P. Bordat. Separability generalizes Dirac’s theorem.
Discrete Applied Mathematics, 84:43–53, 1998.

[3] A. Berry and J.-P. Bordat. Moplex elimination orderings. Electronic
Notes in Discrete Mathematics, Proceedings of First Cologne-Twente
Workshop on Graphs and Combinatorial Optimization , 8, 2001.

[4] A. Berry, R. Krueger, and G. Simonet. Ultimate generalizations of
LexBFS and LEX M. Proceedings of the 31st International Workshop
on Graph-Theoretic Concepts in Computer Science 2005 (WG 2005),
LNCS 3787, Springer-Verlag, 199–213, 2005.

[5] J. R. S. Blair, P. Heggernes, and J. A. Telle. A practical algorithm
for making filled graphs minimal. Theoretical Computer Science A,
250-1/2: 125–141, 2001.

[6] H. L. Bodlaender, A. M. C. A. Koster. On the Maximum Cardinality
Search Lower Bound for Treewidth. Proceedings (WG 2004), 81–92,
2004.

[7] H. L. Bodlaender, A. M. C. A. Koster. On the Maximum Cardinality
Search Lower Bound for Treewidth. Discrete Applied Mathematics 155:
1348–1372, 2007.

[8] D. G. Corneil “Lexicographic Breadth First Search - a survey 30th
International Workshop on Graph Theory (WG2004), LNCS 3353;
Springer, 1–19, 2004.

23

[9] D. G. Corneil and R. Krueger. A unified view of graph searching.
Submitted.

[10] D. G. Corneil, S. Olariu, and L. Stewart. Linear Time Algorithms for
Dominating Pairs in Asteroidal Triple-free Graphs. SIAM Journal on
Computing, 28:1284–1297, 1999.

[11] E. Dahlhaus, P. L. Hammer, F. Maffray, and S. Olariu. On Domination
Elimination Orderings and Domination Graphs. Proceedings of WG
1994, 81–92, 1994.

[12] D.R. Fulkerson and O.A. Gross. Incidence matrixes and interval graphs.
Pacific Journal of Math., 15:835–855, 1965.

[13] T. Ohtsuki. A fast algorithm for finding an optimal ordering in the
vertex elimination on a graph. SIAM Journal on Computing, 5:133–
145, 1976.

[14] T. Ohtsuki, L. K. Cheung, and T. Fujisawa. Minimal triangulation of a
graph and optimal pivoting order in a sparse matrix. Journal of Math.
Analysis and Applications, 54:622–633, 1976.

[15] D. Rose, R.E. Tarjan, and G. Lueker. Algorithmic aspects of vertex
elimination on graphs. SIAM Journ. Comput, 5:146–160, 1976.

[16] D. R. Shier. Some aspects of perfect elimination orderings in chordal
graphs. Discrete Applied Mathematics, 7:325–331, 1984.

[17] R. E. Tarjan and M. Yannakakis. Simple linear-time algorithms to
test chordality of graphs, test acyclicity of hypergraphs, and selectively
reduce acyclic hypergraphs. SIAM J. Comput., 13:566–579, 1984.

[18] P. van Emde Boas. Preserving order in a forest in less than logarithmic
time and linear space. Inform. Process. Lett., 6(3):80–82, 1977.

[19] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation
of an efficient priority queue. Math. Systems Theory, 10:99–127, 1977.

[20] Y. Villanger. Lex M versus MCS-M. Discrete Mathematics, 306(3):
393-400, 2004.

24

Appendix

We give the proof of Lemma 4.5.

Lemma 4.5 For any graph G, any execution of MLSM on G comput-
ing ordering α, any integer i from 1 to n and any path µ in G′

i ending in
some vertex y,

a) ∀t ∈ µ\{y}, labeli(t) ≺ labeli(y) iff ∀t ∈ µ\{y}, Numi(t) ⊂ Numi(y),

b) if ∀t ∈ µ\{y}, labeli(t) ≺ labeli(y) then ∀t ∈ µ\{y}, α−1(t) < α−1(y),

c) if ∀t ∈ µ \ {y}, α−1(t) < α−1(y) then ∀t ∈ µ \ {y}, Numi(t) ⊆
Numi(y).

The proof uses the following technical Lemmas 6.1 and 6.2. For any path
µ containing vertices x and y, µ[x, y] denotes the subpath of µ between x
and y.

Lemma 6.1 For any graph G, any execution of MLSM on G, any integer
i from 1 to n and any path µ in G′

i−1
ending in some vertex y,

if ∀t ∈ µ \ {y}, Numi(t) ⊂ Numi(y) then ∀t ∈ µ \ {y}, Numi−1(t) ⊂
Numi−1(y).

Proof: We suppose that ∀t ∈ µ\{y}, Numi(t) ⊂ Numi(y) (and therefore
labeli(t) ≺ labeli(y) by Lemma 4.4). Let t ∈ µ \ {y} and let us show that
Numi−1(t) ⊂ Numi−1(y). It is sufficient to show that if i ∈ Numi−1(t) then
i ∈ Numi−1(y). We suppose that i ∈ Numi−1(t). By Lemma 4.3 there is a
path λ in G′

i from α(i) to t such that ∀t′ ∈ λ\{α(i), t}, labeli(t
′) ≺ labeli(t).

Let µ′ be the path obtained by concatenation of λ and µ[t, y]. Then µ′ is a
path in G′

i from α(i) to y such that ∀t′ ∈ µ′ \{α(i), y}, labeli(t
′) ≺ labeli(y).

Hence by Lemma 4.3 i ∈ Numi−1(y). 2

Lemma 6.2 For any graph G, any execution of MLSM on G, any integer
i from 1 to n and any path µ in G′

i ending in some vertex y,
if ∃t ∈ µ \ {y} | Numi(t) 6⊆ Numi(y) then ∃t1 ∈ µ \ {y} | ∀t ∈ µ[t1, y] \
{t1}, Numi(t) ⊂ Numi(t1).

Proof: We suppose that ∃t ∈ µ \ {y} | Numi(t) 6⊆ Numi(y). Let j be the
largest integer such that ∃t ∈ µ\{y} |Numj−1(t) 6⊆ Numj−1(y) and let t1 be
the vertex of µ closest to y such that Numj−1(t1) 6⊆ Numj−1(y). So j−1 ≥
i, j ∈ Numj−1(t1) and ∀t ∈ µ[t1, y] \ {t1}, j 6∈ Numj−1(t). Let us show
that Numj(t1) = Numj(y). We assume for contradiction that Numj(t1) 6=
Numj(y). Let t2 be the vertex of µ[t1, y] closest to t1 such that Numj(t2) =
Numj(y). By the choice of j, ∀t ∈ µ[t1, t2] \ {t2}, Numj(t) ⊂ Numj(t2)
and by Lemma 6.1 Numj−1(t1) ⊂ Numj−1(t2). So j ∈ Numj−1(t2) with
t2 ∈ µ[t1, y] \ {t1}, a contradiction.
So ∀t ∈ µ[t1, y] \ {t1}, Numj−1(t) = Numj(t) ⊆ Numj(y) = Numj(t1) ⊂

25

Numj(t1) ∪ {j} = Numj−1(t1). As j − 1 ≥ i, by Lemma 6.1 ∀t ∈ µ[t1, y] \
{t1}, Numi(t) ⊂ Numi(t1). 2

Proof: (of Lemma 4.5) a) For the forward direction, we assume for contra-
diction that ∀t ∈ µ \ {y}, labeli(t) ≺ labeli(y) and ∃t ∈ µ \ {y} | Numi(t) 6⊂
Numi(y) (and therefore Numi(t) 6⊆ Numi(y) since, by Lemma 4.4 (i),
Numi(t) 6= Numi(y)). By Lemma 6.2, ∃t1 ∈ µ\{y} | Numi(y) ⊂ Numi(t1)
and by Lemma 4.4 labeli(y) ≺ labeli(t1), a contradiction.
The reverse direction follows immediately from Lemma 4.4.
b) We suppose that ∀t ∈ µ \ {y}, labeli(t) ≺ labeli(y).
Let k = max{α−1(t), t ∈ µ}. By a) and Lemma 6.1, ∀t ∈ µ\{y}, labelk(t) ≺
labelk(y). So α(k) = y, which completes the proof.
c) We assume for contradiction that ∀t ∈ µ \ {y}, α−1(t) < α−1(y) and
∃t ∈ µ \ {y} | Numi(t) 6⊆ Numi(y). By Lemma 6.2 ∃t1 ∈ µ \ {y} | ∀t ∈
µ[t1, y] \ {t1}, Numi(t) ⊂ Numi(t1) and by a) and b), α−1(y) < α−1(t1), a
contradiction, 2

26

